Al for Social Good: Key Techniques, Applications, and Results

MILIND TAMBE and ERIC RICE

- Founding Co-directors,
- **USC Center for Artificial Intelligence in Society (CAIS)**
 - **University of Southern California**
 - tambe@usc.edu
 - ericr@usc.edu

USC Center for Artificial Intelligence in Society (CAIS.USC.EDU)

USC Center for Artificial Intelligence in Society

Mission Statement: Advancing Al research driven by...

Grand Challenges of Social Work

- Ensure healthy development for all youth
- Close the health gap
- Stop family violence
- Advance long and productive lives
- End homelessness
- Achieve equal opportunity and justice

. . .

Overview of CAIS Project Areas

AI for Assisting Low Resource Communities

- Social networks: Spread HIV information, influence maximization
- Real-world pilot tests: Big improvements

Overview of CAIS Project Areas

AI for Earth

- Machine learning/planning: Predicting poaching spots, patrols
- Real-world: Uganda, South Asia...

Overview of CAIS Project Areas

AI for Public Safety and Security

- Game theory: security resource optimization
- Real-world: US Coast Guard, US Federal Air Marshals Service...

AAMAS, AAAI, IJCAI

- Significant potential: AI for low resource communities, emerging markets
- Not just applications; novel research challenges:
 - Fundamental computational challenges from use-inspired research
 - > Designing AI systems in society:
 - Interpretability
 - Complementing human autonomy

- Methodological challenges:
 - Encourage interdisciplinary research: measures impact in society

PhD students/postdocs

Outline

- Introduction
- Low resource communities (homeless youth)
- Public Safety and Security
- Wildlife Conservation

AI Program: HEALER

Outline: HIV Information & Homeless Youth

- Domain of homeless youth and HIV information dissemination
- Real World Challenges in Influence Maximization
- Sequential Decision Making under Uncertainty
- Pilot Study

Adolescent homelessness in the USA

• Random Samples: 1.7 million at least one night homelessness

• From Ringwalt's 1998 work – National sample

➢ 7% of 12 to 17 years olds

- Street Counts: In LAHSA Point in Time 2017
 - > 57,794 homeless persons
 - > 5979 youth age 13-24 unaccompanied

Literal Homelessness Experiences among Those with Past Year Literal Homelessness

Race among Those with Past Year Literal Homelessness

Gender among Those with Past Year Literal Homelessness

Sexual Identity among Those with Past Year Literal Homelessness

Place of Origin among Those with Past Year Literal Homelessness

Lifetime Experiences among Those with Past Year Literal Homelessness

HIV and Homeless Youth

•HIV prevalence has been reported as high as 11.5%

- •2016 data suggests 7% of youth in LA drop-in centers are HIV+
- •Nationally 0.3% of 15-24 year olds are HIV+

HIV and Homeless Youth

Yes No Percentage of Youth Reporting HIV Test Past 6 Months, Over Time 74.04 71.84 71.3 56.45 56.06 52.45 47.55 43.94 43.55 28.7 28.16 25.93 Wave 3 Wave 1 Wave 2 Wave 3 Wave 1 Wave 2

HIV and Homeless Youth

How stable are these networks over time?

But how certain are we about these networks? These ties we are certain are real

But all these other ties could be real too!

So what do we need now?

Some way to deal with the uncertainty and instability of these networks

A way to pick the "right" peer leaders – meaning what set of 15-20% of youth can diffuse messages to the rest of the population of youth?

Public health work says "pick the 10-15% most popular" – which means degree centrality (the most ties to others)

Enter Milind Tambe and Amulya Yadav

Outline: HIV Information & Homeless Youth

- Domain of homeless youth and HIV information dissemination
- Real World Challenges in Influence Maximization

- Sequential Decision Making under Uncertainty
- Pilot Study

Influence Maximization Background

- Input:
 - Graph G
 - Influence Model I
 - Choose K nodes per time step
 - Number of time steps for influence spread T
- Output:
 - > K nodes per time step maximizing expected # influenced nodes

Independent Cascade Model

$$G = (V, E)$$

Propagation Probability (for each edge)

Real World Challenges

- Uncertain network state
- Uncertainty in network structure
- Adaptive selection

Challenge 1: Uncertain Network State

Challenge 2: Uncertain Network Structure

Independent Cascade Model

$$G = (V, E) \qquad E = E_{cert} \cup E_{uncert}$$

Propagation Probability (for each edge)

Existence Probability (for uncertain edges only)

HIV Prevention Programs: Using Social Networks to Spread HIV Information

Challenge: Adaptive selection in Uncertain Network

Challenge: Adaptive selection in Uncertain Network

Challenge 3 : Adaptive selection

Outline: HIV Information & Homeless Youth

- Domain of homeless youth and HIV information dissemination
- Real World Challenges in Influence Maximization
- Sequential Decision Making under Uncertainty

Pilot Study

POMDP Model: Create a Policy [2015]

- Homeless shelters sequentially select nodes under uncertainty
 - Policy driven by observations about edges

Optimal Policy at Real world scale: Why is it hard to solve?

Real world scale: Why is it hard to solve?

POMDP Heuristics Real world networks have community structure

HEALER v1: Partitioned Policies Combined for Final Result

Real Networks – Simulation Results [2016-2017]

Outline: HIV Information & Homeless Youth

- Domain of homeless youth and HIV information dissemination
- Real World Challenges in Influence Maximization
- Sequential Decision Making under Uncertainty
- Pilot Study

Pilot Tests with 170 Homeless Youth [2017]

Petering

Craddock

Yoshioka-Maxwell

Recruited youths:

HEALER	HEALER++	DEGREE CENTRALITY	
62	56	55	

Preliminary network —> HEALER

Bring 4 youth for training, get edge data —> HEALER

Bring 4 youth for training, get edge data —> HEALER

Bring 4 youth for training

Safe Place for Youth

Petering

Craddock Yoshioka-Maxwell

Collaborating with Safe Place for Youth (SPY)

Safe Place for Youth

Petering

Craddock Yoshioka-Maxwell

Collaborating with Safe Place for Youth (SPY)

Results: Pilot Studies

Yadav

Wilder

Petering

ng Craddock

Analysis: Pilot Studies

Yadav

Wilder

Petering

ing Craddock

Al Program: HEALER

Next Steps

- 900 youth study begun at three locations in Los Angeles
 - > 300 enrolled in HEALER/HEALER++
 - > 300 enrolled in no condition
 - > 300 in Degree centrality

Phebe's Section

Outline

- Introduction
- Low resource communities (homeless youth)
- Public Safety and Security
- Wildlife Conservation

Jain

ARMOR: Assigning Limited Security Resources

AI-based DECISION AIDS TO ASSIST IN SECURITY

AI-based DECISION AIDS TO ASSIST IN SECURITY

Game Theory

Set of targets, payoffs based on targets covered or not...

Stackelberg: Defender commits to randomized strategy, adversary respondsSecurity optimization: Not 100% security; increase cost/uncertainty to attackersChallenges faced: Massive scale games; difficult for a human planner

Costingelles Anno		Terminal #1	Terminal #2
POLICE	Terminal #1	4, -3	-1, 1
Defender	Terminal #2	-5, 5	2, -1

IRIS: FEDERAL AIR MARSHALS SERVICE [2009]

Visiting TSA Freedom Center

Security Game Deployments [2009]

Security Game Deployments

Fang

Security Games

PROTECT: Ferry Protection Deployed [2013-]

Global presence of Security using Game Theory [2015-2017]

- TSA: ~640 million passengers per year; "TSA Pre"
- New concept: More passenger categories using <u>flight</u> & <u>risk level</u>
- TSG: Tailor screening to categories, balance efficiency & effectiveness

Security Games in Cyberdefense: New MURI Project [2017-]

Realizing Cyber Inception: Towards a Science of Personalized Deception for Cyber Defense

University of Southern California

Carnegie Mellon University

Carnegie Mellon University

University of Texas El Paso

Arizona State University

North Carolina State University

University of North Carolina Chapel Hill
Avata Intelligence

Jain

Pita

Operational Efficiency Through AI

Los Angeles Unified School District Police

Glendale PD

SHERIFF

Los Angeles Sheriff's Department

University of Southern California

US Coast Guard

RAND Corporation

9/8/2017

Outline

- Introduction
- Low resource communities (homeless youth)
- Public Safety and Security
- Wildlife Conservation

Protecting Wildlife in Uganda

PAWS: Applying AI for protecting wildlife

Poacher Behavior Prediction

Predicting Poaching from Past Crime Data

Poacher behavior prediction [2016]

Data from Queen Elizabeth National Park, Uganda

Number of poaching attacks over 12 years: ~1000

Boost Decision Tree Ensembles with with Behavioral Game Theory Models

- Boost in "heavily monitored" regions of the park:
 - Improve accuracy
 - Learn local poachers' behavior; distinct parameters

Poacher Attack Prediction [2017]

Poacher Behavior Prediction

Real-world Deployment (1 month)

Kar

- Two 9-sq. km patrol areas
 - > Where there were infrequent patrols
 - Where no previous hot spots

Real-world Deployment: (1 month)

Real-world Deployment: Results

Two 9 sq KM patrol areas: Predicted hot spots with infrequent patrols

- Trespassing: 19 signs of litter etc.
- Snaring: 1 active snare
- Poached Animals: Poached elephant
- Snaring: 1 elephant snare roll
- Snaring: 10 Antelope snares

- Hit rates (per month)
 - Ours outperforms 91% of months

Historical Base Hit Rate	Our Hit Rate
Average: 0.73	3

9/8/2017

Real-world Deployment: Field Test 2 (6 months) [2017]

2 experiment groups (27 areas of 9 sq KM each)
 > 1:HIGH >= 50% attack prediction rate

- 5 areas
- > 2: LOW < 50% attack prediction rate</p>
 - 22 areas

Gholami

Ford

Real-world Deployment: Field Test 2 (6 months)

Catch Per Unit Effort (CPUE)

Unit Effort = km walked
Our high CPUE: 0.11
Our low CPUE: 0.01

Historical CPUE: 0.04

UAV Patrolling: cheaper and more flexible

Credit: Arvind Iyer, AirShepherd

Credit: Liz Bondi

AI for Social Good

THANK YOU

CAIS.USC.EDU

tambe@usc.edu ericr@usc.edu

Overview of CAIS Project Areas

AI for Assisting Low Resource Communities

- Substance abuse, suicide prevention...
- Modeling gang violence, matching homeless and homes...

Al for Social Good: Essential Nature of Human Machine Partnership

- Build decision aids/assistants ("wrapping humans"):
 - > Humans focus on their expertise, e.g., social workers interact with youth
 - > AI systems focus on complementary tasks, e.g., select influential youth
- Lessons in Building Assistants:
 - > Right level of autonomy for humans vs machines
 - Explanation of output
- Individual and organization level partnership:
 - > Immersion opens up our eyes; builds up trust over time