
Solving Zero-Sum Security Games in Discretized Spatio-Temporal Domains

Haifeng Xu1, Fei Fang1, Albert Xin Jiang1, Vincent Conitzer2, Shaddin Dughmi1, Milind Tambe1

1University of Southern California, Los Angeles, CA 90007, USA
{haifengx,feifang,jiangx,shaddin,tambe}@usc.edu

2Duke University, Durham, NC 27708, USA
conitzer@cs.duke.edu

Abstract

Among the many deployment areas of Stackelberg Se-
curity games, a major area involves games played out in
space and time, which includes applications in multiple
mobile defender resources protecting multiple mobile
targets. Previous algorithms for such spatio-temporal
security games fail to scale-up and little is known of
the computational complexity properties of these prob-
lems. This paper provides a novel oracle-based algorith-
mic framework for a systematic study of different prob-
lem variants of computing optimal (minimax) strategies
in spatio-temporal security games. Our framework en-
ables efficient computation of a minimax strategy when
the problem admits a polynomial-time oracle. Further-
more, for the cases in which efficient oracles are diffi-
cult to find, we propose approximations or prove hard-
ness results.

Introduction
Among the multiple deployment areas of Stackelberg Secu-
rity games (Basilico, Gatti, and Amigoni 2009; Letchford
and Vorobeychik 2011; Shieh et al. 2012; Yin et al. 2012),
a recent major application area involves games played out
in space and time, which we refer to as spatio-temporal se-
curity games. This class of security games is particularly
valuable for security of major transportation systems, where
multiple mobile resources protect multiple mobile targets.
For example, spatio-temporal security games are in use to
generate patrol patterns for US Coast Guard patrol boats for
the Staten Island ferries (mobile targets)—ferrying 60000
passengers a day, this system is considered a major terrorist
target (Fang, Jiang, and Tambe 2013). However, this is just
one of many possible ferry systems around the world that re-
quire security. Other potential applications include protect-
ing refugee aid convoys with overhead UAVs and protecting
vessels from pirate activity (Bošanský et al. 2011).

Unfortunately, current algorithms for such spatio-
temporal security games suffer from lack of scalability. For
example, Bošanský et al. (2011) provide a formulation with
non-linear constraints that faced scaling problems with a sin-
gle defender resource. Fang, Jiang, and Tambe (2013) pro-
vide a linear program with better scalability properties for

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

such games, but their formulation suffers from exponential
slowdown with increasing number of defender resources;
indeed it is seen to fail to scale up beyond three defender
resources for 13 time steps. Additionally, little is known
of the computational complexity properties of such spatio-
temporal security game problems.

At a high level, the main challenge for scaling up spatio-
temporal security games is their exponential growth of de-
fender pure strategies. This exponential blow-up is due to
two factors: first, the defender has multiple resources, and
needs to pick a patrol schedule for each resource; second,
each defender resource’s set of patrol schedules grows ex-
ponentially in the number of time steps. As a result, the
number of pure strategies is exponential in the number of
resources and the number of time steps. Existing works
in security games help alleviate such exponential numbers
of pure strategies via incremental strategy generation in
security games (Jain et al. 2011; Bosansky et al. 2013;
Yang et al. 2013) and use of compact marginal representa-
tions (Kiekintveld et al. 2009; Korzhyk, Conitzer, and Parr
2010; Letchford and Conitzer 2013). Unfortunately, these
approaches fail to provide a systematic understanding of
complexity properties of spatio-temporal security games or
provide efficient algorithms that exploit the special structure
of different variants of the game.

To address these challenges, we provide the following
contributions: (i) We present the first systematic study of
computational complexity of computing optimal (minimax)
strategies in spatio-temporal security games. We consider
several variants in the game setting; for the general setting,
we provide an approximation algorithm. For several impor-
tant restricted settings, we provide polynomial-time algo-
rithms, while for another variant we give strong theoretical
evidence that the problem is hard. (ii) Our experimental re-
sults based on a ferry-protection domain show that our algo-
rithms scale-up significantly beyond what is achievable by
Fang, Jiang, and Tambe (2013). For many of our theoretical
results, we use an oracle-based algorithmic framework that
reduces the minimax problem to a combinatorial optimiza-
tion problem. An overarching theme in our solution tech-
niques for the various settings is the exploitation of spatio-
temporal structure, which allows us to formulate and solve
these problems using graph-based techniques, often making
use of additional geometric properties of the domain.

Settings and Notation
We study algorithms for scheduling resources in a dis-
cretized temporal and 1-D spatial domain (Figure 1) to pro-
tect weighted moving targets. They are motivated by the do-
main of ferry protection (Fang, Jiang, and Tambe 2013),
where multiple mobile patrollers protect ferries carrying
passengers. In the grid in Figure 1, the x-axis denotes a dis-
cretized temporal domain of N+1 time points and the y-axis
denotes a discretized 1-D spatial domain of M +1 positions.

.

time

space

.

.

.

4

.

.

.

*

*
* *

*

* *
*

*
* *

*

*

*
*

3

2
1

0

M

0 1 2 3 4 N

Figure 1: Discretized Grid.

There are T
moving targets.
We use a pair
(t, n) to denote
a target t at
time n. Let htn

be the position
(i.e., height) of
the pair (t, n)
(shown as stars
in Figure 1).
The targets need
not land on the
discretized posi-
tions, i.e., htn are
not necessarily integers. The defender has K homogeneous
(i.e., indistinguishable) resources. Resources can only land
on the discretized positions and have maximum speed ∆ (a
constant). That is, a move from mn at n to mn+1 at n + 1
is feasible if and only if 1 |mn+1 −mn| ≤ ∆. Note that we
do not require any assumption on the speed of the targets.

We use [M], [N], [K], [T] to denote the set of discretized
spatial positions, set of discretized time points, set of re-
sources and set of targets, respectively. A patrol schedule is
simply a vector consisting of positions that a resource would
land on at each time. From now on, we call this a patrol path.
We use a vector v = (m0,m1, ...,mN) to denote a patrol
path in which the resource lands on position mn at time n for
any n ∈ [N]. We say path v′ = (m′0,m

′
1, ...,m

′
N) is weakly

(strictly) under path v = (m0,m1, ...,mN) if m′n ≤ (<)mn

for all n ∈ [N], and weakly (strictly) above is defined sim-
ilarly. A patrol path is feasible if every individual move is
feasible. It is easily observed that the number of feasible pa-
trol paths is exponential in N , the number of time layers. A
pure strategy for the defender consists of K feasible patrol
paths, denoted as {vk}k∈[K].

Resources have a protection radius, within which any tar-
get will be protected. We assume protection by multiple re-
sources is equally efficient as protection by one resource. In
Figure 1, the dashed arrow describes part of a patrol path
and thickened segments along the spatial dimension denote
the protected ranges. An attacker’s pure strategy is a target-
time pair (t, n), meaning that he attacks once, at time n, the
target t. The Attacker’s utility by attacking the pair (t, n) is
its weight wtn if it is not protected, and 0 otherwise. The
weight of the same target can be different at different times,
i.e., wtn1

6= wtn2
(for example, a ferry may not always carry

1Here, we do not consider any acceleration limit. In a later sec-
tion, we will further study the case with limited acceleration.

Table 1: Table of Solvability Status
CASES SOLVABILITY

Constant Number of Resources (K) poly time (Fang et al. 2013)

Constant Number of Time Layers (N) poly time (Theorem 1)

Non-overlapping Protection Range poly time (Theorem 2)

Homogeneous Targets poly time (Theorem 3)

General (1-1/e)-approx oracle (Observation 1)

General+Acceleration Limit NP-hard oracle (Theorem 5)

the same number of people). We assume this is a zero-sum
game and aim to compute the defender’s minimax mixed
strategy. Our results are summarized in Table 1.

A New Algorithmic Framework
We provide a novel algorithmic framework to theoretically
analyze the complexity of computing minimax strategy for
the spatio-temporal security games introduced in the pre-
vious section. This framework differs significantly from
(Fang, Jiang, and Tambe 2013); we provide an LP and re-
duce it to a combinatorial optimization problem, for which
it is easier to analyze complexity results.

We first formalize the minimax strategy problem as an
LP. Instead of {vk}k∈[K], we use an alternative represen-
tation to denote pure patrol strategies. Specifically, let vec-
tor e = (..., etn, ...) ∈ {0, 1}TN denote a pure strategy of
the defender in the following way: given a pure strategy,
etn = 1 if and only if this pure strategy protects the pair
(t, n), etn = 0 otherwise. Let E denote the set of all pure
strategies and Pw = ConvE, the convex hull of set E, be
the set of mixed strategies.

Notice that, Pw is also the set of marginal probabilities of
protecting target-time pairs (t, n) that correspond to mixed
strategies. The defender’s optimal strategy in a zero-sum
game can be formulated as the following LP (LPg):

min u

s.t x ∈ Pw

(1− xtn)wtn ≤ u,∀ t ∈ [T], n ∈ [N]

Now we reduce LPg to a combinatorial optimization
problem by two steps of reductions. First, let the polyhe-
dron Pg = {(x, u) : x ∈ Pw, (1 − xtn)wtn ≤ u,∀t, n}
denote the feasible set for LPg , then LPg can be solved in
polynomial time with the ellipsoid method, as long asPg ad-
mits an efficient separation oracle—that is, an algorithm that
decides, for any (x, u), whether it is in Pg and returns a vi-
olated constraint if not. The following key lemma connects
the polyhedron Pg and Pw.

Lemma 1. Separation oracles for Pw and Pg reduce to
each other in poly(T,N) time.

All the proofs in this paper are left to the appendix due to
space limitations.

Unfortunately, Pw is defined by a set of constraints with
exponential size. So our second step of reduction connects
the oracle problem for Pw to another optimization problem.

Figure 2: Two kinds of adjustment. Left: when two paths are
crossing; Right: when two paths overlap.

Lemma 2. The separation oracle problem forPw reduces
to the following LP (LPw) in polynomial time:

max
∑

t∈[T],n∈[N]

wtnxtn

s.t. x ∈ Pw

for arbitrary weight profile {wtn}.
As a result, LPg reduces to LPw in polynomial time.
LPw picks a mixed patrol strategy to maximize the sum

of weights it covers. So we call LPw the Weight collection
problem, while LPg the Game theoretic min-max problem.
A key observation here is that, as a linear program, LPw

has an optimal vertex solution on Pw, which corresponds to
a pure strategy that collects the maximum sum of weights.
Therefore, LPw can be thought of as the following combi-
natorial problem: given the weight wtn and position htn for
each pair (t, n), finding K feasible paths in the grid that
covers the most weights. This is also the defender’s best re-
sponse problem for an arbitrary attacker mixed strategy, by
regarding wtn as the loss of the pair (t, n) under attacker’s
mixed strategy, i.e., the weight of pair (t, n) multiplied by
the probability of attack at (t, n). As we will see later, this
problem admits efficient combinatorial algorithms in some
important special cases.

Before ending this section, we describe a technical lemma
capturing the structure of the optimal vertex solutions of
LPw, which plays a key role in our latter arguments.

Lemma 3. If K ≤ M , there exists an optimal vertex so-
lution for LPw corresponding to a defender pure strategy,
say {vk}k∈[K], satisfying that vk is strictly under vk−1 for
all k.

The basic idea of the proof is to adjust a given optimal so-
lution to another optimal solution satisfying the conditions
in Lemma 3. The adjustments maintaining feasibility are in-
tuitively explained in Figure 2.

When Any Parameter Is Constant
In this section, we show that when any of the parameters M ,
N , K, T is a constant, computing a minimax strategy ad-
mits polynomial-time algorithms. The interesting cases are
M > K and T > K, because the defender can use resources
to cover all the discretized positions if M ≤ K and can ded-
icate a separate resource to follow each target if T ≤ K
(assuming targets are not faster than resources). So, we only
consider the cases where either K or N is a constant, be-
cause M or T being a constant would only be of interest
when K is constant.

The LP formulation in (Fang, Jiang, and Tambe 2013) has
size O(NM2K), which is polynomial in M and N assum-
ing K is constant. So we consider another case where the

number of time layers N is constant. Specifically, we show
the following.

Theorem 1. There is a polynomial-time algorithm for
LPg when N is constant.

Using our algorithmic framework, Lemma 2 and the fol-
lowing Lemma 4 together yields a proof of Theorem 1.

Lemma 4. If N is a constant, Algorithm 1 runs in poly-
nomial time and outputs an optimal vertex solution for LPw,
for any weight profile {wtn}.

Lemma 3 guarantees there is always an optimal pure strat-
egy in which paths do not cross or touch. Algorithm 1 com-
putes such an “ordered” optimal pure strategy by dynamic
programming. This algorithm is polynomial-time because N
is a constant, therefore the number of states OPT (v; k) is
poly(M,K).

Algorithm 1 Dynamic Programming for Weight Collection
Input: position htn and weight wtn, ∀ t ∈ [T], n ∈ [N].
Output: optimal objective value and corresponding pure
strategy.

1: State OPT (v; k) denotes the maximum objective value
using k resources when the highest patrol path is v;
S(v; k) denotes the corresponding optimal pure strat-
egy.

2: For all feasible v, compute OPT (v; 1) equaling the total
weight covered by v and let S(v; 1) = {v}.

3: ∀v, let path set P(v) = {u : u is strictly under v}.
4: for k=2 to K do
5: for all feasible v do
6: Compute OPT (v; k)

= max
u∈P(v)

{OPT (u; k − 1) + C(v \ u)}

where C(v \ u) is the sum of weights covered by v
but not by u.

7: S(v; k) = S(u∗; k − 1) ∪ {v} where u∗ is a path
achieving “max” in Step 6.

8: end for
9: end for

10: Output maxv OPT (v;K) and corresponding S(v∗;K).

Solving Large-Scale Cases
For large-scale problems, we show that two important spe-
cial cases admit polynomial-time algorithms, the general
problem admits a (1-1/e)-approximation oracle and the or-
acle problem for a slightly extended version is NP-hard.

Non-overlapping Protection Range
In this section, we consider the special case where the pro-
tection ranges of distinct discretized points n1 and n2 never
overlap. That is, the protection radius of a resource is at
most 1

2d∆ where d∆ is the distance between two spatial
discretized points. We assume that targets are located close
enough to the spatial discretized points such that each target
can be covered by at least one grid point.

. . .
. . .

. . .
. . .

. . .

. . .

0 1 N

. . .
. . .

S T

. . .
. . .

. . .

. . .

0

added

1 N

Figure 3: Left: Original Grid; Right: Constructed Network in
which all the edges have capacity 1. Only the added purple
edges have non-zero weights, with the weight of such an
edge equaling the sum of all the target weights covered by
the corresponding grid point.

We show that for this case, there is a polynomial time al-
gorithm by showing that we can obtain an optimal vertex
solution for LPw in polynomial time. Since the protection
ranges do not overlap, for any point, we can say that the tar-
gets within its protection range “belong” to that point and
the sum of the weights of targets within its protection range
is the “reward” of covering that point. Now any pure strategy
can be thought of as a flow over the grid points that collects
rewards. However, a potentially problematic discrepancy in
reducing this to a standard flow problem is that, if multiple
patrol paths pass through the same grid point, LPw counts
the reward at that point only once, but a standard reward-
collecting flow formulation would count the reward once for
every unit of flow through the point. Fortunately, Lemma 3
guarantees that, to find an optimal pure strategy for LPw,
it suffices to find an optimal pure strategy under the addi-
tional constraint that paths do not overlap. We can do this by
slightly modifying the grid and adding capacity constraints
to the network flow formulation (Figure 3). Then, by the in-
tegrality of network flows, optimal solutions to the network
flow problem constitute optimal pure strategies for LPw.

Theorem 2. If the protection ranges at different grid
points do not overlap with each other, then an optimal vertex
solution to LPw can be found in polynomial time. Therefore,
LPg admits a polynomial-time algorithm.

Homogeneous Targets
Oftentimes in practice targets are homogeneous, i.e., ∃w,
such that wtn = w,∀t, n. Examples include defending cargo
ships. For this case, we provide a polynomial-time algorithm
to compute an optimal solution to LPg directly.

Note that if all the targets have the same weight, LPg de-
generates to the following form: max u satisfying x ∈ Pw

and xt,n ≥ u. In other words, it seeks a probabilistic cover-
age of all the targets, such that the minimum probability over
all targets is maximized. We relate this probabilistic cover-
age problem (PC) to the following deterministic coverage
problem (DC): given the positions of all the targets at differ-
ent times (i.e., htn), DC seeks to find the minimal number
of resources such that they can cover all the targets surely at
any time, i.e., with probability 1.

We show PC admits a polynomial-time algorithm by the

following two steps: 1.) there is a “duality” relationship be-
tween PC and DC, and the optimal solution of PC can be
recovered from that of DC efficiently (Theorem 3); 2.) DC
admits a greedy polynomial-time algorithm (Algorithm 2).

Algorithm 2 Greedy Algorithm for Deterministic Coverage
Problem (DC)
Input: the position of t at time n (htn), ∀ t ∈ [T], n ∈ [N];
Output: Optimal value K0 and path set P .

1: Initialization: K0 = 0, P = ∅.
2: while there are pairs (t, n) not covered do
3: K0 = K0 + 1; construct path vK0

to be the time-wise
lowest path that does not leave any pair (t, n) above
its protection range uncovered;2add vK0 to P .

4: end while

We use OPT (PCK) and OPT (DC) to denote the opti-
mal objective values of problem PC (with K resources) and
problem DC, respectively. The following lemma plays a key
role in our “duality” argument.

Lemma 5. OPT (PCK) ≥ K
K0

if OPT (DC) = K0; and
OPT (DC) ≤ K

p if OPT (PCK) = p.

Lemma 5 yields the following “duality” relation between
PC and DC.

Theorem 3. OPT (PCK) = K/OPT (DC). Further-
more, the optimal solution of PCK can be generated from
that of DC efficiently.

The relation OPT (PCK) = K/OPT (DC) follows di-
rectly from Lemma 5. The optimal solution of PCK can be
generated by sampling a combination of K paths (i.e., a pure
strategy for the defender) from [K0] uniformly at random.
Therefore, any target is covered by a resource with proba-
bility CK−1

K0−1 ×
1
CKK0

= K
K0

where CK
K0

means K0 choose

K.
We now show that DC admits a polynomial-time algo-

rithm (Algorithm 2). Clearly, Algorithm 2 runs in polyno-
mial time and outputs K0 feasible paths covering all targets.
The following theorem guarantees the optimality of Algo-
rithm 2.

Theorem 4. The K0 output by Algorithm 2 is optimal.

General Case
In this section we consider the general problem. Our basic
idea is still to follow the oracle-based algorithmic frame-
work. The first observation is that finding an optimal ver-
tex solution for LPw in the general case can be reduced to
a submodular maximization problem with an exponential-
sized universe set.

Specifically, let A denote the set of all the feasible patrol
paths, so that A has exponential size. Define a non-negative

2A straightforward construction is as follows: starting from a
path v = (m1, ...,mN) that is above any uncovered pair (t, n),
we then set mn = mn − 1 whenever there is an n such that v =
(m1, ...,mn − 1,mN) is feasible and there is no uncovered target
above the protection range of mn − 1.

function w : 2A → R+ as follows: ∀B ⊆ A, w(B) equals
the sum of weights covered by all the paths in the subset
B. It is easy to see that w(B) is a non-negative monotone
submodular function.

Our problem can be stated as maximizing w(B) sub-
ject to the cardinality constraint |B| = K, which is NP-
hard for many classes of submodular functions, e.g., for
weighted coverage function (Feige 1998). Fortunately, a
simple greedy algorithm for nonnegative monotone sub-
modular function maximization that achieves an (1 − 1

e) −
approximation (Nemhauser and Wolsey 1978) applies to
our problem with a bit of further analysis. The straight-
forward implementation of this greedy algorithm runs in
poly(|A|,K), in which |A| is exponentially large in our case.
We note that |A| shows up in the complexity bound because,
at each step, the straightforward implementation needs to
enumerate all the elements in A to decide which element
covers the most additional value if added at the current step.
However, in our case, this element can be computed effi-
ciently without enumerating all the elements in A. That is,
we first set all the covered weights to 0 and then compute the
path that covers the most weight in the current weight pro-
file, which can be done easily, e.g., by a flow formulation.

We describe the algorithm as follows (Algorithm 3) and
summarize its performance in Observation 1.

Algorithm 3 Greedy Weight Coverage
Input: htn and wtn, ∀ t ∈ [T], n ∈ [N];
Output: path set {uk}k∈[K].

1: for k = 1 : K do
2: compute the path, say uk, that covers the most weight

with respect to current weight profile.
3: Set wtn = 0 if t is covered by uk at n.
4: end for

Observation 1. Algorithm 3 is an (1− 1
e)-approximation

for LPw for arbitrary weight profile {wtn}.
A constant-factor approximation to LPw theoretically

does not imply the same constant-factor approximation to
LPg . However, as a heuristic method, column generation
using Algorithm 3 as an approximate oracle performs very
well in practice.

General Case with Acceleration Limit
In this section, we show solving the oracle problem for LPw

is NP-hard in a slightly extended case, specifically, when
resources have a limit on their acceleration. We first model
acceleration as follows.

Definition 1. (Acceleration) For any triple of positions
(mn−1,mn,mn+1) at 3 adjacent time layers (n− 1, n, n+
1), define An = |mn+1 + mn−1 − 2mn| to be the accelera-
tion at time n.

Intuitively, one can regard mn+1−mn as the speed within
the time unit between n and n+1, so (mn+1−mn)−(mn−
mn−1) = mn+1 +mn−1−2mn would be the speed change
between two adjacent time units, and can be viewed as the
acceleration at time n.

The speed limit naturally gives an upper bound on An,
i.e., An ≤ 2∆. We show that if resources have a slightly
stricter limit on acceleration, namely any feasible move must
satisfy An ≤ 2(∆− 1), then LPw is NP-hard.

Lemma 6. LPw is NP-hard, if An ≤ 2(∆−1) for any n.

Lemma 6 is proved by reduction from the vertex cover
problem, with a specific design of the target paths. Lemma 1
and Lemma 6 together yield the following theorem.

Theorem 5. The separation oracle problem for LPg is
NP-hard, if An ≤ 2(∆− 1) for any n.

Theorem 5 does not imply that solving LPg is also NP-
hard. Still, this rules out perhaps the most natural approach
to showing that LPg is easy to solve.

Experiments
We compare both solution quality and time performance of
proposed algorithms in real data. All algorithms being tested
are listed as follows: (i) LP: linear programming formulation
in (Fang, Jiang, and Tambe 2013). (ii) DP: dynamic pro-
gramming for LPw (Algorithm 1). (iii) NonOverlap: net-
work flow assuming non-overlapped protection range for
LPw. (iv) Hom: greedy algorithm assuming homogeneous
targets (Algorithm 2). (v) OrderGreedy: greedy weight
coverage algorithm for LPw (Algorithm 3). The algorithms
NonOverlap and Hom could be easily adopted as heuristic
algorithms for the general case by pretending the protection
ranges do not overlap or all the targets are homogeneous.
Algorithms DP, NonOverlap, and OrderGreedy need to re-
duce from LPg to LPw by the ellipsoid method, which of-
ten suffers from numerical instability and poor performance
in practice. We instead implemented these algorithms using
column generation, e.g., (Jain et al. 2010), which replaces
the ellipsoid method (see online appendix for details). Al-
though the number of iterations can be exponential in the
worst case, this method is empirically efficient and thus is
adopted here for testing the algorithms.

0 0.5 1
4

6

8

10

d − distance

U
 −

 u
til

ity

Figure 4: Ferry utility

���������	
 � � � � �

�����
��� � � �� � ���

�����
��� � � � � ����

�����
��� � � � � �

�����
�

����

� � �� � ���

��������� � �� � �� �

Figure 5: Main Parameters

We test our algorithms in both practical settings in the
ferry protection domain and randomly generated settings.
Practical settings are generated based on the domain descrip-
tion in (Fang, Jiang, and Tambe 2013). The utility for attack-
ing a ferry depends on its position between two terminals,
and usually appears as a U-shape in practice (see Figure 4).
For randomly generated settings, we randomly choose the
moving path and utility of each target. Results are shown in
Figure 6 and 7. In each figure, the y-axis of the upper plot
shows the solution quality of different algorithms. The ob-
jective of LPg is the attacker’s maximum expected utility,

1 2 3 4 5
0

0.5

1

1.5

2
A

ttE
U

 R
at

io

1 2 3 4 5
0

5

10

Number of Resources

lo
g

R
un

tim
e

LP OrderGreedy NonOverlap Hom

(a) Increase K

2 3 4 6 7
0

0.5

1

1.5

A
ttE

U
 R

at
io

2 3 4 6 7
0

5

10

Number of Time Steps

lo
g

R
un

tim
e

LP DP OrderGreedy NonOverlap Hom

(b) Increase N

0.01 0.04 0.07 0.1 0.13 0.16
0

1

2

3

A
tt
E

U
 R

a
ti
o

0.01 0.04 0.07 0.1 0.13 0.16
0

5

10

Protection Radius

lo
g
 R

u
n
ti
m

e

LP OrderGreedy NonOverlap Hom

(c) Increase Re

0 1 5 10 100
0

2

4

6

8

A
ttE

U
 R

at
io

0 1 5 10 100
0

5

10

Utility Range

lo
g

R
un

tim
e

LP OrderGreedy NonOverlap Hom

(d) Increase Range

Figure 6: Experimental Results for Small Scale Practical Settings in the Ferry Domain

denoted as AttEU. The defender aims to minimize AttEU,
and thus a lower AttEU indicates a higher solution quality.
For each instance, we calculate the ratio of AttEU of any al-
gorithm to the best value among all tested algorithms. When
the best value is 0, we add 0.001 to all values to get rid of
the 0 denominator. The solution quality is the AttEU ratio
averaged over 20 sampled instances. The y-axis of the lower
plot shows the natural logarithm of runtime in milliseconds
to make the comparison more clear. The minimum runtime
is set to 1 millisecond.

Small scale experiments. We first focus on small scale
data to evaluate the optimality of algorithms and their per-
formance when the corresponding optimality assumptions
are violated. All main parameters used are listed in Figure 5.

Figure 6(a) shows the performance of the baseline strat-
egy (LP) as the number of resources (K) increases. LP is
ensured to be optimal; however, the runtime increases ex-
ponentially when K increases. When K ≥ 4, LP runs out
of memory and fails to return a solution. So LP – the state
of the art (Fang, Jiang, and Tambe 2013) – can only run
if K ≤ 3 and the number of time steps is just 13. Fig-
ure 6(b) shows that DP always achieves the optimal solu-
tion. When the number of time steps is small enough (e.g.,
N ≤ 3), DP runs much faster than LP. As N increases,
the advantage diminishes and can be even slower than the
baseline algorithm when N ≥ 6. So DP is especially useful
for cases with small N . Figure 6(c) shows that NonOverlap
achieves the optimal solution when the protection radius is
small (r < d∆/2 = 1/(2(N − 1)) = 0.083) and it outper-
forms the baseline LP in runtime significantly. Even when
the non-overlapping assumption is violated, this algorithm
still provides a good approximation of the optimal solution,
especially when the protection radius is close to d∆/2. Fig-
ure 6(d) shows the performance of Hom as the utility range
increases. Utility range is defined as the difference between
the maximum and minimum utility of the targets. When util-
ity range equals 0, all targets are homogeneous. From the fig-
ure, we know Hom runs orders of magnitude faster than the
baseline LP. It obtains optimal solutions when utility range is
0. As the utility range increases, the solution quality of Hom
degrades but it still provides a reasonable approximation.

In all these experiments, we also tested the heuristic al-
gorithm OrderGreedy. Surprisingly, it achieves optimal or
near-optimal solution in most cases, while outperforming LP

and DP significantly in runtime, which indicates it to be a
good heuristic algorithm in many different settings. We also
tested these algorithms on small scale randomly generated
instances and the results are similar (see online appendix).

Large scale experiments. Figure 7 shows the perfor-
mance of the heuristic algorithms for the general case when
the scale of the problem is large. The utility range is ran-
domly chosen from [0, 100] and the protection radius is ran-
domly chosen from [0, 0.05] (d∆/2 = 0.0167). Figure 7(a)
is based on practical settings in the ferry domain and Fig-
ure 7(b) is based on randomly generated settings. It can be
seen that different algorithms achieve best performance in
different samples as none of the algorithms keep an AttEU
ratio of 1. However, OrderGreedy achieves the best solution
quality in many cases, especially for practical settings. In
terms of runtime, Hom is significantly faster than the other
two algorithms and NonOverlap is the slowest. Notice that
NonOverlap runs out of memory when the scale gets larger
(K = 8, N = 31).

K=5, N=11 K=6, N=16 K=7, N=21 K=8, N=31
0

2

4

6

A
ttE

U
 R

at
io

K=5, N=11 K=6, N=16 K=7, N=21 K=8, N=31
0

5

10

15

Problem Scale

lo
g

R
un

tim
e

OrderGreedy NonOverlap Hom

(a) Practical setting

K=5, N=11 K=6, N=16 K=7, N=21 K=8, N=31
0

0.5

1

1.5

2
A

ttE
U

 R
at

io

K=5, N=11 K=6, N=16 K=7, N=21 K=8, N=31
0

5

10

15

Problem Scale

lo
g

R
un

tim
e

OrderGreedy NonOverlap Hom

(b) Random settings

Figure 7: Experimental Results For Large Scale Problems

Conclusions
This paper: (i) systematically studied computational com-
plexity properties of spatio-temporal security games; (ii)
proposed novel polynomial-time algorithms or proved ap-
proximations and hardness results for different variants of
these games; (iii) examined all the proposed algorithms ex-
perimentally based on a real domain and showed significant
improvements over previous best algorithm for these games
(Fang, Jiang, and Tambe 2013).

Acknowledgment: This research was supported by
MURI grant W911NF-11-1-0332.

References
Basilico, N.; Gatti, N.; and Amigoni, F. 2009. Leader-
follower strategies for robotic patrolling in environments
with arbitrary topologies. In AAMAS.
Bosansky, B.; Kiekintveld, C.; Lisy, V.; Cermak, J.; and Pe-
choucek, M. 2013. Double-oracle algorithm for comput-
ing an exact nash equilibrium in zero-sum extensive-form
games. In Proceedings of the 2013 International Confer-
ence on Autonomous Agents and Multi-agent Systems, AA-
MAS ’13, 335–342. Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems.
Bošanský, B.; Lisý, V.; Jakob, M.; and Pěchouček, M. 2011.
Computing time-dependent policies for patrolling games
with mobile targets. In AAMAS.
Fang, F.; Jiang, A. X.; and Tambe, M. 2013. Optimal pa-
trol strategy for protecting moving targets with multiple mo-
bile resources. In International Conference on Autonomous
Agents and Multiagent Systems (AAMAS).
Feige, U. 1998. A threshold of ln n for approximating set
cover. J. ACM 45(4):634–652.
Jain, M.; Kardes, E.; Kiekintveld, C.; Ordez, F.; and Tambe,
M. 2010. Security games with arbitrary schedules: A branch
and price approach. In Fox, M., and Poole, D., eds., AAAI.
AAAI Press.
Jain, M.; Korzhyk, D.; Vaněk, O.; Conitzer, V.; Pěchouček,
M.; and Tambe, M. 2011. A double oracle algorithm for
zero-sum security games on graphs. In The 10th Interna-
tional Conference on Autonomous Agents and Multiagent
Systems - Volume 1, AAMAS ’11, 327–334.
Kiekintveld, C.; Jain, M.; Tsai, J.; Pita, J.; Ordóñez, F.; and
Tambe, M. 2009. Computing optimal randomized resource
allocations for massive security games. In AAMAS, 689–
696. IFAAMAS.
Korzhyk, D.; Conitzer, V.; and Parr, R. 2010. Complexity
of computing optimal stackelberg strategies in security re-
source allocation games. In In Proceedings of the National
Conference on Artificial Intelligence (AAAI), 805–810.
Letchford, J., and Conitzer, V. 2013. Solving security games
on graphs via marginal probabilities. In desJardins, M., and
Littman, M. L., eds., AAAI. AAAI Press.
Letchford, J., and Vorobeychik, Y. 2011. Computing ran-
domized security strategies in networked domains. In AARM
Workshop In AAAI.
Nemhauser, G. L., and Wolsey, L. A. 1978. Best algorithms
for approximating the maximum of a submodular set func-
tion. Math. Oper. Res. 3(3):177–188.
Shieh, E.; An, B.; Yang, R.; Tambe, M.; Baldwin, C.; Di-
Renzo, J.; Maule, B.; and Meyer, G. 2012. PROTECT: A
deployed game theoretic system to protect the ports of the
United States. In AAMAS.
Yang, R.; Jiang, A. X.; Tambe, M.; and Ordonez, F. 2013.
Scaling-up security games with boundedly rational adver-

saries: A cutting-plane approach. In International Joint Con-
ference on Artificial Intelligence (IJCAI).
Yin, Z.; Jiang, A.; Johnson, M.; Tambe, M.; Kiekintveld,
C.; Leyton-Brown, K.; Sandholm, T.; and Sullivan, J. 2012.
TRUSTS: Scheduling randomized patrols for fare inspection
in transit systems. In IAAI.

