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Mission Statement: Advancing AI research driven by…

Grand Challenges of Social Work

 Ensure healthy development for all youth

 Close the health gap

 Stop family violence

 Advance long and productive lives

 End homelessness

 Achieve equal opportunity and justice

…
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Overview of CAIS Project Areas

AI for Assisting Low Resource Communities 

 Social networks: Spread HIV information, influence maximization

 Real-world pilot tests: Big improvements
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Overview of CAIS Project Areas
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 Machine learning/planning: Predicting poaching spots, patrols

 Real-world: Uganda, South Asia…

AI for Earth

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=wpBcwjxieLDbgM&tbnid=vaE0_oKQu3-xsM:&ved=0CAUQjRw&url=http://www.greenvitals.net/greenvitalsnet/2010/7/27/experts-reassure-public-of-seafood-safety-as-gulf-of-mexico.html&ei=11eFUbjrMYmE9QShjoDIDQ&psig=AFQjCNHqi3MFAnwoI9j_WGuQMTwoAp05Bw&ust=1367779384259717


 Game theory: security resource optimization

 Real-world: US Coast Guard, US Federal Air Marshals Service…

Overview of CAIS Project Areas
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AI for Public Safety and Security

http://www.google.com/url?sa=i&rct=j&q=staten+island+ferry+coast+guard+patrol&source=images&cd=&cad=rja&docid=53knJak73ne2EM&tbnid=5WvOp1fzJnxbQM:&ved=0CAUQjRw&url=http://www.facebook.com/USCGNEWYORKCITY&ei=xH94UZ-XH6b8igKkhoGwCA&bvm=bv.45645796,d.cGE&psig=AFQjCNE9isrfcE6EBfOZP3sT-UOfN5VAxw&ust=1366937750751749


Partnerships
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 AAMAS, AAAI, IJCAI

 Low Resource Communities

 Public Safety and Security

 Wildlife Conservation



Key Takeaways

 Significant potential: AI for low resource communities, emerging markets

 Not just applications; novel research challenges:

 Fundamental computational challenges from use-inspired research

 Designing AI systems in society:

• Interpretability

• Complementing human autonomy

 Methodological challenges:

 Encourage interdisciplinary research: measures impact in society
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Partnerships
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 Low Resource Communities

 Public Safety and Security

 Wildlife Conservation

PhD students/postdocs



Outline

 Introduction

 Low resource communities (homeless youth)

 Public Safety and Security

 Wildlife Conservation
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AI Program: HEALER
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Outline: HIV Information & Homeless Youth

 Domain of homeless youth and HIV information dissemination

 Real World Challenges in Influence Maximization

 Sequential Decision Making under Uncertainty

 Pilot Study
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• Random Samples: 1.7 million at least one night homelessness

• From Ringwalt’s 1998 work – National sample

 7% of 12 to 17 years olds

• Street Counts: In LAHSA Point in Time 2017

 57,794 homeless persons

 5979 youth age 13-24 unaccompanied

Adolescent homelessness in the USA



The brief survey













•HIV prevalence has been reported as high as 11.5%

•2016 data suggests 7% of youth in LA drop-in centers are HIV+

•Nationally 0.3% of 15-24 year olds are HIV+

HIV and Homeless Youth



HIV and Homeless Youth
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How stable are these networks over time?

HIV and Homeless Youth



But how certain are we about these networks?

These ties we are certain are real



But all these other ties could be real too!



So what do we need now?

Some way to deal with the uncertainty and instability of these 

networks

A way to pick the “right” peer leaders – meaning what set of 15-

20% of youth can diffuse messages to the rest of the population of 

youth?

Public health work says “pick the 10-15% most popular” – which 

means degree centrality (the most ties to others)

Enter Milind Tambe and Amulya Yadav



Outline: HIV Information & Homeless Youth

 Domain of homeless youth and HIV information dissemination

 Real World Challenges in Influence Maximization

 Sequential Decision Making under Uncertainty

 Pilot Study
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Influence Maximization Background

 Input: 

 Graph G

 Influence Model I

 Choose K nodes per time step

 Number of time steps for influence spread T

 Output:

 K nodes per time step maximizing expected # influenced nodes
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Independent Cascade Model

 Propagation Probability (for each edge)
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Real World Challenges

 Uncertain network state

 Uncertainty in network structure

 Adaptive selection
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Challenge 1: Uncertain Network State

B

C
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A



Challenge 2: Uncertain Network Structure
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Independent Cascade Model

 Propagation Probability (for each edge)

 Existence Probability (for uncertain edges only)
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HIV Prevention Programs:
Using Social Networks to Spread HIV Information
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Challenge: Adaptive selection in Uncertain Network

K = 5

1st time step
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Challenge: Adaptive selection in Uncertain Network

K = 5

2nd time step
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Challenge 3 : Adaptive selection

K = 5

3rd time step
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NO LONGER A SINGLE SHOT 

DECISION PROBLEM

• NP-hard

• Not adaptive submodular



Outline: HIV Information & Homeless Youth

 Domain of homeless youth and HIV information dissemination

 Real World Challenges in Influence Maximization

 Sequential Decision Making under Uncertainty

 Pilot Study
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POMDP Model: Create a Policy [2015]

 Homeless shelters – sequentially select nodes under uncertainty

 Policy driven by observations about edges

Action

Choose nodes

Observation: Which edges exist?

Adaptive Policy

POMDP SOLVER

Maximize Reward

HIDDEN

World State: Actual 

node/edge state

Yadav
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Optimal Policy at Real world scale: 
Why is it hard to solve?

2300 states
150C6 actions

Current offline and online 

POMDP solvers unable to 

scale

Yadav



Real world scale: Why is it hard to solve?
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POMDP Heuristics
Real world networks have community structure

Graph Partitioning
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Yadav
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HEALER v1: Hierarchical Ensembling [2016]

GRAPH PARTITION TOOL

. . . .

. . . .

GRAPH SAMPLER
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POMDP
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Graph 
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Graph 
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Yadav



HEALER v1: Partitioned Policies Combined for Final Result

q
INTERMEDIATE 

POMDP POLICY
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Cross Community 

Edges Ignored



Real Networks – Simulation Results [2016-2017]
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Outline: HIV Information & Homeless Youth

 Domain of homeless youth and HIV information dissemination

 Real World Challenges in Influence Maximization

 Sequential Decision Making under Uncertainty

 Pilot Study
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Pilot Tests

with 170 Homeless Youth [2017] 

Recruited youths:

Preliminary network —> HEALER

Bring 4 youth for training, get edge data —> HEALER

Bring 4 youth for training, get edge data —> HEALER

Bring 4 youth for training

HEALER HEALER++ DEGREE CENTRALITY

62 56 55
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Safe Place for Youth

 Collaborating with Safe Place for Youth (SPY)

539/8/2017

Yoshioka-
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Safe Place for Youth

 Collaborating with Safe Place for Youth (SPY)

549/8/2017

Yoshioka-

Maxwell
CraddockPetering



Results: Pilot Studies
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Analysis: Pilot Studies
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AI Program: HEALER
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Next Steps

 900 youth study begun at three locations in Los Angeles

 300 enrolled in HEALER/HEALER++

 300 enrolled in no condition

 300 in Degree centrality
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Phebe’s Section
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Outline

 Introduction

 Low resource communities (homeless youth)

 Public Safety and Security

 Wildlife Conservation
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ARMOR: Assigning Limited Security Resources

Optimizing Security Resource Allocation [2007]

2007

Airports

Canine patrol at 

LAX (ARMOR)

PitaJain
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AI-based DECISION AIDS TO ASSIST IN SECURITY



Game Theory

2007

Airports

-1, 1 0, 0 1, -1

1, -1 -1, 1 0, 0

Player B

Player A

Paper Rock Scissors

Paper

Rock

Scissors

0, 0 1,-1 -1,1

AI-based DECISION AIDS TO ASSIST IN SECURITY
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Terminal #1 Terminal #2

Terminal #1 4, -3 -1, 1

Terminal #2 -5, 5 2, -1

Adversary

Model: Stackelberg Security Games

Defender

Set of targets, payoffs based on targets covered or not…

Security optimization: Not 100% security; increase cost/uncertainty to attackers

Challenges faced: Massive scale games; difficult for a human planner 

Kiekintveld

Stackelberg: Defender commits to randomized strategy, adversary responds 



IRIS: FEDERAL AIR MARSHALS SERVICE [2009]

Visiting TSA Freedom Center

66/



67

2007

Airports Air Marshals

2009

Security Game Deployments [2009]

9/8/2017

Jain
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Security Game Deployments

Security Games

2007 2011

Ports

2009

Airports Air Marshals

Fang
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PROTECT: Ferry Protection Deployed [2013-]
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Global presence of Security using Game Theory [2015-2017]



Threat Screening Games (TSG) [2016-2017]

71

 TSA: ~640 million passengers per year; “TSA Pre”

 New concept: More passenger categories using flight & risk level

 TSG: Tailor screening to categories, balance efficiency & effectiveness

S1 S4S3S2 S5 S6

XRAY

WTMD

XRAY

AIT

(SLOW)

3
2

1

Low Risk High Risk

Sinha Schlenker

33% XRAY+AIT

66% XRAY+WTMD
100% XRAY+AIT

9/8/2017



9/8/2017 72

Security Games in Cyberdefense:

New MURI Project [2017-]

University of

Southern CaliforniaRealizing Cyber Inception: 
Towards a Science of Personalized 

Deception for Cyber Defense
Carnegie Mellon 

University

University of Texas 

El Paso

Arizona State 

University

North Carolina State 

University

University of

North Carolina 

Chapel Hill
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Avata Intelligence

University of

Southern California

Los Angeles Sheriff’s 

Department

Glendale PD

Los Angeles Unified 

School District Police

RAND Corporation

US Coast Guard

Operational Efficiency Through AI

PitaJain



Outline

 Introduction

 Low resource communities (homeless youth)

 Public Safety and Security

 Wildlife Conservation
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Protecting Wildlife in Uganda
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Predicting Poaching from Past Crime Data

PAWS: Applying AI for protecting wildlife

Poacher Behavior Prediction
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Nguyen



Data from Queen Elizabeth National Park, Uganda

Poacher behavior prediction [2016]

Number of poaching attacks over 12 years: ~1000

How likely is an  

attack on

a grid Square

Ranger patrol

frequency

Animal density

Distance to 

rivers / roads 

Area habitat

Area slope

…
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Nguyen
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 Boost in “heavily monitored” regions of the park:

 Improve accuracy

 Learn local poachers’ behavior; distinct parameters

Boost Decision Tree Ensembles with

with Behavioral Game Theory Models

Classifier 1 Classifier 2 Classifier 3

0 1 1

Aggregation Rule

1

Majority

1

Decision Tree

Decision Tree 

+ 
Behavioral modelBehavioral model

Gholami Kar Ford
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Uniform Random SVM CAPTURE Decision Tree Our Best Model

Poacher Behavior Prediction

Poacher Attack Prediction [2017]

Results from 2015
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Real-world Deployment (1 month) 

 Two 9-sq. km patrol areas

 Where there were infrequent patrols

 Where no previous hot spots

9/8/2017 80

Kar Ford
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Real-world Deployment: (1 month)



Real-world Deployment: Results

 Two 9 sq KM patrol areas: Predicted hot spots with infrequent patrols

 Trespassing: 19 signs of litter etc.

 Snaring: 1 active snare

 Poached Animals: Poached elephant

 Snaring: 1 elephant snare roll

 Snaring: 10 Antelope snares

 Hit rates (per month)

 Ours outperforms 91% of months

Historical Base Hit 

Rate
Our Hit Rate

Average: 0.73 3
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Real-world Deployment: 
Field Test 2 (6 months) [2017]

 2 experiment groups (27 areas of 9 sq KM each)

 1:HIGH  >= 50% attack prediction rate

• 5 areas

 2: LOW < 50% attack prediction rate

• 22 areas

FordGholami
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Real-world Deployment: 
Field Test 2 (6 months) 

 Catch Per Unit Effort (CPUE)

Unit Effort = km walked

Our high CPUE: 0.11

Our low CPUE: 0.01

Historical CPUE: 0.04
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Green Security Games: 

Patrolling From the Sky [2017 ongoing]

UAV Patrolling: cheaper and more flexible

Credit: Arvind Iyer, AirShepherd Credit: Liz Bondi

Bondi



AI for Social Good
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THANK YOU

CAIS.USC.EDU



Overview of CAIS Project Areas

AI for Assisting Low Resource Communities 

 Substance abuse, suicide prevention…

 Modeling gang violence, matching homeless and homes…
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AI for Social Good:
Essential Nature of Human Machine Partnership 

 Build decision aids/assistants (“wrapping humans”):

 Humans focus on their expertise, e.g., social workers interact with youth

 AI systems focus on complementary tasks, e.g., select influential youth

 Lessons in Building Assistants:

 Right level of autonomy for humans vs machines

 Explanation of output

 Individual and organization level partnership:

 Immersion opens up our eyes; builds up trust over time
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