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Abstract

Fish stocks around the world are in danger from ille-
gal fishing. In collaboration with the U.S. Coast Guard
(USCG), we work to defend fisheries from illegal fish-
erman (henceforth called Lanchas) in the U.S. Gulf of
Mexico. We have developed the COmPASS (Conserva-
tive Online Patrol ASSistant) system to design USCG
patrols against the Lanchas. In this application, we face
a population of Lanchas with heterogeneous behavior
who fish frequently. We have some data about these
Lanchas, but not enough to fit a statistical model. Previ-
ous security patrol assistants have focused on counter-
terrorism in one-shot games where adversaries are as-
sumed to be perfectly rational, and much less data about
their behavior is available. COmPASS is novel because:
(i) it emphasizes environmental crime; (ii) it is based on
a repeated Stackelberg game; (iii) it allows for bounded
rationality of the Lanchas and it offers a robust approach
against the heterogeneity of the Lancha population; and
(iv) it can learn from sparse Lancha data. We report the
effectiveness of COmPASS in the Gulf in our numeri-
cal experiments based on real fish data. The COmPASS
system is to be tested by USCG.

Introduction
Fish stocks are at risk of imminent collapse (see (Gillig,
Griffin, and Ozuna Jr 2001; Baum and Myers 2004)). Ille-
gal fishing greatly exacerbates the decline of fish stocks; it
accounts for as much as 30% of the total catch in some ma-
jor fisheries, and it is estimated that 11 - 26 million tons of
fish were caught illegally worldwide each year (Petrossian
2012). As a specific example, the Gulf of Mexico is heav-
ily exploited by illegal fisherman from Mexico, hence-forth
called Lanchas. The U.S. Coast Guard (USCG) wants to
protect fisheries within the U.S. Exclusive Economic Zones
from overfishing. The system reported in this paper is devel-
oped in collaboration with USCG with this aim.

Illegal fishing in the Gulf poses unique challenges to
USCG. First, USCG can neither police nor observe the en-
tire Gulf simultaneously. Second, it is assumed by USCG
that Lanchas can observe their assets moving to and from
their bases, and on the open water. Third, USCG does not
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have perfect information about Lanchas making it difficult
to forecast their future behavior. USCG detects many but
not every Lancha incursion. Since we have limited data, it
is hard to reliably fit a statistical model to observed Lancha
behavior.

To respond to these challenges, we have developed the
COmPASS (Conservative Online Patrol ASSistant) system.
COmPASS is a decision aid for designing USCG patrols of
the Gulf. This system is novel in four ways. First, COmPASS
is a pioneering application of security game theory and ro-
bust optimization to environmental protection, while most
research on security games emphasizes counter-terrorism
(Tambe 2011; Paruchuri et al. 2008; Shieh et al. 2012;
Conitzer 2012; Letchford and Vorobeychik 2011). Second,
COmPASS models the interaction between Lanchas and
USCG as a repeated Stackelberg game, while the literature
on security games focuses on one-shot counter-terrorism
games. Third, in contrast to earlier applications on secu-
rity games which emphasize perfectly rational attackers,
we adopt a bounded rationality model for Lancha behav-
ior. However, we face an entire heterogeneous population of
Lanchas and each could have a different behavioral model.
COmPASS is novel because it is robust against this hetero-
geneity; the resulting patrols are conservative and protect
USCG against uncertainty in Lancha type. Fourth, COm-
PASS combines robust optimization with learning to make
use of available data to update its recommendations. In this
way, it can still adapt to changes in Lancha behavior. COm-
PASS will be tested by USCG in the Gulf.

Domain
Our goal is to offer USCG a more efficient patrol strat-
egy against Lanchas in the Gulf in the face of uncertainty
about the true Lancha behavioral model. In the Gulf, the
red snapper and shark populations are considered to be the
most at risk from illegal fishing. Red snapper stocks are non-
migratory, the location of these fisheries typically does not
change over time. Sharks are migratory and spread through-
out the Gulf. Empirically, it appears that the Lanchas have
considerable knowledge about the distribution of these fish
populations.

Lanchas enter U.S. waters frequently in small powerboats
with crews of two to four, which are difficult to see against
the water. Lanchas are either spotted directly, or their gear



Figure 1: (a) Coast Guard boat used to patrol Gulf of Mexico
and (b) a captured Lancha boat

is detected. A captured Lancha and an USCG patrol asset
is shown in Fig. 1. Throughout this paper, we assume that
the Lanchas have knowledge of the distribution of USCG
patrols.

Building COmPASS
We formally present the COmPASS system in this section.
First we describe our game-theoretic framework and then we
develop the details of COmPASS’s implementation.

Game-theoretic model
We model the interaction between USCG and Lanchas as a
repeated Stackelberg game (Myerson 2013). USCG plays as
the leader and generates patrols, then the Lanchas observe
and react. This game is repeated because USCG can react to
Lancha movement and design new patrols, which the Lan-
chas can then observe and use to improve their own strategy.

We discretize the Gulf into a grid of identical cells (tar-
gets) indexed by T = {1, . . . , T}. We use real data on fish
density and distance from the Mexican border to construct
the payoff of each target to the Lanchas, Ra

t . Ra
t is directly

proportional to the amount of fish in a grid cell but inversely
proportional to the distance of that cell from their base to ac-
count for greater fuel cost. We also introduce a penalty term
for Lanchas for the cost of being intercepted by USCG. P a

t
is the value of the Lancha vessel which is confiscated by
USCG at target t if it is intercepted. If USCG protects tar-
get t, and the Lancha attacks target t, then USCG receives
reward Rd

t from the Lancha penalty. If the Lancha attacks
target t and it is not defended, then USCG loses P d

t - the
monetary value of the stolen fish. This game is zero sum. If
the Lancha earns a high reward, they must have caught a lot
of fish from near the shore (because most of the fish is near
the shore). Thus, the USCG is penalized harder by missing
a well known area of high fish density.

For r boat hours, USCG’s strategy can be represented by
a probability distribution x = (x1, . . . , xT ) over targets in
the set

X =

{
x ∈ RT :

∑
t∈T

xt = r, 0 ≤ xt ≤ 1,∀t ∈ T

}
,

where xt is the marginal probability of protecting target t
and r is the total patrol boat hours. If the Lancha attacks

target t, then for a given defender strategy x, the defender’s
expected utility is

Ut (x) = xtR
d
t + (1− xt)P

d
t .

We are interested in randomized strategies because they
make USCG more unpredictable. Each target t has a vec-
tor of attributes, in our case, the attribute vector will in-
clude the current USCG patrol density xt, and the reward
Ra

t and penalty P a
t for that target. Actual patrols are gen-

erated from x taking into account time and distance con-
straints on USCG assets (Korzhyk, Conitzer, and Parr 2010;
Jain et al. 2010).

We base our Lancha behavioral model on the Subjective
Utility Quantal Response (SUQR) model from (Nguyen et
al. 2013). SUQR is a stochastic choice model; it includes
some randomness in adversary decision making which is not
present in perfectly rational decision makers. SUQR gives us
a realistic bounded rationality model of the Lanchas, since
we cannot assume the Lanchas are perfectly rational. Fur-
ther, (Nguyen et al. 2013) shows that SUQR outperforms
other models like quantal response (McKelvey and Palfrey
1995) via extensive human subjects experiments in security
games. In our case, using the data (xt, P

a
t , R

a
t ) available to

the Lancha for target t, the probability that the Lancha will
attack target t is

qt (ω |x) =
eω1xt+ω2P

a
t +ω3R

a
t∑

v∈T e
ω1xv+ω2Pa

v +ω3Ra
v
.

Notice that
∑

t∈T qt (ω |x) = 1. We see that the vector
ω = (ω1, ω2, ω3) encodes all information about Lancha
behavior, and each component of ω determines how much
weight the Lancha gives the corresponding attribute in his
decision making. In (Nguyen et al. 2013), ω is set to a fixed
value to represent an attacker; there is no heterogeneity in
attackers. Instead, we face an entire population of heteroge-
neous Lanchas, so we introduce a set Ω ⊂ R3 to represent
the range of all possible ω that represent real Lanchas. We
allow a separate value of ω for each Lancha incursion. We
will refer to ω as a specific Lancha type.

Given that we have heterogeneous Lanchas, rather than
just one, we are dealing with a population of ω. A natural
idea is to assume that there is a prior distribution F over Ω.
Then, the stochastic optimization problem

max
x∈X

ˆ
Ω

[∑
t∈T

Ut (x) qt (ω |x)

]
F (dω) (1)

can be solved. Problem (1) maximizes the expected utility
for USCG, where expectation is taken over Lancha types.
Furthermore, if Lancha data is available, then Bayesian up-
dates can be performed on F .

However, there are several problems with the stochastic
optimization approach in Problem (1). First, we cannot jus-
tify the general assumption that there is a probability distri-
bution F over Lancha types. There is just not enough data to
make a reasonable hypothesis about the distribution of ω for
the Lancha population. Second, when observations of ω are
available we can perform Bayesian updating in Problem (1)



to improve our estimate of the true probability distribution
on Ω. However, this type of Bayesian updating requires a lot
of data even if a prior distribution F is available. Even when
a lot of data is available, it may take time to gather these data
and Bayesian updating would not be effective while that data
gathering takes place. Runtime presents itself as a third is-
sue, since solving Problem (1) is computationally expensive.

Robust optimization
Robust optimization offers remedies for the shortcomings in
Problem (1). It does not require a distribution F over Lancha
population parameters. Also, robust optimization will work
with very small data sets - even a single observation. We
continue to use the SUQR model from (Nguyen et al. 2013),
since we do not rely on the assumption of perfectly rational
attackers as in earlier security games. We now enhance the
SUQR model by hedging against the heterogeneity of the
Lancha population with robust optimization.

We start with an uncertainty set Ω̂ ⊂ Ω to capture the pos-
sible range of reasonable Lancha behavior parameters. Ω̂ can
be initialized based on domain expertise and human behav-
ior experiments. As new observations come in, COmPASS
updates Ω̂ as described in the next section.

Given an uncertainty set Ω̂, we solve the initial robust op-
timization problem

max
x∈X

min
ω∈Ω̂

∑
t∈T

Ut (x) qt (ω |x) , (2)

to get a patrol for USCG. We continue to assume that in-
dividual Lanchas follow an SUQR model. However, we do
not know the distribution of the SUQR parameters ω over
this population. Problem (2) is distinct from Problem (1).
No probability distribution is assumed and no Bayesian up-
dating is performed in Problem (2). Additionally, the objec-
tive of Problem (1) is the USCG expected utility over SUQR
parameters with respect to F . In contrast, the objective of
Problem (2) is the worst-case expected utility over all allow-
able SUQR models for the Lancha. Since we do not know
the distribution of ω, it is safest for us to hedge against all
possible Lancha types.

Problem (2) is a nonlinear, nonconvex, nondifferentiable
optimization problem. The function∑

t∈T Ut (x) qt (ω |x) is continuous and differentiable in x
for any fixed ω, but it is not convex in x. For easier imple-
mentation, we transform Problem (2) into the constrained
problem

max
x∈X, s

{
s : s ≤

∑
t∈T

Ut (x) qt (ω |x) , ∀ω ∈ Ω̂

}
, (3)

by introducing a dummy variable s ∈ R. This transforma-
tion replaces the nonsmooth objective in the original Prob-
lem (2) with a set of smooth constraints, so that we eliminate
the nondifferentiability to make numerical algorithms work
better. Specifically, we solve Problem (2) in MATLAB with
the function fmincon.

Learning
This section explains how COmPASS uses data. Learning
is a core part of COmPASS, and any available data can im-
prove our online patrol generation. The main intuition is that
we will use data to construct the uncertainty set Ω̂ for Lan-
cha types that was taken as input in Problem (2). In this
way, we keep the conservatism of robust optimization but
include the optimism that we can adapt to new observations.
This idea is based on (Bandi and Bertsimas 2012), where
it is used to construct uncertainty sets for stochastic anal-
ysis. This blend of robustness and learning has not yet ap-
peared in the security game literature, and it is a promising
approach to patrol scheduling in security games where some
data is available. Unlike other estimation-based approaches,
our approach does not require strong statistical assumptions
on the underlying data (like normality).

We will assume that each observation comes from an in-
dependently distributed Lancha attack, with a possibly dif-
ferent SUQR parameter ω from our population of parame-
ters. We do not have the ability to know which the repeat
criminals are, so we have to assume that all incursions are
independent and each corresponds to a different SUQR pa-
rameter. Let N (k) be the total number of crimes committed
in round k, and let J (k) =

∑k
i=1 N

(i) be the running total
number of crimes by the end of round k. Suppose target t
is attacked during round k while the USCG patrol density
is xk, then the maximum likelihood equation (MLE) for the
type of the Lancha, i.e. the parameter ω, who committed this
crime is

max
ω∈Ω

log (qt (ω |xk)) . (4)

To explain, equation (4) finds the Lancha type ω which max-
imizes the likelihood of an attack on the observed target t.
Note that equation (4) only assumes the SUQR model, it is
not based on any other hidden assumptions on the data. By
solving the MLE equation (4) for each observed incursion,
we build a collection

Ξ(k) =
{
ωj : j = 1, . . . , J (k)

}
of estimated Lancha SUQR parameters available at the end
of round k. The set Ξ(k) is effectively a sample of estimated
Lancha SUQR parameters, we will use Ξ(k) to construct Ω̂.

For clarity, Ξ(k) is not known until the end of round k.
At the beginning of round k, USCG only knows Ξ(k−1). We
denote the resulting data-driven uncertainty set for round k
as

Ω̂
(

Ξ(k−1)
)

to emphasize the dependence on the data Ξ(k−1). At the be-
ginning of round k, we then want to solve the resulting ro-
bust optimization problem

max
x∈X

min
ω∈Ω̂(Ξ(k−1))

∑
t∈T

Ut (x) qt (ω |x) , (5)

which can be solved using the same algorithm as for Prob-
lem (2). Compare Problems (2) and (5). In Problem (2), the
uncertainty set Ω̂ is initialized and no new data has yet been



collected. In Problem (5), the uncertainty set Ω̂
(
Ξ(k−1)

)
in-

cludes new Lancha observations over the last k − 1 rounds.
Different data sets give rise to different instances of the ro-
bust Problem (5). The only remaining issue is to construct
the data-driven uncertainty set Ω̂

(
Ξ(k−1)

)
.

We define our uncertainty sets in the following way: In
round k, we consider

Ω̂
(

Ξ(k−1)
)

= vertex
{
ωj : j = J (k−1) −m(k), . . . , J (k−1)

}
.

where vertex (·) returns the vertices of the convex hull of
a set and m(k) is the number of past observations that we
keep. If m(k) = J (k−1) − 1, then we use all Lancha obser-
vations. We can easily make Ω̂

(
Ξ(k−1)

)
less conservative by

having a shorter memory. In this fashion, we do not become
progressively more conservative but track recent Lancha ac-
tivity.

Unlike Problem (2), where Ω̂ is initialized by the user, per-
haps based on historical data, the uncertainty set Ω̂

(
Ξ(k−1)

)
is data-driven and is updated online each time a new Lancha
observation is made. In fact there are many ways to construct
Ω̂
(
Ξ(k−1)

)
.

Experiments and Analysis

Figure 2: (a) Sample Simulation Area in Gulf of Mexico; (b)
Cumulative Expected Utility for COmPASS with and with-
out the distance factor being included in the payoffs

In this section, we evaluate COmPASS on real fish and
USCG Lancha data. The fish data was taken from NOAA’s
Coastal Ecosystem Maps1; for security purposes we had to
sanitize the Lancha data obtained from USCG to share these
results. We focus on part of the Gulf of Mexico and dis-
cretize it into a 25*25 grid with 625 cells, 3 miles wide and
4.2 miles long. This area is shown in Fig. 2, and each round
corresponds to 3 months. For these experiments, the Lanchas
are uniformly penalized across targets if they are caught by
USCG. We will return to Fig. 2(b) later.

We evaluate COmPASS and compare it against other al-
gorithms. Figs. 3(a), 3(b) and 3(c) depict how the cumula-
tive expected utility of the defender (shown on the Y-axis)

1http://service.ncddc.noaa.gov/website/
CHP/viewer.htm

increases over rounds (shown on the X-axis) for 10, 30 and
50 patrol boat hours, respectively. So, we calculate the worst
case expected utility for the defender over all Lancha types
for each round and this gets cumulated over the rounds. We
see that COmPASS improves based on an average of about
30 Lancha observations per round. This performance is con-
sistent even when varying the number of resources. We note
the superiority of COmPASS over two other approaches:
first, we consider a baseline Maximin that does not use a
behavioral model; second, we compare against SUQR. For
SUQR, we assume that the weights ω = (ω1, ω2, ω3) are the
same for all Lanchas, we use the weights derived from hu-
man subject experiments in (Nguyen et al. 2013). The SUQR
model performs the worst because it fails to exploit the fact
that different Lanchas may use different weights for differ-
ent features, and because it does not update over rounds. On
the other hand, COmPASS successfully captures a diverse
population of Lanchas and learns from data. Even though
the performance of both Maximin and SUQR improve as
the number of boat hours increases, they are consistently
outperformed by COmPASS. Also note that COmPASS uti-
lizes resources more efficiently as compared to Maximin and
SUQR, which are both sensitive to the number of resources.

The heat maps in Figs. 4(a) and 4(b) reveal the cover-
age probabilities generated by COmPASS for rounds 1 and
7, lighter colors correspond to higher coverage probabili-
ties. These figures clearly show that COmPASS’s robust ap-
proach is capable of adapting to data. Note that the grid to
the bottom right corner of Figs. 4(a) and 4(b) shows the
heat map for the entire 25*25 grid, while the heat map of
a zoomed in 3*3 grid is shown at the left upper corner of the
figures. The 3*3 grid corresponds to rows 5 to 8 and columns
1 to 3 in the 25*25 grid. Similar notation is followed for Fig.
4(c), which shows a heat map of the strategy generated by
Maximin. In contrast to the heatmaps of COmPASS which
change over rounds, Maximin generates only one fixed strat-
egy for every round. We also experiment with COmPASS to
study the impact of distance from the shore on the defender
strategy. Fig. 2(b) reports the cumulative defender expected
utility for COmPASS for two cases: (i) when the distance
from shore is incorporated into the rewards and (ii) when it
is not. The results suggest that traveling distance is an im-
portant factor to consider while constructing the payoffs.

Related Work
Our work synthesizes the literature on fishery protection, se-
curity games, and robust optimization. First, the problem of
protecting fisheries has already received attention. (Pauly et
al. 2002) discusses the urgent need for protection of fish-
eries to maintain sustainability. In (Gallic and Cox 2006;
Stokke 2009), an economic analysis of illegal fishing is
conducted and some economic remedies are proposed. Our
work differs from these references because it offers a tacti-
cal, proactive solution to illegal fishing rather than a strate-
gic, policy based solution. (Lobo 2005) solves for one-
dimensional ocean patrols using self-organizing maps and
(Millar and Russell 2012) uses an integer programming for-
mulation to design fishery patrol routes. Both (Lobo 2005)
and (Millar and Russell 2012) are based on the classic trav-



(a) 10 resources (b) 30 resources (c) 50 resources

Figure 3: Cumulative Defender Expected Utilities for different number of resources over rounds

(a) Round 1 (b) Round 7 (c) Maximin

Figure 4: Heat Maps showing defender coverage probabilities for all targets generated by (a, b) COmPASS with 50 resources
and (c) Maximin

eling salesman problem. Our approach differs from (Lobo
2005) in two ways: first, we take a game-theoretic approach;
second, we account for uncertainty in the behavior and pref-
erences of the adversary to get robust patrols. (Yang et al.
2014) studies a wildlife security game against a population
of heterogeneous poachers. The SUQR model also appears
in this work, and it is assumed that the SUQR parameters for
the poachers are normally distributed. COmPASS does not
make any assumptions on the distribution of SUQR param-
eters.

Game theory in security is a highly developed field, espe-
cially in counter-terrorism applications (Tambe 2011). The
Stackelberg game model has been emphasized in this body
of literature. (Conitzer 2012) surveys the state of the art in
algorithmic security game theory, in particular for Stackel-
berg games; though these algorithms do not apply to our re-
peated setting. Furthermore, Stackelberg games in security
often appear in conjunction with a behavioral model for the
adversary. (Marecki, Tesauro, and Segal 2012) considers re-
peated Stackelberg Bayesian games, where the prior distri-
bution is over follower preferences and the follower is as-
sumed to play a myopic best response. We depart from this
approach because we do not assume a prior over adversary
preferences, and we work in the specific fisheries domain.

Robust optimization, a tool for decision-making under un-
certainty, is particularly pertinent to us. The usual strategy is
to optimize a performance measure over the worst-case of
scenarios, thus ensuring a conservative decision. See (Ben-

Tal, El Ghaoui, and Nemirovski 2009) for a detailed sur-
vey of robust optimization and see (Bandi and Bertsimas
2012) for the application of robustness to stochastic systems
analysis. Robustness is especially relevant to multiple agent
settings, and robust solution concepts have been developed
for games. (Aghassi and Bertsimas 2006) develop a solution
concept for robust Nash games, and (Kardeş, Ordóñez, and
Hall 2011) develop a solution concept for robust Markov
games. We differ from the usual robust approach because:
(i) we are focused on game theory; (ii) we are solving a se-
quence of robust optimization problems; and (iii) our robust
formulation makes use of data.

Summary
COmPASS is a novel application of security game theory
and robust optimization that improves USCG’s ability to in-
terdict Lanchas in the Gulf of Mexico. To summarize, COm-
PASS has four main novel features. First, COmPASS ex-
pands the application of security game theory and robust
optimization to the critical task of protecting fisheries. Sec-
ond, COmPASS contributes a model of repeated Stackelberg
games to the security literature, which traditionally empha-
sizes one-shot games. Third, we develop a robust variant of
SUQR that protects against uncertainty in the Lancha popu-
lation. This robustness is the key to generating defensive pa-
trols. Finally, COmPASS offers a way to dynamically update
our uncertainty set online as we gather new observations



so that we can adapt to changing Lancha behavior. USCG
is studying our recommendations to inform their patrols of
sea and air assets. Whenever our patrols are implemented,
USCG will take detailed observations and return this infor-
mation to us. Their domain experts are able to effectively
comment on our patrol feasibility and impact. We conclude
by emphasizing that our method has wide applicability to
other security games beyond fishery protection where there
is repeated interaction between the population of criminals
and law enforcement. The SUQR framework is a general hu-
man behavioral model for making choices, it is not specific
to the fisheries domain.

Disclaimer
The views expressed in this article are those of the author
and DO NOT necessarily reflect the views of the USCG,
DHS, or the U.S. Federal Government or any Authorized
Representative thereof. The U.S. Government does not ap-
prove/ endorse the contents of this article, therefore the ar-
ticle shall not be used for advertising or endorsement pur-
poses. The U.S. Government assumes NO liability for its
contents or use thereof. Moreover, the information contained
within this article is NOT OFFICIAL U.S. Government pol-
icy and cannot be construed as official in any way. Also,
the reference herein to any specific commercial entity, prod-
ucts, process, or service by trade name, trademark, manu-
facturer, or otherwise, does NOT necessarily constitute or
imply its approval, endorsement, or recommendation by the
U.S. Government.
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