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Abstract
In recent years, there have been a number of suc-
cessful cyber attacks on enterprise networks by ma-
licious actors. These attacks generate alerts which
must be investigated by cyber analysts to determine
if they are an attack. Unfortunately, there are mag-
nitude more alerts than cyber analysts - a trend ex-
pected to continue into the future creating a need
to find optimal assignments of the incoming alerts
to analysts in the presence of a strategic adversary.
We address this challenge with the four following
contributions: (1) a cyber allocation game (CAG)
model for the cyber network protection domain, (2)
an NP-hardness proof for computing the optimal
strategy for the defender, (3) techniques to find the
optimal allocation of experts to alerts in CAG in the
general case and key special cases, and (4) heuris-
tics to achieve significant scale-up in CAGs with
minimal loss in solution quality.

1 Introduction
Automated intrusion detection and prevention systems
(IDPS) and security information and event management tools
(SIEM) are important for computer network security. The
alerts generated by these systems must be investigated by hu-
man cybersecurity analysts to assess whether they were gen-
erated by malicious activity, and if so, how to respond. Un-
fortunately, these automated systems are notorious for gener-
ating high rates of false positives [Spathoulas and Katsikas,
2013]. Expert analysts are in short supply, so organizations
face a key challenge in managing the enormous volume of
alerts they receive using the limited time of analysts. Failing
to solve this problem can render the entire system insecure,
e.g., in the 2013 attack on Target, IDPS raised alarms, but
they were missed in the deluge of alerts [Riley et al., 2014].

There are many approaches for mitigating this problem by
reducing the number of alerts. IDPS can be carefully con-
figured, alert thresholds can be tuned, and the classification
methods underlying the detections can be improved [Sommer
and Paxson, 2010; Barbara and Jajodia, 2002; Laszka et al.,
2016]. Other techniques include aggregating alerts [Zimmer-
man, 2014], and visualizing alerts for faster analysis [Patton
et al., 2011]. Even when using all of these techniques, there

are still too many alerts for the analysts to investigate all of
them in depth. Our work focuses on the remaining problem
of assigning limited analysts to investigate alerts after auto-
mated pre-processing methods have been applied.

The typical approach to managing alerts is either ad-hoc or
uses the obvious strategy of looking only at the alerts with
the highest priority (e.g., risk). However, this fails to account
for the adversarial nature of the cyber security setting. An at-
tacker who can guess or learn about a predictable alert man-
agement policy can exploit this knowledge to launch a suc-
cessful attack. For example, if we had a policy that only in-
spects alerts from high valued assets for our organization, an
attacker who can learn this will evade detection indefinitely
by only conducting activities on lower valued assets.

To address this shortcoming of the previous method, our
first contribution is a Cyber-alert Allocation Game (CAG), a
game-theoretic model for optimizing the assignment of cy-
ber alerts to a limited group of cyber analysts. Using game
theory allows us to explicitly model the strategies an attacker
with knowledge of the assignment policy could take to avoid
detection. By following a randomized, unpredictable assign-
ment strategy the defender can improve the effectiveness of
alert assignments against strategic attackers. Our model con-
siders the characteristics of the alerts (e.g., criticality of origin
system), as well as the capabilities of the analysts in formu-
lating the optimal policy for the defender.

Our second contribution in this paper is to show that find-
ing the optimal strategy for a CAG is NP-hard, posing a ma-
jor computational challenge. Third, we present an algorithm
for finding optimal, implementable CAG policies. Fourth, we
devise novel heuristics to solve large CAGs, and we provide
empirical evaluation of our algorithms and model.

2 Related Work
There is a large body of work on automated detection of cy-
ber attacks using machine learning (e.g., [Hu et al., 2003;
Hofmeyr and Forrest, 1999; Wu et al., 2015]). However,
these methods have significant detection error and suffer
from generating too many alerts [Sommer and Paxson, 2010].
In modern security operations a team of human cyber ana-
lysts work to investigate the alerts generated by automated
detectors [DAmico and Whitley, 2008]. A recent line of
work [Ganesan et al., 2016] has used decision theory to opti-
mize the scheduling of cyber-security analysts for screening



over multiple time periods, but this approach does not con-
sider the response of a strategic attacker.

Our approach draws on the principles and modeling tech-
niques of a large body of work that applies game theory to
security problems [Tambe, 2011]. The existing work on se-
curity games focuses heavily on applications to physical se-
curity (e.g., patrolling), with some exceptions (e.g., [Laszka
et al., 2016; Durkota et al., 2015]). However, CAG signifi-
cantly differs from traditional security games [Tambe, 2011;
Jain et al., 2010b] due to the absence of an explicit set of
targets, a large number of benign alerts and varying time
requirements for inspections. A model that is closely re-
lated to ours is the Threat Screening Game (TSG) introduced
in [Brown et al., 2016] for screening passengers at airports.
There are some crucial differences with the cybersecurity do-
main: (1) Screening in airports is a quick scan of a passenger;
in CAGs, investigating a threat may take varying amounts of
time leading to a different “non-implementability” [Korzhyk
et al., 2010] issue for CAG as compared to TSG and other
security games which require novel techniques to resolve, (2)
CAG does not consider teams of resources, and (3) in CAGs
attacks result in a probability distribution over a set of alerts.

3 Motivating Domain
While many organizations face the challenge of cyber alert
allocation, we highlight a scenario developed in consulta-
tion with experts at the United States Air Force (USAF). The
USAF relies on extensive global cyber systems to support its
missions, which are monitored by IDPS to prevent attacks on
the network by intelligent adversaries. The Air Force Cyber
defense unit (AFCYBER) is responsible for investigating and
resolving alerts generated by these IDPS [afc, 2017]. Due
to the global scale of USAF computer systems, millions of
alerts are generated every day, associated with different types
of events. Prescreening of the alerts eliminates a large frac-
tion of insignificant events, but thousands remain to be in-
vestigated. Any of these remaining alerts could indicate a
malicious attack, but a large fraction are false positives.

Two primary features are used to prioritize the most critical
alerts to investigate. First, each alert has a risk classification
(e.g., high, medium, low) based on the type of event detected
by the IDPS. Second, each alert has an origin location within
the global network (e.g., a specific host, system); some loca-
tions (e.g., headquarters) are more critical to operations.

The AFCYBER has a limited number of Incident Response
Team (IRT) cyber analysts who investigate significant alerts
after prescreening [aft, 2016]. Each analyst has different ar-
eas of expertise, and may therefore be more effective and/or
faster at investigating certain types of incidents. The USAF
also must protect against an adaptive adversary who can ob-
serve strategies through beaconing and other techniques. The
problem AFCYBER faces is an excellent example of our cen-
tral analyst assignment problem in the real world.

4 Cyber-alert Allocation Games
We model the Cyber-alert Allocation Game (CAG) as a (zero-
sum) Stackelberg game played between the defender (e.g.,
AFCYBER) and an adversary (e.g., hacker). The defender

commits to a mixed strategy to assign alerts to cyber ana-
lysts. We make the worst-case assumption that the attacker
moves with complete knowledge of the defender’s strategy
and plays a best-response attack strategy [Kiekintveld et al.,
2009]. However, in a zero-sum game the optimal strategy for
the defender is the same as the Nash equilibrium (i.e., when
the attacker moves simultaneously) [Yin et al., 2010], so the
order of the moves is not consequential in the model.

Systems and Alerts: The defender responds to alerts orig-
inating from a set of systems k ∈ K. A “system” in our
model could represent any level of abstraction, ranging from
a specific server to a complete network.IDPS for each system
generate alerts of different types, a ∈ A. The alert types cor-
respond to levels of severity (e.g., high, medium, and low),
reflecting the likelihood of a malicious event. We represent
the combination of the alert type and the origin system as an
alert category, c ∈ C, where c = (k, a). The alerts in a given
category are not differentiable, so the defender must inves-
tigate all alerts within a category with the same probability.
The total number of alerts for a given category c is denoted
by Nc. We assume that the both the defender and attacker
know the typical value of Nc from historical averages (simi-
lar to [Ganesan et al., 2016]).

Attack Methodologies: Attackers can choose from many
attack methodologies. These fall into high-level categories
such as denial of service attacks, malware, web exploitation,
or social engineering. We represent these broad classes of at-
tacks as attack methods m ∈ M . For every attack method
there is a corresponding probability distribution βma which
represents the probability that the IDPS generates an alert
of type a for an attack method m. For example, if the at-
tacker chooses m = DoS the corresponding alert probabili-
ties could be βDoSHigh = .8, βDoSMedium = .15 and βDoSLow = .05.

Cybersecurity Analysts: Cybersecurity analysts R are as-
signed to investigate alerts. The time required for an analyst
to resolve an alert type a varies, and is represented by T ra .
Intuitively, T ra represents the portion of a time period that an
analyst needs to resolve an alert of type a. A time period
may be a shift, an hour or other fixed scheduling period. For
example, if an analyst needs half a time period to resolve a,
then T ra = 0.5. In our model: T ra ≤ 1, ∀ a ∈ A, i.e., an
analyst can address multiple alerts within a time period. In
addition to T ra , we allow modeling of the effectiveness of an
analyst against an attack method, representing her expertise,
via a parameter Erm.
Defender Strategies: A pure strategy P for the defender is
a non-negative matrix of integers of size |C| × |R|. Each
c,r entry is the number of alerts in category c assigned to be
investigated by cyber analyst r, denoted by Pc,r. The set of all
pure strategies P̂ is all allocations that satisfy the following
constraints; Ca denotes all categories with the alert type a:

∑
a∈A

∑
c∈Ca

T raPc,r ≤ 1 ∀r ∈ R (1)

∑
r∈R

Pc,r ≤ Nc ∀c ∈ C (2)

Pc,r are integers (3)



(a) Pure Strategy (b) Marginal Strategy

Figure 1: CAG Strategies for the defender.

Inequality (1) ensures that each analyst is assigned a valid
number of alerts, while inequality 2 ensures we do not assign
more alerts than the total in a category.
Example CAG. Consider a CAG with two systems K =
{k1, k2}, two alert levelsA = {a1, a2}, and two analysts r =
{r1, r2}. There are four alert categories C = {c1, c2, c3, c4},
where c1 = (k1, a1), c2 = (k1, a2), c3 = (k2, a1) and
c4 = (k2, a2). For the alert categories we have Nc1 = 3,
Nc2 = 2, Nc3 = 0, and Nc4 = 1. For r1, assume T r1a1 = 1
and T r1a2 = 0.5; For r2, assume T r2a1 = 0.4 and T r2a2 = 0.2.
The analyst capacity constraint (Inequality (1)) for r1 is in-
stantiated as follows (the other columns are similar):

Pc1,r1 + 0.5 · Pc2,r1 + Pc3,r1 + 0.5 · Pc4,r1 ≤ 1

For c1 the alert capacity constraint (Inequality (2)) we have
(the other rows are similar):

Pc1,r1 + Pc1,r2 ≤ 3

An example of a pure strategy P is given in Figure 1(a). The
dashed boxes in Figure 1(a) represent the set of variables in
the analyst capacity constraints, i.e. constraints of type (1).
We show an example marginal strategy in Figure 1(b). This
drops constraint (3), but satisfies constraints (1) and (2).

We define a mixed strategy q over pure strategies P ∈ P̂
(
∑
P∈P̂ qP = 1, 0 ≤ qP ≤ 1). From the mixed strategy

we can calculate the marginal (expected) number of alerts
of category c assigned to each analyst r, denoted by nc,r =∑
P qPPc,r. The marginal allocation is denoted by n with

component nc,r representing the expected number of alerts in
category c assigned to analyst r. The adversary plays a best
response to the defender’s marginal strategy n which amounts
to choosing a system k to attack and an attack method m.
Utilities Since the alerts in a category are indistinguishable
they are all investigated with the same probability nc,r/Nc,
which is the probability that an alert in category c is inves-
tigated by analyst r. The probability of detecting an attack
of type m that results in an alert of type c is calculated as:
xc,m =

∑
r∈RE

r
mnc,r/Nc. The payoffs for the defender de-

pend on the system k that is attacked, the attack method m,
and if the adversary is detected (or undetected) during inves-
tigation. This is denoted by Udδ,c and Uuδ,c, respectively, where
c refers to the category (k, a) and δ is the defender. We for-
mulate a CAG as a zero-sum game, hence the payoffs for the
adversary (θ) are Udθ,c = −Udδ,c and Uuθ,c = −Uuδ,c. If the
adversary chooses k, m, and given βma , the defender’s utility
is:

Us =
∑
a∈A

βma [xc,m ∗ Udδ,c + (1− xc,m)Uuδ,c] (4)

5 Defender’s Optimal Strategy
We start with a linear program, denoted as
MixedStrategyLP , that computes the defender’s opti-
mal mixed strategy (as the maximin strategy):

max
n,v

v (5)

s.t. v ≤ Us ∀k,m (6)

xc,m =
∑
r∈RE

r
m
nc,r

Nc
∀c,m (7)

nc,r =
∑
P∈P̂

qPPc,r ∀c, r (8)

∑
P∈P̂

qP = 1, qP ≥ 0 (9)

This LP requires exponentially many pure strategies P ∈
P̂ . The objective function in Equation 5 maximizes the de-
fender’s utility, v. Equation 6, which uses Equation (4), en-
sures the adversary selects a best response over all m ∈ M
and k ∈ K. Equation 7 calculates the detection probabilities
x from the marginal strategy n, which is computed by Equa-
tion 8. Equation 9 ensures the mixed strategy is valid.

Computing the maximin mixed strategy for the defender
was shown to be NP-hard in the case of TSGs [Brown et al.,
2016]. The computational hardness arises from the under-
lying team formation of applying a group of screening re-
sources to screen incoming passengers. However, in CAGs
we do not have teams of analysts, we only need to assign
the alerts to individual analysts. Thus, one might hope that
this could simplify the problem and admit a polynomial time
algorithm. Unfortunately, this turns out not to be the case.
Specifically, we show in Theorem 1 that the problem is still
NP-hard, where the hardness arises from a different domain
feature, i.e., the time values, T ra , for the analysts. All proofs
can be found in the on-line appendix1.
Theorem 1. Computing the defender maximin strategy is
weakly NP-hard when there is only one resource, and is
strongly NP-hard with multiple resources.

In some special cases, it is possible to compute the optimal
marginal strategy in polynomial time. Specifically, if all T ra
for a given analyst r are identical ∀a ∈ A, then the optimal
marginal strategy can be found with an LP which is stated in
Proposition 1. This result is discussed further in Section 6.
Proposition 1. When T rai = T raj ∀ai, aj ∈ A for each re-
source, then there is a polynomial time algorithm for comput-
ing the maximin strategy.

Defender’s Optimal Marginal Strategy
In the security games literature, two approaches are com-
monly used to handle scale-up: marginal strategies [Kiek-
intveld et al., 2009; Letchford and Conitzer, 2013] and col-
umn generation [Jain et al., 2010a]. We adopt a marginal
strategy based approach which finds the defender’s marginal
strategy n and does not need to explicitly enumerate the ex-
ponential number of pure strategies. We now introduce a re-
laxed version of LP (5)∼(9) in LP (10)∼(14). LP (10)∼(14)

1https://www.dropbox.com/s/n3wn0glm2clzs7e/Appendix.pdf?dl=0



is similar to LP (5)∼(9) except that we replace equations (8)
and (9) with equations (13) and (14) to model the relaxed
marginal space. Recall that marginal strategies satisfy con-
straints (1)∼(2) (which lead to Equations 13 and 14) but
drop constraint (3). The optimal marginal strategy n for
the defender can then be found by solving the following
MarginalStrategyLP (MSLP):

max
n,v

v (10)

v ≤ Us ∀k,m (11)

xc,m =
∑
r∈RE

r
m
nc,r

Nc
∀c,m (12)∑

a∈A
∑
c∈Ca

T ranc,r ≤ 1 ∀r (13)∑
r∈R nc,r ≤ Nc, nc,r ≥ 0 ∀r, c (14)

Though MarginalStrategyLP computes the optimal
marginal strategy n, it may not correspond to any valid mixed
strategy q, i.e., there may not exist a corresponding mixed
strategy q such that n =

∑
P∈P̂ qPP ,

∑
p∈P̂ qP = 1.

Marginal strategies of this type are called non-implementable.
However, when T ra have a particular structure, we can show
the marginal strategy returned is the optimal for the defender.
The intuition is that when T ra = 1

wa
where wa ∈ Z+, the ex-

treme points of the marginal polytope are all integer. In these
cases, we can efficiently compute the defender’s optimal im-
plementable marginal strategy using the MSLP.
Theorem 2. For any feasible marginal strategy n to MSLP,
there is a corresponding mixed strategy q that implements n
whenever T ra = 1

wa
where wa ∈ Z+, ∀r ∈ R,∀a ∈ A and

Nc ≥
∑
r∈R

1
T r
a

, ∀c ∈ C for a given CAG.

6 CAG Algorithmic Approach
The problem of non-implementability of marginals in se-
curity games has been studied in previous research [Letch-
ford and Conitzer, 2013; Brown et al., 2016], but the non-
implementability arose because of spatio-temporal resource
constraints and constraints from combining resources into
teams. For our problem, non-implementability arises from
the presence of the T ra coefficients (we discuss an example
later). In this section, we present an algorithm that takes
the initial constraints on a CAG and converts them to en-
sure the implementability of the marginal strategy. To that
end, [Budish et al., 2013] presents a useful approach, as they
define a special condition on the constraints on the marginals
called a bihierarchy. A bihierarchy captures a sufficient con-
dition needed to guarantee the implementability of the de-
fender’s marginal strategy n. Unfortunately, constraints on
CAGs rarely satisfy the conditions for a bihierarchy and must
be converted to achieve the bihierarchy condition.

Definitions and Notation The marginal assignments n for
the defender form a |C| × |R| matrix. The assignment con-
straints on the defender’s marginal strategy, namely Equa-
tions 13 and 14, are a summation of nc,r over a set S ⊂
|C| × |R| with an integral upper bound. For example, based
on Equation 14, {{c1, r1}, {c1, r2}} forms a constraint sub-
set for the example CAG. The collection of all such S form a
constraint structureH when all coefficients in the constraints
are unitary, as they are in Equation 14.

Figure 2: Conversion of Column Constraints on CAG

A marginal strategy n is said to be implementable with re-
spect to H if there exists a distribution (a.k.a., mixed strat-
egy) q such that n =

∑
P∈P̂ qPP . A constraint structure H

is said to be a hierarchy if, for any two constraint sets in H ,
we have that either one is a subset of the other or they are dis-
joint. More concretely, we have the following: ∀S1, S2 ∈ H ,
S1 ⊂ S2, S2 ⊂ S1 or S1 ∩ S2 = ∅. H is said to be a
bihierarchy if there exists hierarchies H1 and H2, such that
H = H1 ∪H2 and H1 ∩H2 = ∅.

For any CAG, the row constraints
∑
r∈R nc,r ≤ Nc

form a hierarchy H1. However, the column constraints,
one for each resource r ∈ R, do not form a hierarchy:∑
a∈A

∑
c∈Ca

T ranc,r ≤ 1. As mentioned earlier, the cul-
prit lies in the T ra coefficients, as they can be non-unitary, and
to achieve a hierarchyH2 on the column constraints, and thus
give us a bihierarchy, all T ra coefficients must be removed.

Constraint Conversion The T ra coefficients admits pos-
sibly non-implementable marginal strategies to be returned.
For instance, in Figure 1(b) the marginal strategy is non-
implementable, because it is impossible to get nc1,r2 = 2.5
by mixing pure assignments. This is because constraints (1)
and (3), force the relevant pure strategy Pc1,r2 ≤ b1/0.4c =
2. We aim to convert the column constraints, namely:∑
a∈A

∑
c∈Ca

T ranc,r ≤ 1 into a hierarchy by removing the
T ra coefficients. The conversion can be completed by group-
ing together all nc,r which have the same T ra and introducing
a new constraint on these sets of nc,r. Specifically, each col-
umn constraint (equation 13) is replaced with |A| constraints:∑

c∈Ca

nc,r ≤ LCa
r (15)

This conversion must be done for all analysts r ∈ R for the
column constraints to form a hierarchy H2. LCa

r gives an up-
per bound on the number of alerts of type a that an analyst can
solve. The choices of LCa

r must satisfy the original capacity
constraint, namely:

∑
a∈A T

r
aL

Ca
r ≤ 1 and LCa

r ∈ Z.
Conversion Example We refer to the example CAG where

the marginal strategy is given in Figure 2. We must convert
the column constraints to a hierarchy. We highlight how this
conversion is done for r1 (as r2 is converted in the same man-
ner). Initially, for r1 we have the following constraint:

T r1a1nc1,r1 + T r1a2nc2,r1 + T r1a1nc3,r1 + T r1a2nc4,r1 ≤ 1

We remove the T ra coefficients by grouping together all nc,r
which share T ra and introducing two new constraints like (15).
This leads to two new constraints:

nc1,r1 + nc3,r1 ≤ L
Ca1
r1 nc2,r1 + nc4,r1 ≤ L

Ca2
r1



These new constraints are shown for r1 in Figure 2 on the
right of the arrow. Next, we must set the LCa

r variables. One
possible combination is H2 = {nc1,r1 + nc3,r1 ≤ 0, nc2,r1 +
nc4,r1 ≤ 2} (H2 also includes constraints on r2 which are
not shown). This satisfies the original the original analyst
capacity constraints as: LCa1

r1 + 0.5 · LCa2
r1 ≤ 1. However,

there is another choice for LCa
r , H2 = {nc1,r1 + nc3,r1 ≤

1, nc2,r1 + nc4,r1 ≤ 0}. Given either of the two hierar-
chies H2, we now have a bihierarchy. The original marginals
shown in Figure 2 do not satisfy these new constraints; but
solving the MSLP with these additional constraints in H2 is
guaranteed to give an implementable marginal.

Branch-and-Bound Search
So far, we have seen that a marginal strategy n for a CAG out-
put from the MSLP may be non-implementable. Our goal is
to ensure that the marginal strategy output by MSLP is imple-
mentable by adding new column constraints, i.e., by realizing
a bihierarchy. The addition of new constraints as outlined
above gives us a bihierarchy, but there are multiple ways to set
the values of LCa

r variables (as shown in the above example),
creating a choice of what bihierarchy to create. Indeed, we
may need to search through the combinatorially many ways
to convert the constraints of CAG to a bihierarchy. Previous
work [Brown et al., 2016] proposed the Marginal Guided Al-
gorithm (MGA) for creating bihierarchies, but MGA does not
apply to CAGs as it does not deal with the non-unitary coef-
ficients present in CAGs.

Here we propose a novel branch-and-bound search: out of
the set of constraints that could be added to MSLP, find the
best that would give the defender the optimal utility v∗. At the
root node, we have the original constraints (13) and (14); run-
ning MSLP potentially yields a non-implementable marginal
strategy n. Then we branch from this root, where at each level
in the tree, we add new constraints for an analyst r, and the
children are expanded with the following rules:

1. Substitute
∑
a∈A

∑
c∈Ca

T ranc,r ≤ 1 with |A| con-
straints:

∑
c∈Ca

nc,r ≤ LCa
r for all a ∈ A. The |A| new

constraints form a set H2(r). A branch is created for all
combinations ofLCa

r which satisfy
∑
a∈A T

r
a ∗LCa

r ≤ 1.

2. Solve the MarginalStrategyLP at each node with the
modified constraints.

Thus, at each level of the tree, we have substituted the ca-
pacity constraint of some analysts, and for these, we have
constraints of type (15), but for others, we still have con-
straint (13). This set of constraints does not form a hierarchy
H2 as T ra coefficients are present in some analyst constraints.
Still, at an intermediate node we have upper bound on the
defender’s utility v which is stated in Proposition 2, as each
conversion from (13) to (15) introduces new constraints on
the defender’s strategy space.

Proposition 2. Each intermediate node in the tree gives an
upper bound on the defender’s utility v for all subsequent
conversions for the remaining analyst capacity constraints.

A leaf in the search tree has column constraints only of
the form:

∑
a∈A nc,r ≤ LCa

r . Hence, they form a hierarchy

H2 as all nc,r have unitary coefficients and an integer upper
bound. At a leaf, we can then solve the MSLP with the re-
sulting bihierarchical constraints to find a lower bound on the
defender’s utility v. Combining this with Proposition 2 gives
the components needed for a branch-and-bound search tree
which returns the optimal bihierarchy for the defender.

Heuristic Search The full branch-and-bound procedure
struggles with large CAG. To find good bihierarchies, we can
take advantage of the optimal marginal strategy n∗ returned
from MSLP at an intermediate node to reduce the amount
of branching done. The intuition for this strategy, is that the
optimal bihierarchy either contains, or is near, n∗. For ex-
ample, in the conversion done in Figure 2, we could set the
LCa
r values close to n. We set LCa1

r2 = b1/.4c = 2, while the
leftover capacity for r2 is used to set LCa2

r2 = 1. LCa1
r2 could

be set to another value, but our choice must stay close to n∗.
For the heuristic search, we use the following rules to ex-

pand child nodes which must set the LCa
r values for an an-

alyst r: (1) LCa
r = dnCa,re, (2) LCa

r = bnCa,rc or (3)

LCa
r = b 1−

∑
a∈A T

r
a ∗L

Ca
r

T r
a

c, where nCa,r =
∑
c∈Ca

nc,r. The
third rule is used whenever an LCa

r value cannot be set to the
roof or floor of n∗, and is set to be the max value given the
leftover analyst capacity. These choices are done in an at-
tempt to capture the optimal marginal strategy n∗. The set of
all valid combinations of theLCa

r values using the above rules
which satisfy

∑
a∈A T

r
aL

Ca
r ≤ 1 constitute the search space

at each intermediate node. These rules then significantly re-
duce the branching at intermediate nodes in the search tree.

Convex Hull Extension The above searches return a set
of good bihierarchies for obtaining a high value of v∗ for
the defender when solving MSLP, as each leaf contains a
bihierarchy Hi. Each bihierarchy Hi contains a portion of
the defender’s mixed strategy space (due to new constraints).
Thus, taking a convex hull over these bihierarchies increases
the size of the defender’s strategy space and hence, will
only improve the defender’s utility. Note, as each bihier-
archy is implementable, the convex hull will also be imple-
mentable [Brown et al., 2016].

To take the convex hull, first notice each bihierarchy Hi

is a set of linear constraints and can be written as Din ≤ bi
for matrix Di and vector bi. Hence, by definition n(Hi) =
{n|Din ≤ bi}. Using a result from [Balas, 1985] that repre-
sents the convex hull using linear constraints, we can write:
conv(n(H1), . . . ,n(Hl)) = {n|

∑
i ni, Dini ≤ λibi, λi ≥

0,
∑
i λi = 1}. The convex hull of the bihierarchies can then

be computed efficiently using an LP similar to MSLP.
In terms of the convex hull we have two options available:

(1) Take the convex hull of all bihierarchies or (2) build the
convex hull iteratively. In some cases, the set of bihierar-
chies available to the defender can be very large and hence,
optimizing over all bihierarchies is not feasible. To allevi-
ate this issue, the convex hull can be built iteratively. This is
done by first sorting the bihierarchies by the defender utility
v. Next, we take the convex hull of the top two bihierarchies
which gives a utility v

′
to the defender. We continue adding

bihierarchies to the convex hull while the utility v
′

returned
increases by at least some ε, and stop otherwise.



7 Evaluation
We evaluate the CAG model and solution algorithms with ex-
periments inspired by the operations of the AFCYBER. The
game payoffs are set to be zero-sum, i.e. Uuδ,c = −Uuθ,c, and
the defender’s payoffs are randomly generated with Uuδ,c uni-
formly distributed in [−1,−10]. The rest of the game payoffs,
Udδ,c and Udθ,c, are set to be zero. For each experiment we av-
erage over 30 randomly generated game instances.
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Figure 3: Experimental Results for CAG instances.

Full vs Heuristic Search Whether the heuristic approach
of staying close to n∗ would yield the right solution quality-
speed tradeoff remains to be seen. To test this, we compare
the performance of the full branch-and-bound search (Full) to
the heuristic search (Heur). For this experiment we test two
variations of the full search: Full-1 which uses the full convex
hull and Full-2 which uses the iterative convex hull. For the
Heuristic search we test the same two variations, labeled as
Heur-1 and Heur-2. For these instances we have 20 systems,
3 attack methods, and 3 alert types.
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Figure 4: Allocation Approach Comparison.

In Figure 3(a) we vary the number of resources on the x-
axis and we show the runtime in seconds on the y-axis. As
can be seen the runtime of the full search explodes exponen-
tially as the number of resources is increased. However, the
average runtime of the heuristic approach is under 1 second
in all cases and provides up to a 100x runtime improvement
for 5 resources. In Figure 3(b) the number of resources are

on the x-axis while the y-axis shows the defender’s expected
utility. This graph shows that all variations perform similarly,
with the heuristic suffering less than 1% solution in defender
utility compared to the full search for all game sizes. Hence,
these results show that our heuristic significantly improves
runtime without sacrificing solution quality.

Solving large CAG Another important feature of real-
world domains are the larger number of cybersecurity ana-
lysts available to investigate alerts. Accordingly, our next
experiment tests the scalability of our heuristic approach to
large CAG instances. The parameters for these experiments
are 100 systems, 10 attack methods, and 3 alert levels.

In Figure 3(c) we show the runtime results with the num-
ber of analysts on the x-axis and the runtime in seconds on
the y-axis. For example, Heur-1 takes an average of 40 sec-
onds to solve a CAG with 10 analysts. This graph shows
the heuristic runs in under a minute, even as we increase the
analysts from 6 to 14. In Figure 3(d) we show the solution
quality results with the number of analysts on the x-axis and
the defender’s expected utility on the y-axis. We compare
the solution quality to the (potentially non-implementable)
MSLP solution. This graph highlights that the heuristic ap-
proach achieves a utility close to the theoretical optimal value.
Therefore, this experiment shows that our approaches scale to
large CAG without sacrificing much solution quality.

Allocation Approach Our last experiment aim to show
that our game theoretic apporach for CAGs outperform ap-
proaches used in practice. In addition to our heuristic, we
compare against a greedy approach which investigates the
highest priority alerts from the most critical bases first and
a random approach for the allocation. The parameters for this
experiment are 20 systems, 5 attack methods, and 10 ana-
lysts. In Figure 4(a) we show the solution quality results. On
the x-axis we vary the number of alert types and on the y-
axis we show the defender’s utility. For example, with 4 alert
types the heuristics achieve a utility of -7.52 while the greedy
and randomized allocations give -9.09 and -9.65, respectively.
This difference is statistically significant (p < 0.05). In Fig-
ure 4(b), we show a solution comparison for a specific CAG
instance. This graph gives intuition for why our approach
performs so well. The greedy and random approaches tend
to overprotect some systems (system 4) while leaving others
without adequate protection (system 2).

8 Conclusion
In this paper we address the pressing problem in cyber se-
curity operations of how to allocate cyber alerts to a limited
number of analysts. We introduce the Cyber-alert Allocation
Game (CAG) to analyze this problem and show computing
optimal strategies for the defender is NP-hard. To solve CAG,
we present a novel approach to address implementability is-
sues in computing the defender’s optimal marginal strategy.
Finally, we give heuristics to solve large CAGs, and give em-
pirical evaluation of the CAG model and solution algorithms.
Acknowledgments: This research was supported by the U.S.
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