Al for Social Good

CAIS Fall Seminar Series 2017

Phebe Vayanos

Epstein Department of Industrial & Systems Engineering Associate Director of CAIS Viterbi School of Engineering, USC

Al for Substance Abuse Prevention

Aida Rahmattalabi, Anamika Barman Adhikari, Phebe Vayanos, Milind Tambe, and Eric Rice

Motivation

- Substance use: significant public health problem
- Can cause mental/physical problems
- Certain groups of youth engage in very high levels of drug use
- <u>Peer-based interventions</u>: often successful but sometimes *deviancy training*

National Institute on Drug Abuse

Problem Formulation

 $\begin{array}{ll} \text{maximize} & E\left[\sum_{i\in\mathbb{E}^{+}(\mathbb{P})}(1-\mathscr{B}_{i}(\mathbb{P}))\right] \\ \text{subject to} & \mathbb{P}_{s}\subset\mathbb{V} \quad \forall s\in\{1,\ldots,S\} \\ & \bigcap_{s=1}^{S}\mathbb{P}_{s}=\emptyset \\ & \bigcup_{s=1}^{S}\mathbb{P}_{s}=\mathbb{V} \\ & \bigcup_{s=1}^{C}\mathbb{P}_{s}|\leq\overline{C} \quad \forall s\in\{1,\ldots,S\} \end{array} \right.$

- During intervention and based on partition:
 - friendships are broken/formed (deterministic)
 - Influence propagates (stochastic)
- Model based on expert opinion
- NP-hard

Synthetic Networks

Real Networks

- Propose MIP formulation and Hill Climbing Heuristic
- MIP enables us to obtain bound on solution quality: near-optimal $\sim 10\%$

Al for Kidney Transplantation Management Chaitanya Bandi, Nikos Trichakis, and Phebe Vayanos

End-Stage Renal Disease

source: https://www.usrds.org

- terminal disease affecting >600,000 patients in U.S.
- dialysis vs. kidney transplant (preferred)
- living donors vs. deceased donors

Organ Shortage

3-yr trend

+20%

- 100k patients waiting
- 36k additions per year
- 19k transplants/year
 - 13.4k (70%) from deceased donors +20%
 - 5.6k (30%) from living donors -2%

Wait Time Estimation

Patient X of blood type O is listed in a given geographic region. He is currently ranked 50th. How long until he receives an offer of a <u>particular quality</u>?

- important for:
 - dialysis management
 - planning of daily life activities
 - accept/reject decisions

Problem Formulation

- Estimate worst-case wait time to get offer of given quality
- NP-hard

- Formulate as MIP; tractable approximation as SOCP
- Relative prediction errors: 14.96% for avg. and 11.73% for 68-percentile

Al for Suicide Prevention

Subhasree Sengupta, Anthony Fulginiti, Bryan Wilder, Long Tran-Thanh, Phebe Vayanos, Eric Rice, and Milind Tambe

Motivation

American Foundation for Suicide Prevention

- Suicide: serious national and international public health problem
- According to the Center for Collegiate Mental Health:
 - One-third of college students receiving mental health services report having suicidal thoughts in their lifetime
 - Nearly 10% have attempted suicide in the past 5 years
- Solution: effective gatekeeper training

Problem Formulation

- Can invite K people
- Nature can choose a subset of those that will not come
- Want to maximize worst-case coverage
- NP-hard

Solution algorithm based on iterative scenario generation

Real Networks

Synthetic Networks

 Solution algorithm based on iterative scenario generation

Al for Prioritizing Homeless Youth for Housing Resources

Ongoing...

Al for Conservation Planning

Ongoing...

Summary

- Very exciting projects
- Important for society
- Interesting mathematically: hard computationally (both in theory and in practice)