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Abstract

Whereas previous real-world game-theoretic applications in security focused on protection of

critical infrastructure in the absence of past attack data, more recent work has focused on data-

driven security and sustainability applications for protecting the environment, including forests,

fish and wildlife. One key challenge in such “Green Security Game” (GSG) domains is to model

the adversary’s decision making process based on available attack data. This thesis, for the first

time, explores the suitability of different adversary behavior modeling approaches in such do-

mains that differ in the type and amount of historical data available.

The first contribution is to provide a detailed comparative study, based on actual human sub-

ject experiments, of competing adversary behavior models in domains where attack data is avail-

able in plenty (e.g., via a large number of sensors). This thesis demonstrates a new human behav-

ior model, SHARP, which mitigates the limitations of previous models in three key ways. First,

SHARP reasons based on successes or failures of the adversary’s past actions to model adver-

sary adaptivity. Second, SHARP reasons about similarity between exposed and unexposed areas

of the attack surface to handle the adversary’s lack of exposure to enough of the attack surface.

Finally, SHARP integrates a non-linear probability weighting function to capture the adversary’s

true weighting of probabilities.
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The second contribution relates to domains requiring predictions over a large set of targets

by learning from limited (and in some cases, noisy) data. One example dataset on which we

demonstrate our approaches to handle such challenges is a real-world poaching dataset collected

over a large geographical area at the Queen Elizabeth National Park in Uganda. This data is too

sparse to construct a detailed model. The second contribution of this thesis delivers a surprising

result by presenting an adversary behavior modeling system, INTERCEPT, which is based on an

ensemble of decision trees (i) that effectively learns and predicts poacher attacks based on limited

noisy attack data over a large set of targets, and (ii) has fast execution speed. This has led to a

successful month-long test of INTERCEPT in the field, a first for adversary behavior modeling

applications in the wildlife conservation domain.

Finally, for the my third contribution, we examine one common assumption in adversary be-

havior modeling that the adversary perfectly observes the defender’s randomized protection strat-

egy. However, in domains such as wildlife conservation, the adversary only observes a limited

sequence of defender patrols and forms beliefs about the defender’s strategy. In the absence of a

comparative analysis and a principled study of the strengths and weaknesses of belief models, no

informed decision could be made to incorporate belief models in adversary behavior models such

as SHARP and INTERCEPT. This thesis provides the first-of-its-kind systematic comparison of

existing and new proposed belief models and demonstrates based on human subjects experiments

data that identifying heterogeneous belief update behavior is essential in making effective pre-

dictions. We also propose and evaluate customized models for settings that differ in the type of

belief data available and quantify the value of having such historical data on the accuracy of belief

prediction.
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Chapter 1

Introduction

Security and sustainability remains a global concern over the years. Challenges in security and

sustainability include protecting critical infrastructures such as airports, ports, and transportation

networks, preventing smuggling of drugs, urban crimes, and intrusions in cyber systems, as well

as protecting our environmental assets such as endangered wildlife from poaching and fisheries

from illegal fishing. A unifying theme in all of these challenges is the strategic reasoning between

the law enforcement agencies such as police officers and wildlife park rangers (interchangeably

referred to as defenders), and the adversaries such as terrorists and poachers. The defenders only

have limited resources, and therefore it is not possible to protect everything at all times; while at

the same time the adversaries can conduct surveillance to observe the defenders’ actions. There-

fore, any deterministic allocation of resources can be potentially exploited by the adversaries,

and so it is important for the defenders to randomize the allocation of security resources for more

effective protection.

In the last decade, game theory has become a well-established paradigm for modeling com-

plex resource allocation and scheduling problems in security and sustainability domains (Tambe,

2011; Gatti, 2008; Agmon, Kraus, & Kaminka, 2008; Basilico, Gatti, & Amigoni, 2009). More
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specifically, Stackelberg Security Games (denoted as SSGs) which model the interaction between

two players, the defender and the adversary, has received significant attention. In an SSG, (Kiek-

intveld, Jain, Tsai, Pita, Ordonez, & Tambe, 2009) the defender plays the role of a leader by

first allocating and scheduling her limited security resources to protect a set of targets from the

adversary. The defender commits to a mixed strategy, which is a randomized allocation of her

resources, specified by a probability distribution over all possible deterministic allocations; the

attacker then acts as the follower by taking an action after observing the defender’s mixed strat-

egy. Models and algorithms have been proposed to efficiently compute the optimal strategy for

the defender to address real-world challenges (Jain, 2013; Yin, 2013; Pita, 2012; Yang, 2014;

Shieh, 2015; Brown, 2015). Decision-support systems based on SSG and the proposed algo-

rithms have also been successfully deployed in several domains to assist security agencies (Pita,

Jain, Marecki, Ordonez, Portway, Tambe, Western, Paruchuri, & Kraus, 2008; Tsai, Rathi, Kiek-

intveld, Ordonez, & Tambe, 2009; Shieh, An, Yang, Tambe, Baldwin, DiRenzo, Maule, & Meyer,

2012; Yin, Jiang, Johnson, Kiekintveld, Leyton-Brown, Sandholm, Tambe, & Sullivan, 2012).

A key challenge in such security and sustainability domains is the prediction of adversary

behavior so as to optimize the allocation of defender resources against future behavior of the ad-

versary. The first generation of security games research focused on developing optimal defense

strategies in the absence of any data to learn the adversary’s behavior (Tambe, 2011). However,

more recent work has focused on domains involving repeated interactions between the defenders

and the adversaries, thus generating significant amount of data. These domains include “Green

Security Game” domains (GSG) (see Figure 1.1) (Fang, Stone, & Tambe, 2015), such as the

security of wildlife (repeated interactions between rangers and poachers) (Yang, Ford, Tambe,

& Lemieux, 2014), fisheries (repeated interactions between coast guard and illegal fishermen)
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(a) Wildlife protection (b) Fishery protection (c) Forest protection

Figure 1.1: Different Green Security Game (GSG) domains.

(Haskell, Kar, Fang, Tambe, Cheung, & Denicola, 2014) and forests. These green security do-

mains are fundamentally very different compared to the infrastructure security domain for several

reasons. First, as noted above, frequent and repeated attacks are involved. For example, poachers

walk in to a protected park or forest area at regular intervals and place snares on the ground to

trap animals. Therefore, the frequent attacks generate valuable data about the adversary’s be-

havior which is not possible in infrastructure security domains. The second difference is in the

adversary’s decision making process. In domains such as wildlife protection, since the adver-

saries attack at frequent intervals, it is impossible for them to conduct long-term surveillance and

careful planning before each attack. Therefore, the adversaries fail to make perfectly rational

choices and are boundedly rational in their decision making process.

While prior work has primarily focused on optimization of security resources, this thesis, for

the first time, explores the suitability of different adversary behavior modeling approaches in GSG

domains that not only differ in the type and amount of historical data available (e.g., plentiful vs

sparse data) but also in the type of prediction challenge (e.g., fine-grained prediction on a small

set of targets vs coarse prediction on a larger set of targets). The three major contributions towards

effective learning and prediction of adversary behavior are presented below.
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1.1 Fine-grained Adversary Modeling with Plentiful Attack Data

Our first major contribution is to model adversary behavior in domains which require detailed

attack prediction based on plentiful attack data (Kar, Fang, Fave, Sintov, & Tambe, 2015b, 2015c;

Kar, Fang, Fave, Sintov, Sinha, Galstyan, An, & Tambe, 2015a; Kar, Fang, Fave, Sintov, Tambe,

& Lyet, 2016). Given domains where significant amount of attack data is collected at regular

intervals, the problem of learning the adversary’s bounded rationality (and computing an optimal

defender strategy against the learned adversary behavior) can be modeled via the Green Security

Games framework. GSGs correspond to a very general game setting (Fang et al., 2015), where the

defender periodically deploys new patrol strategies (in “rounds” of the game) and the adversary

responds to a convex combination of current and previous rounds’ defender strategies. However,

in this thesis, for all such settings where we have enough data to build a detailed adversary

behavior model, we will focus on a particular version of the general GSG framework, where we

assume that the adversary is responding to the defender strategy deployed in the current round

only.

Unfortunately, despite the initial promise of bounded rationality models in such domains, ex-

isting models (Haskell et al., 2014; Yang et al., 2014) suffer from three key limitations which are

extremely detrimental to defender performance. First, existing models reason about the adver-

sary’s future actions based on past actions taken but not the associated successes and failures. Our

analysis reveals that the adversaries adapt based on past successes and failures. Hence, failing

to consider an adaptive adversary leads to erroneous predictions about his1 future behavior, and

thus significantly flawed defender strategies.
1By convention in security games literature, the defender is referred to as “she” and the adversary as “he”.

4



Second, existing approaches for learning bounded rationality models perform poorly in the

initial rounds. Our analysis reveals that the issue is not just the lack of data in the initial rounds,

but insufficient exposure of attack surface (Jajodia, Ghosh, Swarup, Wang, & Wang, 2011; Man-

adhata & Wing, 2011) in the initial rounds which prevents the defender from collecting sufficient

information about adversary responses to various strategies and learn a reliable model. This issue

of limited attack surface exposure leads to erroneous learned results as the learning is biased to-

wards the limited available information and hence significant losses are incurred by the defender

until enough of the right kind of data becomes available.

Finally, existing adversary behavior models in the literature have failed to include proba-

bility weighting functions (how humans “perceive” probabilities), even though it is well known

that probability weighting curves for humans – e.g., in prospect theory (Tversky & Kahneman,

1992) – are typically nonlinear. In light of this, we show that the direct application of existing

models in the literature, such as the Quantal Response (QR) model (Yang, Ordonez, & Tambe,

2012; McKelvey & Palfrey, 1995) and the Subjective Utility Quantal Response (SUQR) model

(Nguyen, Yang, Azaria, Kraus, & Tambe, 2013), which assume a linear probability function,

provide results that would be extremely detrimental to defender performance.

The first main contribution is a new model called SHARP (Stochastic Human behavior model

with AttRactiveness and Probability weighting), that mitigates these three limitations: (i) Mod-

eling the adversary’s adaptive decision making process, SHARP reasons based on success or

failure of the adversary’s past actions on exposed portions of the attack surface; (ii) Addressing

limited exposure to significant portions of the attack surface in initial rounds, SHARP reasons

about similarity between exposed and unexposed areas of the attack surface, and also incorpo-

rates a discounting parameter to mitigate adversary’s lack of exposure to enough of the attack
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surface; (iii) Addressing shortcomings of existing models in learning the adversaries’ weighting

of probabilities, we incorporate a two parameter probability weighting function in existing human

behavior models. .

The second main contribution is to provide evidence from the first “repeated-measures study”

of competing adversary behavior models. In our study, a suite of well-established models and

SHARP are compared in human subjects experiments on Amazon Mechanical Turk (AMT). We

show that: (i) SHARP outperforms existing approaches consistently over all rounds, most no-

tably in initial rounds. (ii) As discussed earlier, existing approaches perform poorly in initial

rounds with some performing poorly throughout all rounds. (iii) Surprisingly, simpler models

which were originally proposed for infrastructure security domains performed better than recent

advances which are geared specifically towards addressing green security domains. Furthermore,

we demonstrate the effectiveness of SHARP’s modeling considerations and the robustness of our

experimental results through comprehensive analysis on the collected human subjects data.

Since the data was collected through human subjects experiments on AMT, it was essential to

validate the findings from the AMT experiments by conducting further experiments with domain

experts. Therefore, we conducted one repeated-measures study for SHARP in the real world:

with wildlife security experts from the provinces of Lampung and Riau, Sumatra, Indonesia.

Participants were from the local government and from the following NGOs: Yayasan Badak

Indonesia (YABI), World Wildlife Fund (WWF) and Wildlife Conservation Society (WCS). The

results are consistent with the findings from our experiments on AMT.

As mentioned earlier, GSG domains which could benefit from the detailed predictions of

SHARP include domains where plentiful attack data is collected at periodic intervals. This in-

cludes parks where, in addition to recording data collected through foot patrols, there has been
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significant amount of recent focus on using advanced technology (e.g., different types of sensors)

to collect attack data. For example, wildlife protection agencies are flying Unmanned Aerial

Vehicles (UAVs) at various wildlife conservation sites in Africa and Asia to collect significant

amount of poaching data (Fieldstadt, 2015; Desikan, Karunakaran, & Gokulnath, 2013). Further-

more, deployment of technologies such as Synthetic Aperture Radars (SAR) and near infrared

cameras which are predominantly used for wildlife habitat analysis (Cushman & Huettmann,

2010; Collen, Pettorelli, Baillie, & Durant, 2013) are becoming increasingly popular for wildlife,

forests and fisheries conservation (Kim, 2013; Desikan et al., 2013; Meyer & Hinzb, 2009; Cas-

beer, Kingston, Beard, & McLain, 2006). Detailed models such as SHARP could be used ef-

fectively in such data-rich settings. In addition to GSGs, another domain where models such as

SHARP could have significant impact is the urban crimes domain. In fact, a model similar to

SHARP has been successfully applied in recent work on this domain (Zhang, Sinha, & Tambe,

2015; Zhang, Bucarey, Mukhopadhyay, Sinha, Qian, Vorobeychik, & Tambe, 2016; Zhang, Jiang,

Short, Brantingham, & Tambe, 2014; Abbasi, Short, Sinha, Sintov, Zhang, & Tambe, 2015).

1.2 Coarse-grained Adversary Modeling with Sparse Attack Data

Unlike domains discussed in the previous section where the goal is to make fine-grained predic-

tions with plentiful attack data, some GSG problem domains may require coarse-grained predic-

tions based on datasets that pose a different set of challenges (e.g., limited and noisy attack data

collected over a large number of targets). One example dataset on which we demonstrate our
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approaches to handle such challenges is a real-world poaching dataset collected over a large geo-

graphical area (approx. 2500 square kilometers) at the Queen Elizabeth National Park in Uganda.

The attack data recorded in this dataset is too sparse and noisy to construct a detailed model.

To resolve this, we developed INTERCEPT (INTERpretable Classification Ensemble to Pro-

tect Threatened species) (Kar, Ford, Gholami, Fang, Plumptre, Tambe, Driciru, Wanyama, &

Rwetsiba, 2017a), a new adversary behavior modeling application, which unlike SHARP, does

not capture the temporal adaptiveness of adversaries; instead it learns and effectively predicts

adversary behavior based on aggregate data from the past. The contributions here are as fol-

lows. First, given the limitations of traditional approaches in adversary behavior modeling for the

QENP dataset, INTERCEPT takes a fundamentally different modeling approach, decision trees,

and delivers a surprising result: although decision trees are simpler and do not take temporal cor-

relations into account, they perform significantly better than more recent sophisticated adversary

models similar to SHARP that consider temporal relationships, and other popular machine learn-

ing models (e.g., Logistic Regression, SVMs, and AdaBoost). Furthermore, decision trees satisfy

the fundamental requirement of speedy execution; without which, relevant authorities would not

test INTERCEPT in the field. However, decision trees do not take into account the spatial cor-

relations present in this dataset, and so we introduce a spatially aware decision tree algorithm,

BoostIT, that significantly improves prediction performance. To further augment INTERCEPT’s

performance, we developed an ensemble of the best classifiers which boosts predictive perfor-

mance to a factor of 3.5 over existing sophisticated models.

Second, as a first for adversary behavior modeling applications applied to the wildlife crime

domain, we present in this thesis the results of a month long real-world deployment of INTER-

CEPT: compared to historical observation rates of illegal activity, rangers that used INTERCEPT

8



observed 10 times the number of findings than the average. In addition to many signs of tres-

passing, rangers found a poached elephant, a roll of elephant snares, and a cache of 10 antelope

snares before they were deployed. While the rangers’ finding of a poached elephant carcass is a

grim reminder that poachers are active, each confiscated snare represents an animal’s life saved–

this demonstrates the effectiveness of INTERCEPT in problem domains requiring coarse-grained

predictions on a large number of targets with sparse attack data.

1.3 Adversary Modeling with Belief Data

One common assumption while developing adversary behavior models in security games is that

the adversaries have access to the actual mixed strategy of the defender while optimizing their

own attack strategies (Tambe, 2011; Fang et al., 2015; Nguyen, Delle Fave, Kar, Lakshmi-

narayanan, Yadav, Tambe, Agmon, Plumptre, Driciru, Wanyama, et al., 2015; Kar et al., 2015b;

Yang et al., 2014; Fang, Nguyen, Pickles, Lam, Clements, An, Singh, Tambe, & Lemieux, 2016;

Nguyen, Sinha, Gholami, Plumptre, Joppa, Tambe, Driciru, Wanyama, Rwetsiba, Critchlow,

et al., 2016; Haskell et al., 2014; Yang, Kiekintveld, Ordonez, Tambe, & John, 2011; Nguyen

et al., 2013). This assumption holds to some extent in domains such as counter-terrorism where

the adversary conducts careful surveillance of the defender’s deployed pure strategies over a long

period of time (Southers, 2011). However, the above assumption of careful surveillance does not

always hold in domains such as wildlife poaching. In such domains, the adversary attacks fre-

quently based on limited observations of the instantiations of the defender’s randomized strategy.

Therefore, a key challenge in these settings is the modeling of adversary’s belief formation about

the defender’s mixed strategy based on limited observations.
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Several models have been proposed, both in the SSG literature (An, Kempe, Kiekintveld,

Shieh, Singh, Tambe, & Vorobeychik, 2012; Pita, Jain, Ordonez, Tambe, Kraus, & Magori-

Cohen, 2009; Yin, Jain, Tambe, & Ordonez, 2011; Nguyen, Yadav, An, Tambe, & Boutilier,

2014) as well as in psychology (See, Fox, & Rottenstreich, 2006) that address this problem in

different ways. While (An et al., 2012) proposed a Bayesian belief update model assuming per-

fectly rational adversaries, (Pita et al., 2009) proposed a linear mixture model of belief formation

assuming boundedly rational adversaries. (Yin et al., 2011) and (Nguyen et al., 2014) model the

observational uncertainty of the adversary in terms of an interval uncertainty around the actual

mixed strategy. However, there are certain issues with the existing literature on belief modeling

which we address in this thesis (Kar, Sengupta, Kamar, Horvitz, & Tambe, 2017b).

First, the literature lacks empirical evaluation or a head-to-head comparison of existing belief

formation models. Indeed, in the absence of a comprehensive analysis and a principled study of

the strengths and weaknesses of belief models, it is unclear as to which model(s) are better suited

for estimating adversary beliefs and should be included in the adversary behavior prediction mod-

els such as SHARP and INTERCEPT. To address this shortcoming, we conduct the first-of-its-

kind systematic comparison of existing and our proposed models of adversary belief formation

and update. We developed a game to simulate a GSG scenario where each participant (acting

as the adversary) observes the defender’s pure strategies sampled from a chosen mixed strategy

for multiple days and is required to enter their beliefs about the defender’s actual mixed strategy

after each observation. Extensive analysis with 24 different models on data collected through this

game deployment on Amazon Mechanical Turk (AMT) highlights key insights about the human

belief update process and demonstrates the strengths and weaknesses of these models.
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Second, existing belief update models assume the presence of a homogeneous population of

adversaries with the same belief update mechanism (An et al., 2012; Pita et al., 2009). However,

our analysis shows the presence of four heterogeneous groups of adversaries with distinct belief

update processes. In this thesis, we present a new model called B-REACT (Belief model for

heteRogenEous Adversaries using ClusTering) that addresses this shortcoming by learning about

the adversary based on historical belief update data, combined with a clustering based approach.

We demonstrate that this new model completely outperforms existing and other proposed models,

thus emphasizing the importance of modeling heterogeneity in human belief formation.

Third, existing work in the literature simply assume that no historical data about adversary

beliefs will be available. Therefore, the literature lacks models that can take advantage of vary-

ing amounts of historical data (when available) so that the data can be used to learn about the

adversary’s belief update process and for making more accurate belief predictions in the future.

we address this shortcoming by customizing our models for settings that differ in the type of data

available for belief modeling and quantify the value of having population-wide or historical data

on the accuracy of belief prediction.

The goal of this contribution in the thesis, i.e., presenting a comprehensive study of belief

formation models applicable to the GSG domains, highlighting their strengths and shortcomings,

and introducing new computational belief models that address the shortcomings, is to identify

the belief formation and update model(s) that are best suited for estimating adversary beliefs and

could therefore be included in the adversary behavior prediction models for improved prediction.
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1.4 Thesis Overview

The structure of the thesis is organized as follows: Chapter 2 discusses background material for

Stackelberg security games and adversary behavior models. Chapter 3 reviews related work to

provide the context for the contributions of the thesis. Chapter 4 discusses the wildlife poaching

game used to collect data for the first contribution of adaptive adversary modeling in data-rich

scenarios. Chapter 5 and 6 presents our contributions for SHARP, the adaptive adversary model

with probability weighting. Chapter 7 presents detailed experimental results with human subjects

data collected using the game in Chapter 4. Chapter 8 and 9 analyzes the real-world poaching

dataset from QENP, discusses the models proposed to handle such datasets and demonstrates the

superior performance from deployments of our proposed model INTERCEPT at QENP. Chapter

10 and 11 explores the problem of modeling the adversary’s belief formation and updating proce-

dure, and discusses the effectiveness of the proposed approaches. Finally, chapter 12 summarizes

the contributions of this thesis.
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Chapter 2

Background

In this section, we introduce Stackelberg Security Games (SSG), key solution concepts related to

SSGs, and existing behavioral models used to model boundedly rational adversaries in SSGs.

2.1 Stackelberg Security Games

Stackelberg games were first introduced to model leadership and commitment (von Stackelberg,

1934). A Stackelberg game is a game played sequentially between two players: the first player

is the leader who commits to a strategy first, and then the second player, called the follower,

observes the strategy of the leader and then commits to his own strategy. The term Stackelberg

Security Games (SSG) was first introduced by (Kiekintveld et al., 2009) to describe specializa-

tions of a particular type of Stackelberg game for security as discussed below.

In an SSG, the defender plays the role of a leader who protects a set of targets from the

adversary who acts as the follower (Kiekintveld et al., 2009). The defender’s pure strategy is an

assignment of a limited number of security resources M to the set of targets T . An assignment

of a resource to a target is also referred to as covering a target. A defender’s mixed-strategy x̂

(0 ≤ x̂j ≤ 1;∀x̂j , j ∈ P ;
∑P

j=1 x̂j = 1) is then defined as a probability distribution over the
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set of all possible pure strategies P . An equivalent description (Korzhyk, Conitzer, & Parr, 2010;

Yang et al., 2011) of these mixed strategies is a probability distribution over the set of targets: x

(0 ≤ xi ≤ 1;∀xi, i ∈ T ;
∑T

i=1 xi = M). In the rest of this thesis, we will refer to this latter

description as the mixed strategy of the defender.

A pure strategy of an adversary is defined as attacking a single target. The adversary receives

a reward Rai for selecting i if it is not covered and a penalty P ai for selecting i if it is covered.

Similarly, the defender receives a reward Rdi for covering i if it is selected by the adversary and

penalty P di for not covering i if it is selected. Then, the expected utility for the defender (while

playing mixed strategy x) when target i is selected by the adversary to attack is:

Udi (x) = xiR
d
i + (1− xi)P di (2.1)

Similarly, the expected utility for the adversary for attacking target i is:

Uai (x) = (1− xi)Rai + xiP
a
i (2.2)

Although a perfectly rational adversary would choose to attack the target with the highest

expected utility, more recent work has focused on modeling boundedly rational adversaries in

SSGs (Nguyen et al., 2013; Yang et al., 2014; Haskell et al., 2014; Yang et al., 2011; Ford,

Nguyen, Tambe, Sintov, & Fave, 2015; Cui & John, 2014), some of which are discussed in

Section 2.2.
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Repeated Stackelberg Security Games: As mentioned earlier in Section 1.1, given non-

noisy and plentiful attack data, and the repeated nature of some domains (e.g., wildlife conser-

vation), the problem of learning the adversary’s bounded rationality and computing an optimal

defender strategy against the learned adversary behavior in such domains can be modeled via the

Green Security Games framework. GSGs correspond to a very general game setting (Fang et al.,

2015), where the defender periodically deploys new patrol strategies (in “rounds” of the game)

and the adversary responds to a convex combination of current and previous rounds’ defender

strategies. In this thesis, for settings where we have enough data to model our setting as a GSG,

we will focus on a particular version of the general GSG model where we assume that the adver-

sary is responding to the defender strategy deployed in the current round only. We will call this a

repeated Stackelberg Security Game setting for simplicity.

Note that this repeated SSG setting is different from the traditional repeated game setting (Os-

borne & Rubinstein, 1994) in the following ways. First, in a repeated SSG, in one round, one

player acts first by deploying a mixed strategy and then the other player responds. Intuitively, one

round in a repeated SSG corresponds to several (>> 1) consecutive rounds in a repeated game.

Second, in a repeated SSG, the mixed strategy of the defender may change at the end of one round

leading to a new mixed strategy, while such a concept of a change of mixed strategy is not part of

a traditional repeated game (Osborne & Rubinstein, 1994). In other words, just as a Stackelberg

Security Game focuses on commitment to a mixed strategy in a round, rather than commitment

to a pure strategy as done in earlier literature on Stackelberg games (Bagwell, 1992), repeated

SSG focuses on mixed strategies in each round.
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2.2 Human Behavior Models

This section discusses popular human behavior models proposed in the SSG literature.

2.2.1 Subjective Utility Quantal Response (SUQR)

SUQR (Nguyen et al., 2013) builds upon prior work on quantal response (McFadden, 1976) ac-

cording to which rather than strictly maximizing utility, an adversary stochastically chooses to

attack targets, i.e., the adversary attacks a target with higher expected utility with a higher prob-

ability. SUQR proposes a new utility function called Subjective Utility, which is a linear com-

bination of key features that are considered to be the most important in each adversary decision-

making step. This is based on the Lens model in psychology which is a framework for modeling

prediction based on observable cues (Brunswik, 1952; Hammond, 1955). Usually these observ-

able cues are combined in a weighted fashion to get the utility of the decision maker. Nguyen

et al. (Nguyen et al., 2013) experimented with three features: defender’s coverage probability,

adversary’s reward and penalty at each target. Thus, according to this model, the probability that

the adversary will attack target i is given by:

qi(ω|x) =
eSU

a
i (x)∑

j∈T
eSU

a
j (x)

(2.3)

where SUai (x) is the Subjective Utility of an adversary for attacking target i when defender

employs strategy x and is given by:

SUai (x) = ω1xi + ω2R
a
i + ω3P

a
i (2.4)
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The vector ω = (ω1, ω2, ω3) encodes information about the adversary’s behavior and each com-

ponent of ω indicates the relative importance the adversary gives to each attribute in the decision

making process. The weights are computed by performing Maximum Likelihood Estimation

(MLE) on available attack data.

2.2.2 Bayesian SUQR

SUQR assumes that there is a homogeneous population of adversaries, i.e., a single ω is used to

represent an adversary in (Nguyen et al., 2013). However, in the real-world we face an entire

population of heterogeneous adversaries. So, (Yang et al., 2014) introduces a set Ω ⊂ R3 to

represent the range of all possible ω, i.e. the entire set of adversaries. Therefore Bayesian SUQR

is proposed to learn a particular value of ω for each attack. It assumes that there is a prior

distribution F over Ω. Bayesian updates are performed on F as more data becomes available.

Then the following stochastic optimization problem is solved to obtain the optimal strategy x:

max
x∈X

ˆ
Ω

[∑
t∈T

Udt (x) qt (ω |x)

]
F (dω) (2.5)

Protection Assistant for Wildlife Security (PAWS) is an application which was originally created

using Bayesian SUQR. Recent work by (Fang et al., 2015) has also used this notion of a het-

erogeneous population of boundedly rational adversaries and applied Bayesian updating based

algorithms to learn models of these adversaries.
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2.2.3 Robust SUQR

Robust SUQR (Haskell et al., 2014) combines data-driven learning and robust optimization to

address settings where not enough data is available to provide a reasonable hypothesis about

the distribution of ω. It does not require a specific distribution F over the adversary population

parameters. Given an uncertainty set Ω̂, Robust SUQR solves the following robust optimization

problem:

max
x∈X

min
ω∈Ω̂

∑
t∈T

Ut (x) qt (ω |x) , (2.6)

We now explain Eqn. 2.6 starting with the uncertainty set Ω̂. There are various ways to construct

the uncertainty set Ω̂. Haskell et al (Haskell et al., 2014) suggests combining the robust optimiza-

tion in Eqn. 2.6 with a data-driven approach by using the set of all ω learned from each attack

by the adversary as the uncertainty set Ω̂. Therefore, Robust SUQR computes the worst-case

expected utility over all previously seen SUQR models of the adversary and deploys the optimal

strategy against the adversary type that reduces the defender’s utility the most. Robust SUQR has

been applied to fisheries protection domain (Haskell et al., 2014).
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Chapter 3

Related Work

We have already discussed related work in SSGs and GSGs in the previous section, including key

behavioral models. Here we discuss additional areas of related work for each of our contributions.

3.1 Research in repeated games

In this section we discuss past work on repeated games which are relevant to our setting.

3.1.1 Learning in repeated Stackelberg games

The problem of learning the adversary’s payoffs to alleviate uncertainty in an SSG by launch-

ing a minimum number of games against a perfectly rational adversary is studied in (Letchford,

Conitzer, & Munagala, 2009; Blum, Haghtalab, & Procaccia, 2014). (Letchford et al., 2009) pro-

pose an approach to learn a single attacker’s payoffs by making a number of best-response queries

which is polynomial in the number of pure strategies. A query here refers to the defender’s exe-

cution of a mixed strategy, and letting an adversary respond, thereby providing information about

adversary’s payoffs. This work was the first in the security game context for learning adver-

sary payoffs. They extend their results to Bayesian Stackelberg games with a known distribution
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over attacker types by running the single-attacker learning algorithm, where they repeat each best

response query until the response of the desired attacker type is observed.

Noticing that (Letchford et al., 2009) may still lead to a large number of queries, particularly

given that number of pure strategies may grow exponentially, (Blum et al., 2014) design an al-

gorithm that learns an ε-optimal strategy for the defender with a certain probability by asking a

significantly lower number of queries. However, (Blum et al., 2014) only study the interaction

between the defender and a single attacker.

Building upon previous work (Blum et al., 2014; Letchford et al., 2009) as described above,

(Balcan, Blum, Haghtalab, & Procaccia, 2015) provides two contributions in terms of learning the

randomized defender strategy to commit to in each round against perfectly rational adversaries:

(i) an online learning algorithm where the defender observes the adversary type that is attacking a

particular target (full-information); and (ii) an online learning algorithm where the defender only

observes a particular target being attacked in each round (partial information). In each interaction,

the attacker is assumed to be adversarially chosen from a set of known attacker types.

Additionally, (Marecki, Tesauro, & Segal, 2012) focused on optimizing the defender’s overall

utility during the learning process when faced with a perfectly rational adversary with unknown

payoffs. Their analysis is focused on the repeated interaction between the defender and a single

attacker type drawn initially from a distribution. Although their algorithm is shown to converge

in the long-term, they do not provide any guarantees for the convergence of their algorithm.

3.1.2 Robust strategies in repeated games

In cases where the opponent cannot be successfully modeled, (McCracken & Bowling, 2004)

proposed techniques to generate ε-safe strategies which bound the loss from a safe value by
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ε. (Johanson, Zinkevich, & Bowling, 2007; Johanson & Bowling, 2009) studied the problem

of generating robust strategies in a repeated zero-sum game while exploiting the tendency in

the adversary’s decision making and evaluated their technique in a game of two-player, Limit

Texas Hold’em. Following up on this work, (Johanson & Bowling, 2009) proposed methods to

minimize losses due to limited data while also exploiting an unknown opponent’s weaknesses

and evaluated their technique in a game of two-player, Limit Texas Hold’em. Recently, (Ponsen,

Jong, & Lanctot, 2011) proposed techniques to compute robust best responses in partially

observable stochastic games using sampling methods.

All of the above work in learning adversary behavior differs from ours in three ways: (i)

They do not model bounded rationality in human behavior; (ii) They do not consider how hu-

mans weigh probabilities; and (iii) None of these existing work address the important problem of

significant initial round losses when the problem can be modeled as a repeated SSG in plentiful

data settings. Initial round losses is a critical problem in domains such as wildlife security as

explained earlier; requiring a fundamental shift at least in the learning paradigm for SSGs. Work

on learning in SSGs differ because in our game, the payoffs are known but we are faced with

boundedly rational adversaries whose parameters in their behavioral model are to be learned.

3.1.3 Learning from reinforcements in repeated games

Skinner (Skinner, 1938, 1948, 1953) first proposed the theory of operant conditioning in which

he explained through experiments that behavior which is reinforced tends to be repeated (i.e.

strengthened) and behavior which is not reinforced tends to die out-or be extinguished (i.e. weak-

ened). This reinforcement or lack thereof, happens due to actions and its associated consequences.
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More specifically, Skinner identified three types of responses or operants that can alter behavior,

the most relevant among them are: (i) Reinforcers: Responses from the environment that increase

the probability of a behavior being repeated; and (ii) Punishers: Responses from the environment

that decrease the likelihood of a behavior being repeated. Since this early research, such behavior

where the subject learns based on “superstitious” beliefs due to past actions and consequences has

come to be known as superstitious learning (Devenport, 1979; Zollo, 2009) in psychology. The

influence of superstitious learning on the adaptive behavior of humans has also been studied in

the literature (Beck & Forstmeier, 2007). We will show later how superstitious learning, induced

by these reinforced/punished responses plays a crucial role in predicting human subject behavior

in repeated Stackelberg security games. More specifically, SHARP models this phenomenon and

that leads to a significant improvement in SHARP’s performance.

“Superstitious Learning”, as it is widely known in the psychology literature, is closely related

to “Reinforcement Learning” in the computer science literature. Reinforcement learning has

been widely studied in the context of game theory (Erev & Roth, 1998; Feltovich, 2000; Hop-

kins, 2001; Beggs, 2005; Cominetti, Melo, & Sorin, 2010; Ceren, Doshi, Meisel, Goodie, & Hall,

2013). Erev and Roth (Erev & Roth, 1998) describes one such popular Reinforcement Learning

(RL) model that predicts people’s behaviors while playing repeated, simultaneous move games.

However, the paper has major differences as compared to our game setting. First, the models in

Erev and Roth’s paper were developed for simultaneous move games without any notion of prior

commitment to a mixed strategy by any player. This is different from our leader-follower setting

where one player moves first by playing a mixed strategy and the other player moves next by

playing a pure strategy after having observed the first player’s mixed strategy. Therefore, the no-

tion of surveillance and reacting to a mixed strategy by the adversary is missing in (Erev & Roth,
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1998). Second, in our games, the defender responds after each round by playing an optimal mixed

strategy based on the learned adversary model from past rounds’ data. Assuming an adversary

who follows an RL model as described in (Erev & Roth, 1998), the optimal defender response

would then be to play a pure strategy in each round given the fixed adversary strategy in each

round. This will have significantly detrimental effects in terms of the defender utilities obtained

in each round, as shown in Section 7.1. Therefore, while not directly applicable, we attempt to

translate the main concept of the RL model to our setting of leader-followers with mixed strate-

gies. To that end, in Section 6.5, we have adapted the basic RL model in (Erev & Roth, 1998)

to compute optimal mixed strategies for the defender in repeated SSG settings. In Chapter 7, we

also show results of conducting human subjects experiments with this model. Specifically, the

RL based approach performs poorly as compared to other models in the experiments. Therefore,

significant new work would need to be done to understand how the RL models in the literature

(Erev & Roth, 1998; Feltovich, 2000; Hopkins, 2001; Beggs, 2005; Cominetti et al., 2010) could

be adapted more efficiently for SSGs.

3.2 Repeated Measures Studies

Repeated measures studies are conducted to measure a set of variables over a period of time.

Repeated measures studies are usually conducted in psychology, political sciences and social sci-

ences and the duration of the experiments can span from a few weeks (Silver, Holman, McIntosh,

Poulin, & Gil-Rivas, 2002) to even a few years (Caravolas, Hulme, & Snowling, 2001) 1 . Re-

cently, AMT has become a more favorable choice of conducting these experiments due to the
1Whereas “repeated measures study” is often used to describe research that spans years – in which measurement occasions are

conducted every X years – we use the term repeated measures study because our study included multiple (5) measurement points
with a single population.
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(a) Prospect Theory (b) Gonzalez & Wu, 99 (c) Prelec, 98

Figure 3.1: Probability Weighting Functions

ease of collecting data from a huge and diverse subject pool (Parkes, Mao, Chen, Gajos, Procac-

cia, & Zhang, 2012; Berinsky, Huber, & Lenz, 2012). One of the most important problems in

conducting repeated measures studies is handling participant attrition (i.e., people dropping out).

Researchers often use imputation and sampling techniques to fill missing data due to participant

attrition (Twisk & de Vente, 2002; Goldstein, 2009; Deng, Hillygus, Reiter, Si, & Zheng, 2013).

However, for our repeated measures study of comparing human behavior models in data-rich

scenarios this may result in extremely biased estimates of the modeling parameters due to the

influence of the retained participants’ game plays and therefore may generate biased defender

strategies.

3.3 Probability Weighting Functions

Probability weighting functions model human perceptions of probability. Perhaps the most

notable is the weighting function in Tversky and Kahneman’s Nobel Prize-winning work on

Prospect Theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992), which suggests

that people weigh probability non-uniformly, The empirical form of the probability weighting

function π(pi), where pi is the actual probability, from (Kahneman & Tversky, 1979) is shown
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in Fig. 3.1(a). It indicates that people tend to overweight low probabilities and underweight high

probabilities. The diagonal straight line in the figure indicates the linear weighting of probabil-

ity. However, other works in this domain propose and experiment with parametric models which

capture both inverse S-shaped as well as S-shaped probability curves (Abdellaoui, L’Haridon, &

Zank, 2010; Gonzalez & Wu, 1999) (Fig. 3.1(b)). We build on this research in the first contribu-

tion for data-rich scenarios, incorporating probability weighting functions in SHARP that allow

for both S-shaped and inverse S-shaped curves; however, in our work, data supports S-shaped

probability curves. Further discussions about this function are in Chapter 5.

There are other popular probability weighting functions in the literature, such as Prelec’s

one-parameter model (Prelec, 1998), where the weighted probability is

w(p) = exp(−(− ln p)α); 0 < α < 1 (3.1)

Although this model has been shown to perform well in the literature, the functional form does

not allow for an S-shaped curve to be learned given the allowed range of parameter values– it is

only capable of learning an inverse S-shaped curve as shown in Fig. 3.1(c) when 0 < α < 1. This

parameter range of α is due to the necessity that the function satisfies certain properties such as

sub-proportionality and compound invariance, which will get violated if α > 1. However, it can

account for S-shaped curves if we allow α > 1. Later in Section 7.2.1, We allow α to be greater

than 1 so as to allow learning both an S-shaped as well as an inverse S-shaped curve with this

function– our results show that an S-shaped curve is learned on the data. In other words, no matter

whether we use Prelec’s function or Gonzalez and Wu’s function, if we allow for learning both S-

shaped as well as inverse S-shaped curves, the data fits an S-shaped probability weighting curve.
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We conduct further analysis to show in Section 7.2.1 that, even though both generate S-shaped

curves on our data, using the probability weighting function by Gonzalez and Wu (Gonzalez &

Wu, 1999) in our model SHARP gives us better prediction accuracy as compared to the case

when we use Prelec’s function, thus justifying our choice of the probability weighting function in

Chapter 5.

3.4 Related research in belief modeling

Earlier work on belief modeling can be broadly classified into two types based on the assumption

about the amount of information available. First is the case when no prior data is available to

learn about the belief formation and update process of human agents in a given situation. This

is what has been used in SSGs. Second is the scenario when historical belief update data for

a group of human agents is available (training set), however the training set does not contain

data about human agents represented in the test set. This facilitates learning a generalized model

of human belief formation and update, and apply the learned model to predict belief updates

for a previously unknown set of human agents (testing dataset). This consists of models in the

psychology literature and we will discuss one such popular model that could be applied to SSGs.

3.4.1 Setting without training data

In the absence of any training data, previous work on modeling adversary beliefs in SSGs has

focused on two aspects depending on the assumptions about the rationality of the adversary:

(i) Bayesian belief update models typically associated with a perfectly rational adversary (An

et al., 2012) (henceforth referred to as “perfectly rational adversary’ models’); and (ii) heuristic
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belief update associated with boundedly rational adversary (Pita et al., 2009; Pita, Jain, Tambe,

Ordonez, & Kraus, 2010). These are described below.

Perfectly Rational Adversary: (An et al., 2012) proposed a Stackelberg Game with Lim-

ited Observation (SGLS) model where a perfectly rational adversary updates his beliefs about

the defender’s actual mixed strategy x given his prior beliefs and τ observations, where each ob-

servation is one of the defender’s pure strategies j from the set P . They represent the sequence

of observations compactly in terms of an observation vector Or =< orj > in which orj is the

number of times pure strategy j is observed till day r. They assumed that the adversary’s belief

distribution over the set of all pure strategies can be represented as Dirichlet distributions (Kotz,

Balakrishnan, & Johnson, 2000) characterized by a parameter vector α =< α1, ..., α|P| >. They

assumed uniform Dirichlet distribution as prior. Then they use Bayesian updates to compute the

posterior belief distribution over pure strategies based on the observation vectorOr. For example,

assuming αk = 0;∀k = 1to|P| before day 1, and then after 5 days (one observation per day) we

have observed pure strategy j ∈ P three times, then o5
j = 3 and the posterior αj+o5

j = 0+3 = 3

at the end of day 5. The adversary’s belief bri about the marginal coverage of target i after the

rth observation could then be computed from the posterior belief distribution over pure strategies

as in Eqn. 3.2. In our experimental setting, as we will see in Chapter 10, with 9 targets and 3

defenders, |P| =
(

9
3

)
= 84, and τ=10 (total number of days of observations). ji is either 1 (or 0)

depending on whether target i is protected in pure strategy j (or not).

bri =

∑
j∈P

ji(αj + orj + 1)∑
j∈P

αj + |P|+ τ
(3.2)
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We refer to this model as NBu, where u denotes uniform prior and N indicates that this model

correspond to the case of an uninformed adversary, i.e., the adversary has no information about

the number and types of strategies employed by the defender.

Boundedly Rational Adversary: (Pita et al., 2009, 2010) proposed a linear mixture model

to account for the belief update of boundedly rational adversaries. They model the adversary’s

beliefs b based on a weighted linear combination of two components: a prior belief ρ and the

actual mixed strategy x. For any target i, this is shown in Eqn. 3.3. They assume the prior

(also called the ignorance prior) to be an uniform distribution of the number of defenders over

the given set of targets. They further assume a fixed weight (µ ∈ [0, 1]) on the prior for their

experimental setting and do not provide any justification for their choice of the fixed weight. So,

given 9 targets and 3 defenders, ρi at any target i is 300
9 ≈ 33. If xi at some target i is 50 and

µ is 0.60, then the adversary’s belief bi (in percentage) about the defender’s coverage at target i

is 0.60 ∗ 33 + (1 − 0.60) ∗ 50 ≈ 40. We will refer to this model as 0.6M
A
u , where M denotes

mixture models, A represents actual mixed strategy and 0.6 is the fixed weight on the prior.

bi = µ ∗ ρi + (1− µ) ∗ xi (3.3)

Interval Uncertainty models: (Yin et al., 2011) and (Nguyen et al., 2014) proposed models

that handle observation uncertainty in SSGs by allowing an uncertainty interval around the actual

mixed strategy. To capture that insight, we implemented a model as follows: (1) Randomly

choose the total number of targets k (out of 9) on which to apply an uncertainty perturbation; (2)

Pick k out of the given 9 targets randomly; (3) Pick a very small random number δ independently

for each target. (4) Compute beliefs by changing the actual mixed strategy at each of the k
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targets by the randomly generated δ for the corresponding target, with type of change (increase or

decrease of probability) also chosen randomly; (5) Compute error between model and participant

beliefs. This process is repeated 100 times and the results are averaged to remove any selection

bias. We experimented with 0 ≤ δ ≤ 5 and 0 ≤ δ ≤ 10 (δ in percentage scale) and only show

results for the first case (best of the two) in the paper. We will refer to this model as IU , where IU

stands for interval uncertainty. In Chapter 11, we will see experimental results with this model,

as well as the other belief models presented above.

3.4.2 Setting with training data

Availability of training data can aid the defender in learning a belief model of the adversaries

and use that to predict future belief updates for the same or a previously unseen group of adver-

saries. One such popular belief model in psychology is a non-linear mixture model called the

log-odds model (See et al., 2006) shown in Eqn. 3.4. This model assumes that the adversary is

boundedly rational and computes the log of odds metric between an event F (in our setting it is

the adversary’s belief bi that a target i is covered by the defender) and the alternate event A (the

adversary’s belief that a target is not covered by the defender, i.e., (1-bi)).

ln
bi

1− bi
= a1 + a2 ∗ ln

niF
niA

+ a3 ∗ ln
f i(F )

f i(A)
(3.4)

Here, niF (niA) represents the adversary’s prior belief about the number of ways target i is pro-

tected (or not). Similarly, f i(F ) and f i(A) represent the influence of the actual observations

on the beliefs formed by the adversaries. lnn
i
F

niA
and lnf

i(F )
f i(A)

denote the influence of the adver-

sary’s prior beliefs and actual observations respectively on his future beliefs. They considered
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the adversary’s prior belief distribution to be uniform. Parameters a1, a2 and a3 are learned by

performing linear regression with given training data. We will refer to this model as learnlogu.

We experimented with this model and a variant which we propose. The details along with the

results are presented in Chapters 10 and 11 respectively.

30



Chapter 4

Wildlife Poaching Game

This chapter discusses the process of collecting human subjects data through repeated measures

experiments, thus providing experimental details about the first contribution of this thesis of pro-

viding a benchmark for comparing existing and proposed human behavior models in repeated

SSGs. In order to conduct these experiments, we developed an online simulated game. Below is

an overview of our experimental game and its properties.

4.1 Game Overview

In our game, human subjects play the role of poachers looking to place a snare to hunt hippopota-

mus in a protected park1. The game interface is shown in Fig. 10.1. In the game, the portion of

the park shown in the map is divided into a 5*5 grid, i.e. 25 distinct cells. Overlaid on the Google

Maps view of the park is a heat-map, which represents the rangers’ mixed strategy x — a cell i

with higher coverage probability xi is shown more in red, while a cell with lower coverage proba-

bility is shown more in green. As the subjects play the game, they are given the following detailed
1One might argue that since the wildlife poaching game requires participants to place snares with the goal of

poaching animals, responses from human subjects and hence the results may be biased due to their moral dilemma.
See Section 13.7 for more detailed discussions about the similarity of results between this game and an alternate game
scenario designed with the same goal of evaluating human behavior models
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Figure 4.1: Game Interface for our simulated online repeated SSG (Reward, penalty and coverage
probability for a selected cell are shown)

information: Rai , P ai and xi for each target i. However, they do not know the exact location of

the rangers, i.e., they do not know the pure strategy that will be played by the rangers, which

is drawn randomly from the mixed strategy x shown on the game interface. Thus, we model

the real-world situation whereby poachers have knowledge of past patterns (mixed strategies) of

ranger deployment but not the exact location of ranger patrols when they set out to lay snares.

In our game, there were M = 9 rangers protecting this park, with each ranger protecting one

grid cell. Therefore, at any point in time, only 9 out of the 25 distinct regions in the park are

protected. The players know before they play (place a snare) that only 9 out of the 25 regions will

be protected, but as mentioned earlier, they do not know which 9 beforehand. In other words, in a

particular round, a player can only know about the presence or absence of a ranger at the location

32



he attacks only after he attacks. A player succeeds if he places a snare in a region which is not

protected by a ranger and hence captures a hippo, else he is unsuccessful.

We make two modeling choices in this game. First, we focus on situations where there is no

collusion or coordination between poachers in placing of snares as is true in most cases in a large

forest area; accordingly, a player in our game can only see his/her snare, but not that of other

players and thus cannot coordinate with other players. Second, we assume in our experiments

that the defender is able to observe all the attacks conducted by the poachers and hence learn the

adversaries’ preferences from the complete attack data set. However, later in this article we also

provide analysis of defender strategies generated when this assumption is violated, i.e., when the

defender can only observe fractions of the entire attack dataset.

4.1.1 Computation of Poacher Reward

A key factor in this game is determination of rewards for poachers and rangers. For poachers

animal density is a key factor determining their rewards. In addition to animal density, which

is strongly correlated with high-risk areas of poaching (Moreto, 2013; Montesh, 2013; Hamisi,

2008), distance is another important factor in poaching, e.g., recent snare-density studies have

found that significant poaching happens within 5 kilometers of South Africa’s Kruger National

Park border (Lemieux, 2014) and significantly decreases more than 4 kilometers away from the

international border in Ksavo West National Park in Kenya (Wato, Wahungu, & Okello, 2006).

Therefore, the reward obtained by a poacher in successfully placing a snare at target i is calculated

by discounting the animal density by a factor of the distance traveled and is calculated as follows:

Rai = int(φi − ζ ∗ Di
max
j

(Dj)
) (4.1)
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Here, φi and Di refer to, respectively, the animal density at target i and the distance to target

i from the poacher’s starting location. For simplicity, we consider the adversary’s reward as

an integer. So, int(y) rounds the value y to the closest integer value. The parameter ζ is the

importance given to the distance factor in the reward computation and may vary based on the

domain. Intuitively, the reward for successfully placing a snare in a region i near the starting

location and which has animal density φi, is higher than the reward obtained by successfully

placing a snare in a region with the same animal density but which is at a greater distance from

the starting location as compared to i. We used ζ = 2 in our experiments because the use of ζ = 1

did not introduce substantial impact of distance while computing the actual rewards and ζ = 3

was not used to prevent the overwhelming impact distance had on the actual rewards computed.

4.1.2 Non-zero sum game

In our games, the minimum and maximum animal density at each cell were 0 and 10 units re-

spectively. The poacher received a flat penalty of -1 if he was caught at any target. We vary

the adversary’s actual reward based on the amount of distance traveled because he has to carry

the captured animal back to the edge of the forest. However, there is no burden of carrying the

animal back when the poacher is caught by the ranger (or equivalently his snare is confiscated),

and therefore, in our games we do not vary the penalty based on distance and assume a constant

value of -1. Also in our game, when the poacher successfully poaches, he may obtain a reward

that is less than the animal density (Eqn. 4.1), but the defender loses a value equal to that of the

animal density, i.e., the game is non-zero-sum2.
2Note that in terms of real-world interpretation of the payoff to the adversary in this game, it is to be interpreted as

taking into account the probability of catching a hippo. Therefore, higher density leads to a higher payoff. That is, it
is the expected reward (in the absence of the defender) in attacking a particular cell — the expected number of hippos
captured without the defender.
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(a) ADS1 (b) ADS2 (c) ADS3 (d) ADS4

Figure 4.2: Animal density structures (ADS)

4.2 Payoff Structures

The payoff structures used in our human subject experiments vary in terms of the animal densities

and hence the adversary rewards. We henceforth refer to payoff structures and animal density

structures interchangeably in this article. The total number of animals in all the payoffs we

generate is the same (= 96). However, the variation in these payoffs is in the way the animals

are spread out in the park. In payoff structure 1 (i.e., Animal Density structure 1 or ADS1),

the animal density is concentrated towards the center of the park, whereas the animal density is

higher towards the edges of the park in payoff structure 2. These represent scenarios that might

happen in the real world. The animal density for both payoffs is symmetric, thus eliminating any

bias due to the participant’s starting point in the game.

Contrary to the above, animals in the park may be randomly scattered without any particular

orientation. So, we randomly generate two additional animal density structures (payoffs 3 and 4)

and test our proposed model on these payoffs. To generate a random structure, one out of 25 cells

was chosen uniformly at random and then an animal was allocated to it until the total number of

animals in all the cells was 96, keeping in mind that if a cell total reached 10 (maximum animal

density in a cell), that cell was not chosen again. Figs. 4.2(a)– 4.2(d) show heatmaps of four

animal density structures, denoted as ADS1, ADS2, ADS3 and ADS4 respectively.
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4.3 Online Repeated Measures Experiments

Repeated measures studies are research studies which are typically conducted to observe and un-

derstand the changes in and effects of a particular set of variables over a period of time (Menard,

2008; Farrington, Loeber, & Welsh, 2010; Heiman, 2002). In our work the key variable is the

adversary’s strategy and we show that the adversary’s strategy does indeed change over time due

to his adaptive nature (as explained later in Section 6) and hence we model such behavior with

a novel model called SHARP. Such studies can be conducted with a subject pool at a University

lab or by recruiting participants in an online setting like AMT. We conducted our experiments on

AMT. We tested a variation (Chapter 5) of the set of behavioral models introduced in Chapter 2

and our new model SHARP by deploying the mixed strategy generated based on each of these

models repeatedly over a set of five rounds (Kar et al., 2015b). We observed the strategies em-

ployed by the participants in each round, i.e., where they attacked and whether they succeeded or

failed, and used that to determine the optimal ranger strategy for the next round. For each model,

we recruited a new set of participants to eliminate any learning bias.

We took necessary steps to ensure that participants completely remember the game details

and the procedures to play the game during each round of the experiment, as otherwise we may

lose significant time and effort in collecting poor quality data, especially because each setting

would take more than two weeks to be completed. This was done by setting up proper validation

and trial games in each round of the experiment, while not over-burdening the participants with

many games and thus keeping their cognitive overload at a minimum. This is discussed next in

Sec. 4.3.1, followed by a discussion of participant retention rates in our study in Sec. 4.3.2.
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4.3.1 Validation and Trial Games

After viewing the instructions at the beginning, the participants were first asked to play two trial

games in round 1, with an option to view the instructions again after each game. After the trial

games, they played one validation game, and finally the actual game. The players could choose

to stop playing at any point during this process. The validation game consisted of a cell with

maximum animal density (=10) and the coverage probability of that cell was zero, while other

cells had an animal density of 1 and non-zero but equal coverage probability. The participants

were expected to select the target with the maximum animal density and zero coverage. Data from

subjects who played the validation game incorrectly were discarded and they were not allowed to

participate in future rounds of the experiment.

From second round onwards, participants were only asked to play one trial game and then the

actual game. The trial game was kept in order to remind them of the game and its details and the

playing procedures. Showing only the actual game without any trial games might have resulted

in the participants not playing the game properly due to forgetfulness about the game details.

4.3.2 Participant Retention Rate

For our repeated measures experiments, due to unavailability of data, the strategy shown for each

first round of the real game to the participants who passed the validation game was Maximin. We

then learned the model parameters based on previous rounds’ data, recomputed and redeployed

strategies, and asked the same players to play again in the subsequent rounds. For each model, all

five rounds were deployed over a span of weeks. When we started conducting the experiments,

we observed that there were very high attrition rates (i.e. people dropped out) for the number

of participants between rounds of the game. we observed that a delayed compensation scheme
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Table 4.1: Experiment Details
Average

time taken
per model
per payoff

structure (all
5 rounds)

Average
time taken
for a set of
participants
to play each

round

Number of
participants
who played

round 1
(minimum,
maximum)

Average
number of

participants
who played
all 5 rounds

Average
retention
rate from
round 2 to

round 5

2.3 weeks 4 days (42 , 49) 38 83.69%

along with prior participant commitment and repeated reminders throughout the course of the

experiment helped in achieving a high average retention rate of 83.69%. This is also shown in

Table 4.1 along with other experiment details. For interested readers, a detailed discussion of the

set of challenges that faced during our experiments and our methodological contributions towards

mitigating those challenges are presented in the appendix.
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Chapter 5

SHARP: Probability Weighting

This thesis contributes a novel human behavior model called SHARP for data-rich repeated SSG

settings. SHARP has three key novelties: (i) SHARP reasons based on success or failure of the

adversary’s past actions on exposed portions of the attack surface to model adversary adaptivity;

(ii) SHARP reasons about similarity between exposed and unexposed areas of the attack surface,

and also incorporates a discounting parameter to mitigate adversary’s lack of exposure to enough

of the attack surface; and (iii) SHARP integrates a non-linear probability weighting function to

capture the adversary’s true weighting of probability. In this chapter, we cover the probability

weighting aspect of SHARP and also discuss possible causes for the surprising results of incor-

porating probability weighting in our models. Other aspects are covered in Chapter 6.

5.1 Probability Weighting Mechanism

The need for probability weighting became apparent after our initial experiments. In particular,

initially following up on the approach used in previous work on adversary behavior modeling

(Nguyen et al., 2013; Yang, Kiekintveld, Ordonez, Tambe, & John, 2013; Yang et al., 2014;

Haskell et al., 2014) discussed in Chapter 2, we applied MLE to learn the weights of the SUQR
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model based on data collected from our human subject experiments using the game discussed

in Chapter 4. We found that the weights on coverage probability were positive for all the ex-

periments. That is, counter-intuitively, humans were modeled as being attracted to cells with

high coverage probability, even though they were not attacking targets with very high coverage

but they were going after targets with moderate to very low coverage probability. Examples of

the learned weights for SUQR from data collected from the first round deployment of the game

for 48 human subjects on ADS1 and ADS2 are: (ω1, ω2, ω3)=(2.876, -0.186, 0.3) and (ω1, ω2,

ω3)=(1.435, -0.21, 0.3). Here w1 provides the SUQR code on coverage probability.

We prove a theorem (Theorem 1) to show that, when the weight on the coverage probability

in the SUQR model (ω1) is found to be positive, the optimal defender strategy is a pure strategy.

The proof of the theorem can be found in Appendix 2.

Theorem 1. When ω1 > 0, the optimal defender strategy is a pure strategy.

Employing a pure strategy means that there will be no uncertainty about the defender’s pres-

ence. Several cells will always be left unprotected and in those cells, the attackers will always

succeed. In our example domains, even if the top-valued cells are covered by a pure strategy,

we can show that such a strategy would lead to significantly worse defender expected utility than

what results from the simplest of our defender mixed strategies deployed. For example, if cells

of value 4 are left unprotected, the defender expected value will be -4, which is much lower than

what we achieve even with a simple strategy like Maximin. In repeated SSG domains like wildlife

crime, this would mean that the poachers successfully kill animals in each round without any un-

certainty of capture by rangers. In order to show that playing a pure strategy does indeed lead to

poor defender utility, we conducted an experiment with human subjects by deploying a SUQR

40



based pure strategy on ADS1. Results and comparisons with other models that are introduced

later in the paper are shown in Section 7.1.

We hypothesize that this counter-intuitive result of a model with ω1 > 0 may be because the

SUQR model may not be considering people’s actual weighting of probability. SUQR assumes

that people weigh probabilities of events in a linear fashion, while existing work on probability

weighting (Section 3.3) suggest otherwise. To address this issue, we augment the Subjective Util-

ity function (Eqn. 2.4) with a two-parameter probability weighting function (Eqn. 5.1) proposed

by Gonzalez and Wu (Gonzalez & Wu, 1999), that can be either inverse S-shaped (concave near

probability zero and convex near probability one) or S-shaped.

f(p) =
δpγ

δpγ + (1− p)γ
(5.1)

The SU of an adversary denoted by ‘a’ can then be computed as:

SUai (x) = ω1f(xi) + ω2R
a
i + ω3P

a
i (5.2)

where f(xi) for coverage probability xi is computed as per Eqn. 5.1. The two parameters δ and

γ control the elevation and curvature of the function respectively. γ < 1 results in an inverse S-

shaped curve while γ > 1 results in an S-shaped curve. We will henceforth refer to this as the PSU

(Probability weighted Subjective Utility) function and the models (SUQR, Bayesian SUQR and

Robust SUQR) augmented with PSU will be referred to as P-SUQR, P-BSUQR and P-RSUQR

respectively. Our SHARP model will also use PSU. We will use these PSU-based models in

our experiments. Although we have already shown in Theorem 1 that models without probability
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weighting may result in pure defender strategies being generated for subsequent rounds and would

thus perform poorly in repeated SSG experiments, for verification pruposes we still deployed and

compared models without probability weighting (for example, SUQR) against PSU-based models

(for example, P-SUQR). Results are shown in Chapter 7.

One of our key findings, based on experiments with the PSU function is that the curve repre-

senting human weights for probability is S-shaped in nature, and not inverse S-shaped as prospect

theory suggests. The S-shaped curve indicates that people would overweight high probabilities

and underweight low to medium probabilities. Some learned curves will be shown in Section 7.2.

Recent studies in economics (Alarie & Dionne, 2001; Humphrey & Verschoor, 2004; Etchart-

Vincent, 2009) have also found S-shaped probability curves which contradict the inverse S-shaped

observation of prospect theory. In addition, other recent work on security games, specifically Op-

portunistic Crime Security Games, has also found the existence of S-shaped probability weighting

curves (Abbasi et al., 2015)1. Furthermore, in previous literature (Kahneman & Tversky, 1979;

Tversky & Kahneman, 1992) where they experimented with insurance and lotteries, they dealt

with smaller number of alternatives (2 or 3 alternatives). In addition to the domain, one possi-

ble reason for observing S-shaped curves in our games could be that the participants are shown

larger number of alternatives, i.e. they have to choose one from a set of 25 targets. To the best

of our knowledge, participants’ weighting of probabilities in such games with larger number of

alternatives has not been studied before.
1Note that although we did not consider the value function from Prospect Theory in our experiments, (Abbasi

et al., 2015) showed in her experiments that considering both the value function and probability weighting function
still results in the same S-shaped probability weighting curve.
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Given S-shaped probability weighting functions, the learned ω1 was negative as it accurately

captured the trend that a significantly higher number of people were attacking targets with low to

medium coverage probabilities and not attacking high coverage targets.

Feature Selection and Weight Learning: In Section 13.7, we introduced a new feature – dis-

tance – that affected the reward and hence the obvious question for us was to investigate the

effect of this new feature in predicting adversary behavior. We considered several variations of

PSU with different combinations of features. Notice that each combination of the features could

be used in each of our models, like P-SUQR, P-BSUQR, etc. In addition to Eqn. 5.2, three more

are discussed below (Eqns. 5.3,5.4,5.5). Recall that φi denotes the animal density at target i.

Now, although it is true that the subjects were explicitly told the values of rewards and penalties

at each cell and not the animal densities, the animal densities were still visually observable. φ

has been used in Eqn. 5.3 to check if the participants may have been considering animal densities

only and ignoring the effect of distance while playing the game, thus not paying attention to the

effective reward. φ was used in Eqn. 5.5 to check if participants may have been considering

animal density and distance as two separate features and weighting them in a linear fashion in-

stead of the way we provided them the reward values. These models are designed and compared

against each other to verify possible ways in which participants may actually have considered the

features of the game while making decisions.

SUai (x) = ω1f(xi) + ω2φi + ω3P
a
i (5.3)

SUai (x) = ω1f(xi) + ω2R
a
i + ω3P

a
i + ω4Di (5.4)

SUai (x) = ω1f(xi) + ω2φi + ω3P
a
i + ω4Di (5.5)
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To compare these variations, we need to learn the behavioral parameters for each of the vari-

ations (e.g, for Eqn. 5.5, a 6-tuple b =< δ, γ, ω1, ω2, ω3, ω4 > is to be learned; δ and γ due

to inclusion of Eqn. 5.1) from available data and evaluate their effectiveness in predicting the

attack probability. To learn the behavioral parameters b from available data, we propose an algo-

rithm based on Repeated Random Sub-sampling Validation (Algorithm 2 – see Appendix 1). For

P-SUQR , we learn a single b, while for P-BSUQR and P-RSUQR we learn a set of b ∈ B for

each attack. Note that, for our probability weighting function, we use all possible combinations

of δ and γ, with values of each ranging from 0 to 4, at an interval of 0.1. Therefore, our analysis

also contains δ = 1 and γ = 1, which correspond to linear weighting of probabilities — the

probability weights used in SUQR.

To test the performance of Algorithm 2 against a non-linear solver (Microsoft Excel’s Gener-

alized Reduced Gradient (GRG) nonlinear solver function) and also to compare between models

with various feature sets, we learned the weights of the four behavioral models (Eqn. 5.2 to 5.5)

using both Algorithm 2 and our non-linear solver. In order to do this, we deployed P-SUQR on

ADS1 and then collected participants’ responses to the deployed strategy. Then, we performed

the following steps, which conform to standard practices in machine learning for splitting data

into training-validation-test sets (Hastie, Tibshirani, & Friedman, 2009; Bishop, 2007):

1. We divided the first round data for the experiment with P-SUQR on ADS1 into 10 random

train-test splits.

2. For each of the 10 training sets, we performed 10-fold cross-validation to obtain the best

model weights that give the lowest validation error on the corresponding validation sets.
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That is, each of the 10 training sets was randomly partitioned into 10 equal sized sub-

samples. Of the 10 subsamples for each training set, a single subsample was retained as

the validation data for validating the model, and the remaining 9 subsamples were used as

training data. The cross-validation process was then repeated 10 times (the 10 folds), with

each of the 10 subsamples used exactly once as the validation data, and the model weights

that gave the lowest validation error (out of the 10 validation errors) was chosen after the

cross validation process. Since we did this for each of the 10 training splits, we obtained 10

best learned model weights after applying 10-fold cross validation on each of the training

splits.

3. Each of these 10 best learned model weights was then tested on the corresponding hold-

out test data set by computing the sum of squared errors (SE) of predicting the attack

probability over all the targets.

4. Finally, we computed the average of these SE values over the 10 test data sets. we computed

this average SE for each of the four behavioral models using the best model weights learned

by Algorithm 2 and the non-linear solver.

We report these average SE values for both the weight learning approaches on all the four be-

havioral models in Table 5.1. Results in boldface indicate significant differences (with two-tailed

t-tests at confidence=0.05) in the performance of Eqn. 5.5 as compared to all other feature combi-

nations. We can see that Eqn. 5.5 achieves the lowest average SE as compared to all other feature

combinations.

Our approach helps to significantly improve the robustness of our results. Note that, we used

10-fold cross-validation in our approach not to compute the average error over all the validation
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sets and using it to compare against other models (other feature combinations in our case), but

instead to select the best parameters for a particular model, and using those model parameters

to test on independent test data sets. We do this multiple times and report the average test set

error, thus making the process of comparison between different behavioral models more robust.

That is, instead of applying 10-fold cross validation once on one random train split of the original

dataset, we performed 10-fold cross-validation on 10 separate training data sets randomly con-

structed from the original dataset. Cross-validation is in itself a well established model validation

technique in machine learning and statistics to assess the generalizability of learned models on

independent test data sets. The effectiveness of this approach to derive an accurate estimation

of model prediction performance is well established in the machine learning literature (Kohavi,

1995; Seni & Elder, 2010; Hastie et al., 2009; Bishop, 2007). Our approach of not just performing

10-fold cross validation once to select the best model weights, but multiple (10) times and then

taking an average of the test set errors of the best learned model weights is also similar to what is

traditionally adopted in machine learning literature (Dietterich, 1998) to improve robustness.

Our results show that we can achieve higher accuracy in modeling by generalizing the subjec-

tive utility form used in (Nguyen et al., 2013) that relied on just three parameters, by adding more

features as shown in Eqn. 5.5. This opens the door to novel subjective utility functions for differ-

ent domains that exploit different domain features. Results accompanied by * imply significant

differences in performance of Algorithm 2 as compared to the non-linear solver. Thus, Algorithm

2 is more efficient in learning model weights as compared to the GRG non-linear solver.

We also present in Tables 5.2 and 5.3 the mean and standard deviations of the weights learned

on the 10 training datasets for the best model (Eqn. 5.5) on both the payoff structures ADS1 and

ADS2 and for both the learning algorithms (Algorithm 2 and Non-linear Solver). Based on our
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Table 5.1: Performance (Squared Errors) of various feature sets. Results accompanied by * imply
significant differences (with two-tailed t-tests at confidence=0.05) in performance of Algorithm
2 as compared to the non-linear solver. Results in boldface indicate significant differences in the
performance of a particular feature combination with respect to other feature combinations.

Eqn. 10 Eqn. 11 Eqn. 12 Eqn. 13
P-SUQR ADS1 Algorithm 2 0.1965* 0.2031* 0.1985 0.1025*

P-SUQR ADS1 Non-linear Solver 0.2545 0.2589 0.2362 0.1865
P-SUQR ADS2 Algorithm 2 0.2065* 0.2156* 0.2625 0.1136*

P-SUQR ADS2 Non-linear Solver 0.2546 0.2935 0.3062 0.1945

Table 5.2: Mean of the weights learned for the 10 training sets for the model in Eqn. 5.5 and all
algorithm and payoff combinations in Table 5.1

Eqn. 13
P-SUQR ADS1 Algorithm 2 < 2.36, 2.78,−2.3, 0.688,−0.3,−0.286 >

P-SUQR ADS1 Non-linear Solver < 3.88, 2.86,−4.3, 0.38,−0.3,−0.4 >

P-SUQR ADS2 Algorithm 2 < 2.62, 2.92,−1.57, 0.38,−0.3,−0.34 >

P-SUQR ADS2 Non-linear Solver < 3.92, 3.02,−4.3, 0.34,−0.3,−0.28 >

detailed experiments, in addition to ω1 < 0, we found that ω2 > 0, ω3 < 0 and ω4 < 0. The rest

of the formulations in this article will be based on these observations about the feature weights.

5.2 Discussions:

Section 5.1 provides an S-shaped probability weighting curve (learned curves are shown in Figs.

7.6(a) and 7.6(b) Section 7.2) as one explanation of the human players’ behavior data. Given

the surprising nature of this result, it is important to discuss other possible hypotheses that may

explain why those human behaviors may have been observed. This section shows however that

evidence does not support these alternatives to S-shaped probability weighting curve discussed

earlier.

One potential hypothesis is that the participants may have misinterpreted aspects of the game

interface design shown in Figure 10.1. However, we took several steps to guard against such
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Table 5.3: Standard Deviation of the weights learned for the 10 training sets for the model in Eqn.
5.5 and all algorithm and payoff combinations in Table 5.1

Eqn. 13
P-SUQR ADS1 Algorithm 2 < 0.279, 0.4, 0.9, 0.41, 0, 0.18 >

P-SUQR ADS1 Non-linear Solver < 0.139, 0.32, 0.88, 0.09, 0, 0.07 >

P-SUQR ADS2 Algorithm 2 < 0.19, 0.39, 0.69, 0.37, 0, 0.12 >

P-SUQR ADS2 Non-linear Solver < 0.1, 0.34, 0.88, 0.02, 0, 0.08 >

misinterpretations: (i) We asked the participants to play two trial games and one validation game

in the first round and one trial game in each subsequent round; and (ii) We explained key facets of

the game in the instructions and the participants could switch to the instructions after playing each

of the trial and validation games to verify their understanding before they played the actual game.

In addition to ensuring that the participants were given clear instructions and provided enough

practice through trial games, we also checked the results of the validation game and it showed

that 860 out of 1000 participants passed the validation game — indicating an understanding of

the game. Note that we then discarded data from 140 out of 1000 participants (an average of 7

participants per group) who played the validation game incorrectly.

Another hypothesis could be that the validation game had introduced some misinterpretations.

Specifically, in our validation game the participants had to choose between an option which is

good on two scales (highest animal density of 10 and zero coverage) and other options which

are bad on both scales (lowest animal density of 1 and non-zero but equal coverage of 0.375).

Therefore, this could potentially have caused the participants to incorrectly interpret the scales in

the actual games they played and hence they may have misinterpreted the coverage probabilities

in the actual games. However, there is little support for this hypothesis as well. Note that the

validation game is one of three games being played by each participant before the actual game in

the first round. Also, the validation game is only played once in the first round and never played
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again in future rounds. However, the participants played two trial games in the first round and

one trial game in the future rounds before playing the actual game in each round, and these trial

games do not have the same “two scales” property as the validation game as discussed earlier.

Another possible hypothesis for such an S-shaped curve for the probability weighting function

could potentially be that we use the weighted probabilities as a separate additive feature in our

model — P-SUQR implies that we take a weighted sum of the different model features. This

is contrary to how the probability weighting function is used in the prospect theory literature

(Kahneman & Tversky, 1979; Tversky & Kahneman, 1992). In that literature, the weighted

probabilities are used to weight the values of outcomes; could that perhaps explain the S-shaped

curve in our results? Unfortunately, evidence does not support this hypothesis as well. First, note

that there have been existing works in the literature that show learning of S-shaped probability

weighting curves even when conforming to the traditional prospect theoretic model, i.e., when the

prospect theoretic values of outcomes are weighted by transformed probabilities (Abbasi et al.,

2015; Leclerc, 2014). Thus, there already exists evidence of S-shaped probability curves in other

domains even for the traditional prospect theoretic function. Furthermore, to verify the shape

of the probability weighting curve in our game setting when we consider values of outcomes

to be weighted by the transformed probabilities, we explored an alternate form of our P-SUQR

model, called PWV-SUQR (Probability Weighted Values SUQR). In PWV-SUQR, the rewards

and penalties are weighted by the transformed coverage probabilities, as shown in Eqn. 5.6. In

Section 7.2.2, we show that even while learning adversary behavior using Eqn. 5.6, we get S-

shaped probability curves. This result indicates that the learned S-shape of the probability curves

is not merely the outcome of the additive nature of our P-SUQR model.
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SUai (x) = ω1(1− f(xi))R
a
i + ω2f(xi)P

a
i (5.6)
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Chapter 6

SHARP: Adaptive Utility Model

A second major innovation in SHARP is the adaptive nature of the adversary and addressing

the issue of attack surface exposure. First, we define key concepts, present evidence from our

experiments, and then present SHARP’s innovations.

Definition 1. The attack surface α is defined as the n-dimensional space of the features used

to model adversary behavior. Formally, α =< F 1, F 2, ..., Fn > for features F j(∀j; 1 ≤ j ≤ n).

For example, as per the PSU model in Eqn. 5.5, this would mean the space represented by

the following four features: coverage probability, animal density, adversary penalty and distance

from the starting location.

Definition 2. A target profile βk ∈ α is defined as a point on the attack surface α and can

be associated with a target. Formally, βk =< F 1
k , F

2
k , ..., F

n
k > denotes the kth target profile on

the attack surface.

In our example domain, the kth target profile can be represented as

βk =< xβk , φβk , P
a
βk
, Dβk >, where xβk , φβk , P aβk and Dβk denote values for coverage prob-

ability, animal density, attacker penalty and distance from starting location respectively1. For
1In our experiments, φβi > 0, P aβi < 0 and Dβi > 0
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example, < 0.25, 2,−1, 4 > is the target profile associated with the top-leftmost cell of ADS1 in

round 1. We can add more features like terrain information, vegetation, etc. if available. Expos-

ing the adversary to a lot of different target profiles would therefore mean exposing the adversary

to more of the attack surface and gathering valuable information about their behavior. While a

particular target location, defined as a distinct cell in the 2-d space, can only be associated with

one target profile in a particular round, more than one target may be associated with the same

target profile in the same round. βik denotes that target profile βk is associated with target i in a

particular round.

6.1 Observations and Evidence

Below is an observation from our human subjects data, based on the above concepts, that reveal

interesting trends in attacker behavior in repeated SSGs.

Observation 1. Consider two sets of adversaries: (i) those who have succeeded in attacking

a target associated with a particular target profile in one round; and (ii) those who have failed in

attacking a target associated with a particular target profile in the same round. In the subsequent

round, the first set of adversaries are significantly more likely than the second set of adversaries

to attack a target with a target profile which is ‘similar’ to the one they attacked in the earlier

round.

In order to provide evidence in support of Observation 2, we show results from our data

highlighting these trends on ADS1 and ADS2 in Figs. 6.1(a) - 6.1(h). In each plot, the y-

axis denotes the percentage of (i) attacks on similar targets out of the total successful attacks in

the previous round (ζss) and (ii) attacks on similar targets out of the total failed attacks in the
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previous round (ζfs). Here, by similar, we mean the k nearest neighbors to the target profile

under consideration and these are determined by computing the Euclidean distances between the

target profiles on the attack surface. In this case, we set k=5, i.e., 5 nearest neighbors. The x-

axis denotes pairs of rounds for which we are computing the percentages, for example, in R23, 2

corresponds to round (r−1) and 3 means round r in our claim. Thus, ζss corresponding to R23 in

ADS2 is 80%, meaning that out of all the people who succeeded in round 2, 80% attacked similar

target profiles in round 3. Similarly, ζfs corresponding to R23 in ADS2 is 33.43%, meaning that

out of all people who failed in round 2, 33.43% attacked similar target profiles in round 3.

From Figs. 6.1(a)-6.1(h), we can observe that, as opposed to the failed attackers, a statistically

significant number of successful attackers returned to attack the same or similar targets in the

subsequent round. The average (over all four models on two payoffs and for all round pairs) of

ζss is 75.2% and the average of ζfs which is 52.45%. This difference is statistically significant

(two-tailed t-tests at confidence=0.05), thus supporting Observation 2.

One might however argue that successful poachers return to attack the same or similar tar-

gets in future rounds due to some inherent bias towards specific targets and not because they

succeeded on such targets in the previous rounds. Therefore, we conducted additional human

subjects experiments to test the extent to which successes and failures alone affect their decision

making process.

We recruited two groups of human subjects and conducted two rounds of repeated experi-

ments with each group. We showed the Maximin strategy to both groups in both rounds of the

experiment. We ensured that all the participants of Group 1 succeeded in round 1, i.e., even

though there were coverage probabilities shown, no rangers were actually “deployed”. In round

2, Maximin strategy was again deployed and the same set of players were asked to play. We
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observed that 96% of the human subjects attacked the same or similar (k=5) target profiles. We

observed that out of the 96%, 70.83% attacked the exact same target profile as they had attacked

in round 1. Group 2 was shown Maximin strategy in round 1 and all the participants were made

to fail in round 1, i.e., despite the coverage probabilities, there was a “ranger” deployed in every

cell. In round 2, Maximin strategy was again deployed and the same set of players were asked

to play. We observed that only 36% of the participants attacked the same or similar (k=5) targets

in round 2. This shows that successes and failures are important factors that players take into

account while deciding on their strategy in subsequent rounds. Similarly, when k=6, we observe

that 38% of the participants from Group 2 who failed in round 1, had actually attacked the same

or similar target profiles. In Fig. 6.2, we show for various values of k, the percentage of suc-

cessful participants in round 1 who returned to attack the same or similar targets in round 2 and

the percentage of failed participants in round 1 who returned to attack same or similar targets in

round 2.

Notice that failure does not lead all attackers to abandon their target profile (and vice versa

with successful attacker). This shows that attackers have some inherent weights for defender

coverage, animal density, penalty and distance, as is captured by the PSUweight vectors, but they

do adapt their strategies based on their past successes and failures. Therefore, we will observe

later in Chapter 7 that even though P-SUQR is outperformed by our model SHARP in the initial

rounds, P-SUQR is still a valuable model.
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(a) Maximin ADS1 (b) Maximin ADS2

(c) P-SUQR ADS1 (d) P-SUQR ADS2

(e) P-RSUQR ADS1 (f) P-RSUQR ADS2

(g) P-BSUQR ADS1 (h) P-BSUQR ADS2

Figure 6.1: Evidence for adaptivity of attackers
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Figure 6.2: For various values of k (the number of nearest neighbors), percentage of people who
attacked similar targets in round 2 after succeeding or failing in the previous round

These observations about successes and failures on the adversary’s future behavior are also

consistent with the “spillover effect” in psychology (Elster, 2005), which in our case suggests

that an adversary will tend to associate properties of unexposed target profiles with knowledge

about similar target profiles to which he has been exposed, where similarity is expressed in terms

of the Euclidean distance between two points on the attack surface. Smaller distance indicates

higher similarity. The above aspects of adversary behavior currently remain unaccounted for, in

BR-RSG models. Based on observations above, we define two key properties below to capture

the consequences of past successes and failures on the adversary’s behavior and reason based on

them.

Definition 3. The vulnerability associated with a target profile βi which was shown to the

adversary in round r, denoted V r
βi

, is defined as a function of the total number of successes

and failures on the concerned target profile in that round (denoted by successrβi and failurerβi

respectively). This is shown in Eqn. 6.1:

V r
βi

=
successrβi − failure

r
βi

successrβi + failurerβi
(6.1)
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Therefore, more successful attacks and few failures on a target profile indicate that it was

highly vulnerable in that round. Because multiple targets can be associated with the same target

profile and the pure strategy generated based on the mixed strategy x in a particular round may

result in a defender being present at some of these targets while not at others, there may be both

successes and failures associated with the same target profile in that round.

Definition 4. The attractiveness of a target profile βi at the end of round R, denoted ARβi , is

defined as a function of the vulnerabilities for βi from round 1 to round R. It is computed using

Eq. 6.2.

ARβi =

∑R
r=1 V

r
βi

R
(6.2)

Therefore, we model the attractiveness of a target profile as the average of the Vulnerabilities

for that target profile over all the rounds till round R. This is consistent with the notion that a

target profile which has led to more successful attacks over several rounds will be perceived as

more attractive by the adversary2.

6.2 SHARP’s Utility Computation

Existing models (such as SUQR, which is based on the subjective utility function (Eqn. 2.4)) only

consider the adversary’s actions from round (r − 1) to predict their actions in round r. However,

based on our observation (Obs. 2) it is clear that the adversary’s actions in a particular round

are dependent on his past successes and failures. The adaptive probability weighted subjective
2Although here we give equal weight to the vulnerability values in each round, we can modify this easily to consider

the recency effect in human decision making by discounting vulnerability values of earlier rounds and giving more
importance to recent rounds. Such models of human discounting of past actions, such as hyperbolic discounting and
exponential discounting, have been explored in (Azaria, Gal, Kraus, & Goldman, 2015; Chabris, Laibson, & Schuldt,
2006; Gans, Knox, & Croson, 2007). Exploring such models in our formulation would be an interesting area for future
work.
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utility function proposed in Eq. 6.3 captures this adaptive nature of the adversary’s behavior by

capturing the shifting trends in attractiveness of various target profiles over rounds.

ASURβi = (1− d ∗ARβi)ω1f(xβi) + (1 + d ∗ARβi)ω2φβi

+(1 + d ∗ARβi)ω3P
a
βi

+ (1− d ∗ARβi)ω4Dβi (6.3)

There are three main parts to SHARP’s computation: (i) Adapting the subjective utility based

on past successes and failures on exposed parts of the attack surface; (ii) Discounting to handle

situations where not enough attack surface has been exposed; and (iii) Reasoning about similarity

of unexposed portions of the attack surface based on other exposed parts of the attack surface.

The intuition behind the adaptive portion of this model is that, the subjective utility of target

profiles which are highly attractive to the adversary should be increased, and that of less attractive

target profiles should be decreased, to model the adversary’s future decision making. Hence, for

a highly attractive target profile βi, the attacker would view the coverage xβi and distance from

starting location Dβi to be of much lower value, but the animal density φβi to be of higher value,

as compared to the actual values. The contribution of the penalty term would also increase the

utility (recall that P aβi < 0 and ω3 < 0).

Let us take an example from our game. Suppose we take the target profile βi =<

0.25, 2,−1, 4 >. This profile had A1
βi

= 1 after round 1, because successrβi = 9 and

failurerβi = 0, i.e., the target was highly attractive to the attacker. The weights learned were

b =< δ, γ, ω1, ω2, ω3, ω4 > =< 2.2, 2.4,−3, 0.9,−0.3,−0.5 >, P-SUQR would compute the

subjective utility as -0.29, while (assuming d (explained later) = 0.25, for example) SHARP’s
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adaptive utility function would compute the subjective utility as 0.855. In comparison to the orig-

inal subjective utility function, this function is adaptive due to the positive or negative boosting of

model weights based on the defender’s knowledge about the adversary’s past experiences. Here,

learning the model parameters b has been decoupled from boosting the model parameters for fu-

ture prediction to ensure simplicity in terms of both the model formulation as well the weight

learning process. This also ensures that the linearity in terms of the features of the model (as in

the original SUQR model) remains intact. Through an example in Section 6.4, we show the effect

of this design decision on the defender mixed strategy generated.

Now we turn to the next aspect of SHARP’s utility computation. Recall the problem that

the defender does not necessarily have information about the attacker’s preferences for enough

of the attack surface in the initial rounds. This is because, the attacker is exposed to only a

limited set of target profiles in each round and the defender progressively gathers knowledge

about the attacker’s preferences for only those target profiles. We provide evidence in support of

this observation in Section 7.3.

The parameter d (0 ≤ d ≤ 1) in Eqn. 6.3 mitigates this attack surface exposure problem. It

is a discounting parameter which is based on a measure of the amount of attack surface exposed.

d is low in the initial rounds when the defender does not have enough of the right kind of data,

but would gradually increase as more information about the attacker’s preferences about various

regions of the attack surface become available. For our experiments, we varied d based on Eqn.

6.4:

d =
1

Nr − r
(6.4)
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where Nr is the total number of rounds and r is the round whose data is under consideration. For

example, Nr = 5 and r = 1 for data collected in round 1 of an experiment conducted over five

rounds. The intuition behind this formulation is that, as more rounds are played, more cumulative

information about the adversary’ preferences for a lot of the attack surface will be available and

hence d will increase from a very small value gradually as rounds progress.

Finally, we look at how we reason about unexposed portions of the attack surface based on

the exposed areas. If a target profile βu was not exposed to attacker response in round r, the

defender will not be able to compute the vulnerability V r
βu

. Therefore, we will also not be able

to estimate the attractiveness for βu and hence the optimal defender strategy. So, in keeping with

our analysis on available data and based on the spillover effect introduced earlier, we use the

distance-weighted k-nearest neighbors algorithm (Dudani, 1976) to obtain the Vulnerability V r
βu

of an unexposed target profile βu in round r, based on the k most similar target profiles which

were exposed to the attacker in round r (Eqns. 6.5 and 6.6).

V r
βu =

∑k
i=1 θi ∗ V r

βi∑k
i=1 θi

(6.5)

θi ≡
1

d(βu, βi)2
(6.6)

where, d(βu, βi) denotes the Euclidean distance between βu and βi in the feature space. We use

k = 5 for our experiments.

60



6.3 Generating Defender Strategies Against SHARP

While SHARP provides an adversary model, we must now generate defender strategies against

such a model. To that end, we first learn the parameters of SHARP from available data (See

Section 5). We then generate future round strategies against the boundedly rational adversary

characterized by the learned model parameters by solving the following optimization problem:

max
x∈X

[∑
i∈T

Udi (x) qRi (x|ω)

]
(6.7)

qRi (ω|x) is the probability that the adversary will attack target i in round R and is calculated

based on the following equation:

qRi (ω|x) =
e
ASUR

βi
k

(x)

∑
i∈T
e
ASUR

βi
k

(x)
(6.8)

βik denotes that target profile βk is associated with target i. ASUR
βik

and Udi (x) are calculated

according to Eqns. 6.3 and 2.1 respectively.

To solve the non-linear and non-convex optimization problem in Eqn. 6.7 and generate the

optimal defender strategy, we use PASAQ (Yang et al., 2012) as it provides an efficient approxi-

mated computation of the defender strategy with near-optimal solution quality.
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6.4 SHARP in action: An example

In this section, we give an example to show the effectiveness of SHARP in terms of the design

of each component: (i) adaptive utility, (ii) similarity learning, and (iii) confidence based dis-

counting. Figs. 6.3(a), 6.3(b) and 6.3(c) show second round strategies generated by SHARP with

discounting of Eqn. 6.4 but without Attractiveness, SHARP without discounting, i.e., d = 1 but

with Attractiveness, and SHARP, based on parameters learned (b =< δ, γ, ω1, ω2, ω3, ω4 >=<

1.2, 1.6,−3.2791, 0.1952,−0.3,−0.8388 >) from first round data collected for the experiment

with SHARP on ADS1 (shown in Fig. 6.3(d)). The strategy generated by SHARP with discount-

ing but without Attractiveness (see Fig. 6.3(a)) can be easily exploited due to several unprotected

cells with positive animal density. SHARP without discounting but with Attractiveness (see Fig.

6.3(b)) generates a comparatively more robust strategy than SHARP with discounting but without

Attractiveness (Fig. 6.3(a)) due to its adaptive utility function and similarity learning mechanism.

SHARP generates the best strategy (see Fig. 6.3(c)) due to its capability to model all the design

parameters together into one single framework.

6.5 RL-SSG: A Descriptive Reinforcement Learning Algorithm for

SSGs

In this section, we translate the basic Reinforcement Learning (RL) model proposed by Erev

and Roth (Erev & Roth, 1998) to our setting; we use their RL approach to compute the optimal

mixed strategy for the defender in repeated SSGs. The primary reason for adapting an existing

RL based approach for our problem is to compare our models against another popular learning

framework which has been used earlier in the context of two-player games. However, as explained
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(a) SHARP with discounting but without Attrac-
tiveness

(b) SHARP without discounting but with Attrac-
tiveness

(c) SHARP (d) ADS1

Figure 6.3: (a,b,c): Round 2 strategies generated by SHARP (with discounting without Attrac-
tiveness), SHARP (no discounting but with Attractiveness) and SHARP respectively; (d) ADS1

in Section 3.1.3, the main challenge of using the same framework as in (Erev & Roth, 1998) is

that the models in Erev and Roth’s paper were developed for simultaneous move games without

any notion of prior commitment to a mixed strategy by any player. Therefore, we developed a

new RL model for our leader-follower setting where the defender moves first by playing a mixed

strategy and the other player moves next by playing a pure strategy after having observed the first

player’s mixed strategy. Since we deploy and compute optimal mixed strategy responses for the

defender per round based on all the attacks observed in the earlier rounds, we do not explicitly

require a lot of defender and attacker pure strategy combinations to be deployed. We describe

below the RL based algorithm (Algorithm 1) to compute the optimal mixed strategy.

The algorithm first starts with an initial propensity for the defender to play any pure strategy

k (Line 1). The probability distribution over all possible pure strategies is then computed by nor-

malizing the propensities (Line 2). The defender then computes the mixed strategy and deploys

this strategy (which results in a coverage probability for each target as discussed in Section 2.1),

63



and collects all pure strategy responses of the attacker to the defender’s mixed strategy in the cor-

responding round (Line 2). Using this data collected in a particular round, the defender computes

her utility of playing each pure strategy k (Line 3). More specifically, this utility is computed

for each pure strategy as the reward that would result to the defender given the observed adver-

sary response if the defender were playing only this pure strategy. The reinforcement of playing

each pure strategy is then computed as the difference between the corresponding utility and the

minimum possible utility over all the pure strategies (Line 4). The defender then updates her

propensities of playing each pure strategy by adding the reinforcements to the propensities com-

puted in the earlier round (Line 5). The mixed strategy to be deployed in the next round is then

computed in the same way as Line 2, and the game proceeds to future rounds in this fashion.

In our game, starting from an equal initial propensity for each pure strategy (as proposed in

(Erev & Roth, 1998)) would result in a mixed strategy with equal coverage probability at each

target. Due to the differences in animal densities, if we start from a uniform mixed strategy, it

would leave many of the targets of high animal density to be attacked in round 1 (as evidenced

from other human subject experiments conducted in the past (Pita et al., 2010)) and that would

result in a defender utility which is much lower than the cumulative utility for any of our models

over five rounds (see Chapter 7 for details). Therefore, for our experiment with the RL approach,

we assumed that the defender starts with the robust Maximin strategy in round 1. The use of

Maximin as the initial strategy also ensures that we allow the RL model to start from the same

starting point as all other models, and that it does not have an initial advantage or disadvantage

compared to other models. Thus, we used Maximin to compute the initial propensities for pure

strategies in this setup; we used Comb Sampling on the Maximin mixed strategy (Tsai, Yin,

young Kwak, Kempe, Kiekintveld, & Tambe, 2010) to compute the probability of playing each
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pure strategy and considered those to be the initial propensities for each pure strategy. We then

updated the propensities based on round 1 attack data for Maximin on ADS1 and computed the

corresponding mixed strategy and deployed that as the round 2 strategy. Based on this experiment,

results and comparisons of the RL based approach against other models are shown in Chapter 7.
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Algorithm 1 Algorithm to learn RL based defender strategy for repeated Stackelberg games
INPUT: Set of Targets T ; Number of security resources M .
OUTPUT: Optimal defender strategy for any round r.

1: In round r = 1, the defender has an initial propensity to play pure strategy k, denoted by
qk(1);∀k ∈ P , where P is the set of all possible pure strategies as described earlier in
Chapter 2. (1) denotes round 1.

2: The defender computes the probability of playing a particular pure strategy k in round r
based on the propensities as follows:

pk(r) =
qk(r)∑

j∈P
qj(r)

(6.9)

The defender can then directly compute the mixed strategy x(r) for round r from the pk(r)’s,
deploy x(r) and collect attack data for round r.

3: The defender uses data collected in round r, i.e. Dr, to compute the expected utility of
playing pure strategy k in round r + 1 as follows:

Uk(r + 1) =

∑
i∈T

Di(r) ∗Bk,i∑
i∈T

Di(r)
(6.10)

Here, Di(r) denotes the number of attacks on target i in round r, Bk,i denotes the payoff to
the defender if she plays pure strategy k and the adversary plays pure strategy i (i.e. attacks
target i). It is calculated as follows:

Bk,i =

{
Rd

i if ‘i’ is protected in pure strategy ‘k’
Pd

i if ‘i’ is not protected in pure strategy ‘k’

Here, Rdi is the defender’s reward for covering i if it is selected by the adversary and P di is
the penalty for not covering i.

4: The reinforcement of playing pure strategy k is then computed as:

Ik = Uk(r + 1)−min
k

(Uk(r + 1)) (6.11)

Here, min
k

(Uk(r + 1)) denotes the minimum utility over all the computed utilities.

5: The propensities of the defender for pure strategy k(∀k ∈ P ) in round (r+1) is then updated
as follows:

qk(r + 1) = qk(r) + Ik (6.12)

6: Repeat Step 2 to Step 5.
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Chapter 7

Results with Human Subjects on AMT

This chapter first shows the results of our human subjects experiments on AMT, and then dis-

cusses results against security experts, based on the experimental setting discussed in Chapter

4. In Section 7.1, we show average defender expected utilities for five models (P-SUQR, P-

BSUQR, P-RSUQR, SHARP and Maximin) against actual human subjects, for various rounds of

our experiment on two payoff structures (ADS1 and ADS2). In Section 7.2, we show results of

learning the shape of the probability weighting function for the adversaries on ADS1 and ADS2

for three different scenarios: (i) when Gonzalez and Wu’s probability weighting function Eqn.

5.1 is used in Eqn. 5.5; (ii) when Prelec’s probability weighting (Eqn. 3.1) is used in Eqn. 5.5;

and, (iii) when transformed probabilities with Gonzalez and Wu’s function is used to weight the

values of outcomes (Eqn. 5.6). In the same section, we also show prediction performances of

models for cases (ii) and (iii) above. Section 7.3 shows the effect of attack surface exposure on

the performance of P-SUQR. In Section 7.4, we show the adaptiveness of SHARP based strate-

gies over rounds while P-SUQR based strategies converge to a particular strategy at the end of

a few rounds. Plots for all the analysis on payoff structures ADS3 and ADS4 are reported in

Appendix 6.
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7.1 Defender Utilities

In Figs. 7.1(a)-7.1(b), we show actual defender utilities obtained over 5 rounds for P-SUQR, P-

BSUQR, P-RSUQR, SHARP and Maximin onADS1 andADS2 respectively, with an average of

38 human subjects playing per round. Similar to human subjects experiment results in previous

work (Pita, John, Maheswaran, Tambe, & Kraus, 2012; Yang et al., 2011; Nguyen et al., 2013),

in the plots, y-axis corresponds to defender expected utility. However, what is different here is

that, we are now reporting results on repeated rounds and hence the round numbers are shown

on the x-axis. For example, in Fig. 7.1(b), P-SUQR performs worst in round 2 with a utility of

-5.26. In Fig. 7.1(b), we also show (inset) zoomed in results of the second round to highlight the

difference in performance between Maximin (= -0.18) and SHARP (= -0.1). Figs. 7.2(a)-7.2(b)

show cumulative defender utility over five rounds on ADS1 and ADS2 respectively. Note that

the first round utilities for all models are same as Maximin strategy was played due to absence of

data. All significance results reported below are computed with bootstrap t-test. Following are

key observations from our experiments.

• Heavy initial round losses: For all models except SHARP, there is statistically significant

(p=0.05) loss in defender utility as compared to Maximin in second round on all the payoffs.

P-SUQR recovers from initial round losses and outperforms Maximin in rounds 3, 4 and

5 for ADS1 (statistically significant at p=0.05), and in round 4 (statistically significant

at p=0.15) and round 5 for ADS2. P-SUQR also outperforms Maximin in rounds 3, 4

and 5 on ADS3 and ADS4 (see Appendix 6). P-RSUQR, which is a robust model, also

outperforms Maximin in rounds 4 and 5 (statistically significant at p=0.05) for ADS1,

ADS3 and ADS4 after initial round losses. Surprisingly, P-BSUQR, which is the basis for
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wildlife security application PAWS (Yang et al., 2014), performs worst on all payoffs over

all rounds.

From Fig. 7.2(a), we can observe that it takes five rounds for P-SUQR to recover from

initial round losses and outperform Maximin in terms of cumulative defender utility for

ADS1. P-SUQR does not recover from initial round losses and outperform Maximin on

any other payoffs. None of the other models recover from the initial round losses on any of

the payoffs in five rounds, thus highlighting the impact initial round losses have on model

performance for a long period of time.

• Performance of SHARP against other models: SHARP consistently outperforms (sta-

tistically significant at p=0.05) all the models over all rounds (Figs. 7.1(a)-7.1(b), and

13.3(a)-13.3(b)), most notably in initial rounds (round 2) and ends up with significantly

high cumulative utility at the end of all rounds (Figs. 7.2(a)-7.2(b) and 13.4(a)-13.4(b)).

Therefore, our results on extensive human subjects experiments on repeated SSGs show

SHARP’s ability to perform well throughout, including the important initial rounds.

• Performance of SHARP (with and without discounting): To test the effectiveness of

the design decisions in SHARP, we considered SHARP both with and without discounting.

SHARP with d = 1 is compared against SHARP and P-SUQR on ADS1 and ADS2 in

Figs. 7.3(a) and 7.3(b). SHARP(d = 1) outperforms P-SUQR (statistically significant

at p=0.05) because it captures the adaptive nature of the adversary. However, it performs

worse than SHARP (statistically significant at p=0.01) as SHARP also trusts the data less

when we don’t have enough information about the adversary’s responses to most of the

attack surface; in this case the initial rounds.
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• Comparison with SUQR (w1 > 0): As mentioned earlier in Section 7.1, we conduct

additional human subjects experiments on ADS1 to show that the performance of SUQR

without probability weighting is worse than any of the other models. We deployed an ex-

periment on AMT with the defender strategy computed based on the SUQR model learned

from round 1 data of ADS1. The resulting SUQR weight vector had a positive weight on

coverage probability and thus resulted in a defender pure strategy. The game was deployed

with this strategy on AMT. 60 people played the game, and out of them 48 participants

passed the validation test. For the experimental results, we considered the data from only

the participants who passed the validation test. The average expected defender utility ob-

tained was -4.75. This average expected defender utility obtained by deploying a pure

strategy based on a learned SUQR model is significantly less than that of all the other mod-

els on ADS1 in Round 2 (Figure 7.4(a)). Furthermore, the SUQR (Pure Strategy) model’s

average expected defender utility in this one round is significantly less than the cumulative

average expected defender utility of all the other models after five rounds (Figure 7.4(c)).

Given that this strategy performs worse in one round than the cumulative average expected

defender utility of all the other models, it demonstrates the point that the performance of

SUQR without probability weighting is worse than any of the other models that include

probability weighting.

Notice that the reason this SUQR pure strategy performs so poorly is that it leaves 16 out

of 25 targets completely exposed, and among these targets are ones with animal densities

4 and 5. Pure strategies for other reward structures similarly leave other targets of high

value completely exposed. Also, as mentioned in Chapter 1, degraded performance in

initial rounds may have severe consequences for the reasons outlined there. Thus, the poor
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performance in this initial round of the pure strategy on ADS1 and its leaving targets of

high value completely exposed illustrates that pure strategy SUQR is completely useless

as a strategy for deployment. Therefore, we did not conduct any further experiments for

future rounds with this model.

• Comparison with RL based approach: We conducted human subjects experiments on

ADS1 with the RL based approach (Algorithm 1) to compare its performance against

our behavioral models. We deployed an experiment on AMT with the defender strategy

computed based on the RL model learned from round 1 data of Maximin on ADS1 (as

explained earlier in Section 6.5). 63 participants played the game, out of which 49 par-

ticipants passed the validation test. For the experimental results, we considered the data

from only the participants who passed the validation test. The average expected defender

utility obtained was -4.139. This average expected defender utility obtained by deploying

the defender strategy based on a learned RL model is significantly less than that of all the

other models on ADS1 in Round 2 (Figure 7.4(b)). Furthermore, the RL model’s average

expected defender utility in this one round is significantly less than the cumulative average

expected defender utility of all the other models after five rounds (Figure 7.4(d)). Given that

this strategy performs worse in one round than the cumulative average expected defender

utility of all the other models, it has very little chance of ever recovering and outperforming

the other models we have discussed earlier after more rounds.

In addition, we show the deployed defender strategy for round 2 on ADS1 in Figure 7.5.

Based on Figure 7.5, notice that the reason the RL based approach performs so poorly

is that after learning from attacks in the previous round, it places a significant amount of
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coverage on target cells with high number of attacks (the cell with a resultant coverage

probability of 0.492 in round 2 had an animal density of 6 and was attacked 7 times in

round 1), while it reduces the coverage on cells with very few attacks (the middlemost cell

with a resultant round 2 coverage probability of 0.371 had an animal density of 10 and only

1 attack in round 1). This is because, for cells with zero or very few attacks, the propensities

for playing strategies that correspond to protecting those targets are not updated as much as

cells which have been attacked more frequently and have simultaneously resulted in higher

gains for the defender. This leaves cells with high rewards but very few attacks in the past

rounds less protected in the subsequent round and therefore completely exposed to a lot

of attacks. RL based strategies for other reward structures similarly leave other targets of

high value (but very attacks) with little protection and therefore open to exploitation by the

attacker in the subsequent round. Thus, the poor performance in this initial round of the

RL model on ADS1 and its leaving targets of high value exposed to exploitation in the

subsequent round illustrates that significant new work would need to be done to adapt the

proposed RL framework (based on the model by Erev and Roth (Erev & Roth, 1998)) for

our Stackelberg Security Game setting. As mentioned in Chapter 1, degraded performance

in initial rounds may have severe consequences for the reasons outlined there. Therefore,

given the poor initial round performance of the RL model on ADS1, we did not conduct

any further experiments for future rounds.
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(a) Results on ADS1 (b) Results on ADS2

Figure 7.1: Defender utilities for various models on ADS1 and ADS2 respectively.

7.2 Learned Probability Curves

Figs. 7.6(a)-7.6(b) and 13.5(a)-13.5(b) show human perceptions of probability in rounds 1 to 4

when the participants were exposed to P-SUQR based strategies on ADS1, ADS2, ADS3 and

ADS4 respectively. Learned curves from P-SUQR on all payoffs have this S-shaped nature,

showing that even though there is a little change in the curvature between rounds, it retains the

same S-shape throughout all rounds. The curves indicate that people weigh high probabilities to

be higher and low to medium probabilities to be lower than the actual values. Even though this

is contrary to what Prospect theory (Tversky & Kahneman, 1992) suggests, this is an intuitive

result for our Stackelberg Security Games domain because we would expect the adversary to be

deterred from targets with very high coverage probabilities and that they would prefer to attack

targets with low to medium coverage probabilities.

73



(a) Results on ADS1 (b) Results on ADS2

Figure 7.2: Cumulative defender utilities for various models on ADS1 and ADS2 respectively.

(a) Results on ADS1 (b) Results on ADS2

Figure 7.3: (a) Comparison of defender utilities between P-SUQR, SHARP and SHARP(d=1) on
ADS1 and ADS2 respectively

(a) Comparison of SUQR (Pure Strategy) Utility in Round

2 against other models in Round 2

(b) Comparison of RL Model Utility in Round 2 against

other models in Round 2

(c) Comparison of SUQR (Pure Strategy) Utility in Round

2 against Cumulative Utility of other models after Round

5

(d) Comparison of RL Model Utility in Round 2 against

Cumulative Utility of other models after Round 5

Figure 7.4: Comparison of various models with SUQR (Pure Strategy) and the RL model on

ADS1 respectively.
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Figure 7.5: RL model based defender strategy for round 2 on ADS1.

(a) ADS1 (b) ADS2

Figure 7.6: Learned probability curves for P-SUQR on ADS1 and ADS2 respectively.

7.2.1 Comparison with Prelec’s probability weighting function

As mentioned earlier in Chapter 3.3, we also experiment with Prelec’s one-parameter model while

allowing α to be any value greater than zero. In this case too, we learn S-shaped curves on all of

our payoff structures as shown in Figs. 7.7(a)-7.7(b) and 13.6(a)-13.6(b). This indicates that the

shape of the learned curve is not dependent on the probability weighting function used, as long as

the function allows for learning both an S-shaped and an inverse S-shaped curve. In addition, the

prediction performance (average of the sum of squared errors for all rounds and animal density

structures) of P-SUQR with Gonzalez and Wu’s probability weighting function (Eqn. 5.1 and
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(a) ADS1 (b) ADS2

Figure 7.7: Learned probability curves with Prelec’s probability weighting function for P-SUQR
on ADS1 and ADS2 respectively.

Eqn. 5.5) and P-SUQR with Prelec’s probability weighting function (Eqn. 3.1 and Eqn. 5.5)

are 0.072 and 0.09 respectively and this is statistically significant at p=0.02. The sum of squared

errors in prediction for each of the four rounds (round 2 to 5) and each animal density structure

are shown in Figure 7.8(a), where the x-axis shows each possible combination of animal density

structures and rounds, and the y-axis shows the sum of squared errors.

7.2.2 Comparison with PWV-SUQR

As mentioned earlier in Chapter 5.2, the adversary behavior model PWV-SUQR is one plausible

alternative that could be considered for comparison with our models. Therefore, in this section,

we first show the probability weighting curves learned (Figs. 7.9(a)-7.9(b) and 13.7(a)-13.7(b))

when we consider Eqn. 5.6 (see Chapter 5.2) as the subjective utility function in our adversary

model. We observe that the curves are S-shaped in nature and this indicates that the shape of the

probability weighting curves in our domain is not dependent on the use of the P-SUQR model 1.
1Note that, instead of Eqn. 5.6, even if we use prospects where the transformed probabilities weight the transformed

values (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992), we still get S-shaped curves in our game setting.
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(a) Gonzalez and Wu vs Prelec

(b) P-SUQR vs PWV-SUQR

Figure 7.8: (a) Comparison of the sum of squared errors for P-SUQR with Gonzalez and Wu, and
P-SUQR with Prelec’s probability weighting function respectively; (b) Comparison of the sum of
squared errors for P-SUQR and PWV-SUQR respectively

Nonetheless, PWV-SUQR does raise an intriguing possibility as a plausible alternative for P-

SUQR and thus the performance of PWV-SUQR should be compared with P-SUQR. Therefore,

we compare the performance of P-SUQR (with the PSU function in Eqn. 5.2) and PWV-SUQR

in terms of predicting future round attacks. We show that P-SUQR (with the PSU function in

Eqn. 5.2) performs better (with statistical significance) as compared to PWV-SUQR. The sum of

squared errors in prediction for each of the four rounds (round 2 to 5) and each animal density

structure are shown in Figure 7.8(b), where the x-axis shows each possible combination of animal

density structures and rounds, and the y-axis shows the sum of squared errors. The prediction

77



(a) ADS1 (b) ADS2

Figure 7.9: (a) - (d) Learned probability curves for PWV-SUQR on ADS1 and ADS2 respec-
tively.

performance (average of the sum of squared errors for all rounds and animal density structures) of

P-SUQR (with the PSU function in Eqn. 5.2) and PWV-SUQR are 0.128 and 0.155 respectively

and this is statistically significant at p=0.01. This justifies the use of P-SUQR and its variants

while modeling the adversary.

7.3 Attack surface exposure

In our repeated SSG, the only variation in terms of feature values for our model (Eqn. 6.3)

from round to round is the mixed strategy x and hence the coverage xi at each target. Hence,

exposure to various regions of the attack surface means exposure to various values of xi for fixed

values of the other model parameters. Fig. 7.10(a)-7.10(b) and Fig. 13.8(a)-13.8(b) show how

the adversary was exposed to more unique values of the coverage probability, and hence attack

surface, when conducting experiments with P-SUQR over the five rounds for ADS1, ADS2,

ADS3 and ADS4 respectively. We discretize the range of xi, i.e. [0,1] into 10 intervals (x-axis)

and show the total number of unique coverages exposed till a particular round (y-axis) for each

interval. Observe that more interval ranges and more unique coverage probabilities get exposed
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(a) ADS1

(b) ADS2

Figure 7.10: Total number of unique exposed target profiles till the end of each round for each
coverage probability interval for ADS1 and ADS2.

in rounds 3 to 5, thus exposing more of the attack surface. Based on our earlier discussion in

Section 6, this phenomenon of revealing more of the attack surface would lead to improved gain

in information about the adversary and would thus help us to perform better in the future rounds.

As we showed in Figs. 7.1(a)-7.1(b) and 13.3(a)-13.3(b), the defender performance for P-SUQR

improves significantly in rounds 4 and 5.
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7.4 Adaptiveness of SHARP

Recall that P-SUQR assumes the presence of a homogeneous adversary type and attempts to

learn that adversary type from past attack data. So we should expect that as we learn the model

parameters over various rounds, the learned parameters and hence the generated defender strat-

egy should converge. On the contrary, SHARP models the adaptive nature of a homogeneous

adversary type based on his past successes and failures. Hence the convergence of the defender

strategy generated based on SHARP in each round is not guaranteed. Figs. 7.11(a)-7.11(b) and

13.9(a)-13.9(b) show the 1-norm distance between defender strategies generated by SHARP (and

P-SUQR) over rounds with respect to the strategy generated by P-SUQR in round 5. While P-

SUQR converges to a particular strategy in round 5 for all four animal density structures, SHARP

does not converge to any strategy. To further illustrate that the SHARP based strategy does in-

deed change over rounds, we show SHARP based strategies onADS2 from rounds 2 to 5 in Figs.

7.12(a) - 7.12(d). For ADS2, the 1-norm distances between the defender strategies in rounds 2

and 3, rounds 3 and 4, and rounds 4 and 5 are 2.324, 2.19 and 1.432 respectively, showing that

the strategies are changing from round to round. All these results demonstrate the adaptivity of

SHARP over rounds based on the successes and failures of the adversaries in the past.

7.5 Validation and Testing Robustness of AMT findings

While in general findings from AMT have been validated with human subject experiments in the

lab, the first question we ask is whether domain experts would perform similarly to what was

observed of human subjects in AMT studies, i.e., we wish to further validate the findings from

AMT. To that end, we deploy SHARP-based strategies against security experts at a national park
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(a) ADS1 (b) ADS2

Figure 7.11: Adaptivity of SHARP and Convergence of P-SUQR on payoff structures ADS1 and
ADS2 respectively.

(a) Round 2 (b) Round 3

(c) Round 4 (d) Round 5

Figure 7.12: SHARP based strategy for the defender on payoff structure ADS2.

in Indonesia and analyze the results (Chapter 7.5.1) by comparing them with our observations

on human subjects data from AMT. A second question that may be raised is with regard to our

assumption that all attack data is perfectly observed in AMT studies. Therefore, we analyze

SHARP-based strategies with only a fraction of the entire data (Chapter 7.5.2).
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7.5.1 Results with Security Experts in Indonesia

In order to validate our AMT findings, we also conducted human subjects experiments for

SHARP in the real world: with wildlife security experts from the provinces of Lampung and

Riau, Sumatra, Indonesia. The 33 participants were from the local government, and from the fol-

lowing NGOs YABI, WWF and WCS. Each of the 33 participants played SHARP based strategies

over 4 rounds. As in our AMT experiments, the first round strategy was Maximin.

In Fig. 7.13, we show actual defender utilities obtained over 4 rounds for SHARP on ADS3.

Interestingly, the defender utility obtained in round 2 was not only significantly higher than other

rounds, but is also significantly higher than the utility obtained in round 2 for the same animal

density structure for AMT participants (see Fig. 13.3(a)). This is because 96% of the experts

who were successful in round 1 had attacked the same or similar targets in round 2. This is

comparatively higher than the number of successful participants on AMT on ADS3 in round 1

who returned to attack the same or similar targets in round 2: it was 78%. Hence, our model

SHARP which captures the adversary’s adaptiveness based on their past successes and failures,

completely outperforms the experts. The defender’s utility drops in round 3 as compared to

that in round 2, because the experts, now aware of SHARP’s adaptiveness, adjust their strategy.

However, SHARP is robust enough to still generate high utility for the defender.

Similarity between AMT and Indonesia experts data: We earlier conducted a set of anal-

yses and made certain observations based on our human subjects experiments data from AMT.

We conducted the same analysis on the attack data obtained from real-world experts to validate

our AMT results.
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Figure 7.13: Defender utility for SHARP against security experts in Indonesia

Figure 7.14: Evidemce for adaptivity of attackers (security experts in Indonesia)

First, in our human subjects experiments on AMT, we made Observation 2. We conducted

analysis on the security experts data to see if we observe the same phenomenon in this data. Fig.

7.14 shows how the adversaries (security experts in this case) adapted to SHARP based strategy

depending on past successes and failures. The x-axis denotes pairs of rounds for which we are

computing the percentages; for example, in R23, 2 corresponds to round (r − 1) and 3 means

round r in our claim. The results obtained are consistent with the ones obtained from our AMT

data (see Figs. 6.1(a) - 6.1(h)), i.e., successful adversaries tend to return to attack the same or

similar targets in the subsequent round while failed adversaries will not tend to return to attack

the same or similar targets in the subsequent round.
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Figure 7.15: Total number of unique exposed target profiles till the end of each round for each
coverage probability interval for Indonesia experts data.

Second, we conducted analysis to see how the attack surface is exposed to the adversary over

various rounds. The amount of attack surface exposed to the adversary over the four rounds in

the wildlife experts data is shown in Fig. 7.15. This is consistent with similar plots obtained from

our AMT data (see Fig. 7.10(a)-7.10(b) and Fig. 13.8(a)-13.8(b)) which show that as rounds

progress, more number of coverage probability values from various intervals are exposed to the

adversary.

Third, we show in Fig. 7.5.1, the human perceptions of probability in rounds 1 to 4 when the

security experts were exposed to SHARP based strategies on ADS3. The learned curves have an

S-shaped nature for each of the rounds, which is consistent with our AMT findings (Chapter 7.2).

7.5.2 Results with fraction of complete attack data

In our human subjects experiments, we assume that the defender can observe all the attacks that

occurred in each target region of the park at the end of every round. However, this may not be

true in reality, i.e., defenders may miss some large fraction of the attacks. Therefore, we conduct
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Figure 7.16: Learned probability curves for SHARP on ADS3 on the security experts dataset.

additional analysis to understand the effects of considering a fraction of the original dataset on

our defender strategy.

We generated round 2 defender strategies for all four payoffs with 50% of the data sampled

randomly to test the robustness of our model. Here, by robustness we mean that the deviation

of the strategy generated will be very similar to the original one, i.e., the 1-norm distance of the

strategy generated with a fraction of the data will be very small when compared with the strategy

generated with the full dataset. We randomly sampled several such fractional datasets but show

results for four different sampled datasets (0%, 5%, 10% and 15% deviations from original attack

data) for each payoff for the fraction size of 50%. By random sampling, we mean that, if there

were |χ| attacks in the original dataset, we randomly picked a target cell and removed one attack

data point and repeated this until 50% of the attack data (i.e. round(|χ|/2) attack data points)

remained. Therefore, by 0% deviation, we mean that we removed 50% attacks from each target

cell to make the new dataset. Similarly, by 5% deviation, we mean that the 1-norm distance

between the new dataset obtained by removing 50% of the attack data and the original dataset is

0.05, and so on.
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For each payoff structure we show (Figs. 7.17(a) and 7.18(b)) the average 1-norm distances

between the round 2 defender strategies generated when datasets with various deviations (0%,

5%, 10% and 15%) from the original dataset were used to learn the model parameters, as opposed

to learning from the complete dataset. We can observe from Figs. 7.17(a)-7.18(b) that the average

1-norm distance between the coverage probability xi; 0 ≤ xi ≤ 1 for any target i between

the original and 5% deviation datasets is no more than 0.044 for any of the payoffs. However,

when the deviation from the original dataset increases to 15%, the average 1-norm distance also

increases. Note that if the proportion of attacks over the targets were same as that of the original

dataset, then the defender strategy generated would also be exactly the same modulo rounding

errors.

(a) Average 1-norm distance for ADS1 (b) Average 1-norm distance for ADS2

Figure 7.17: (a) and (b): Average 1-norm distances between defender strategies generated by

SHARP when the model is learned based on randomly sampled 50% data (0%, 5%, 10% and

15% deviation from actual data) and when the model is learned from the complete data set.

Results are shown for ADS1 and ADS2 respectively.
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(a) Average 1-norm distance for ADS3 (b) Average 1-norm distance for ADS4

Figure 7.18: (a) and (b): Average 1-norm distances between defender strategies generated by

SHARP when the model is learned based on randomly sampled 50% data (0%, 5%, 10% and

15% deviation from actual data) and when the model is learned from the complete data set.

Results are shown for ADS3 and ADS4 respectively.
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Chapter 8

INTERCEPT1

While the previous chapters discussed the fine-grained prediction problem with plentiful attack

data, this chapter, as well as Chapter 9, focuses on the coarse-grained prediction problem with

sparse attack data collected at the Queen Elizabeth National Park (QENP) in Uganda. We first

discuss the dataset in Section 8.1, followed by a description of existing models (and its variants)

that were proposed for the QENP dataset. Section 8.3 discusses in detail my modeling system

called INTERCEPT.

8.1 Wildlife Crime Dataset

The following discussion is on wildlife crime data collected over 13 years at the Queen Elizabeth

National Park (QENP) in Uganda. QENP (Figure 8.1) is a wildlife conservation area covering

1,978 square kilometers. Among their many duties, wildlife park rangers there conduct foot

patrols to monitor wildlife habitat, apprehend any poachers sighted inside the park, and collect

data on animal signs and signs of illegal human activity.
1This chapter is based on the paper (Kar et al., 2017a) where Benjamin Ford is a joint first author.
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8.1.1 Dataset Challenges

Figure 8.1: QENP

Because this is a real-world geospatial crime dataset, it is impor-

tant to understand the inherent challenges in analyzing its con-

tents, such as nonlinear relationships between features (Kanevski,

Pozdnoukhov, & Timonin, 2008). Additionally, data can only be

collected in areas that are patrolled, and even in the areas that are

patrolled, poaching signs may remain undetected. This occurs be-

cause poaching signs (such as snares) are often well-hidden, and

rangers may need to conduct a thorough patrol in order to detect any attack – an infeasible task

to undertake for all targets all the time due to limited patrolling resources. This real-world con-

straint not only leads to uncertainty in the negative class labels (i.e., when poaching signs are not

observed we are uncertain whether an attack actually happened at the corresponding target or not)

but also results in a small number of positive samples being recorded in the dataset thus creating

a huge class imbalance. As such, it is necessary to evaluate the attack prediction model’s per-

formance with metrics that account for this uncertainty, such as those for Positive and Unlabeled

Learning (PU Learning) (Lee & Liu, 2003), and are discussed in more detail in the following

sections.

8.1.2 Dataset Composition

The entire QENP area was discretized into 1 square kilometer grid cells (total 2,522 cells), each

as a potential target of poaching. For each target, the ranger patrol effort level (i.e., coverage) and

observed illegal human activity signs (e.g., poached animal carcasses, snares) were recorded. In

addition, each target is associated with a non-static average ranger patrol effort value and a set
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of static features (that are constant throughout the entire time period): terrain features such as

habitat (the terrain type and relative ease of travel) and terrain slope; distances to nearby roads,

water bodies, patrol posts, and villages; and animal density.

For the following analysis, we examine poaching data from 2003-2015. We aim to find the

targets that are liable to be attacked since predicting the attackability of targets can guide future

patrols. We assume a target is attackable if an attack is ever observed at that target at any point

in time. Therefore, when creating training sets, we combine observations from the entire training

period for each target and label it as attackable if any observations were made.

Given the uncertainty in negative labels, there are bound to be training and testing samples

that contradict one another. We consider a sample in the training set and a sample in the testing

set to be contradictory when they have the same combination of static domain features values

(e.g., terrain, distances, animal density) and non-static patrol coverage amount (i.e., low or high

coverage) but different class labels (attacked or not attacked). These contradictions introduce

additional noise in evaluating the performance of learned models and would thus cause any model

to perform poorly on said contradictory data. As such, we remove these contradictions, about

10% of the data, from testing sets.

8.2 CAPTURE and Proposed Variants

The natural first step towards predicting future poaching attacks based on the real-world wildlife

crime dataset was to use the best previous model proposed for this dataset, CAPTURE (Nguyen

et al., 2016). CAPTURE was shown to have superior predictive performance to a number of other

standard models in the behavioral game theory literature (e.g., Quantal Response (QR) (Yang
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et al., 2011), Subjective Utility Quantal Response (SUQR) (Nguyen et al., 2013)). Unfortunately,

as we will discuss later, the number of attacks (and hence, the total number of successes and

failures) recorded in the dataset was very low, even over 13 years, and SHARP could not be

applied effectively on this data for comparison. Therefore, to make attackability predictions, we

discretized the protected area into a set of targets I . Each target i ∈ I has a set of domain-specific

features xi ∈ x such as animal density di and distance to water. In a given time period t, a target

i will be patrolled/covered by rangers with probability ct,i.

CAPTURE consists of a two-layered behavior model. CAPTURE’s first layer, the attackabil-

ity layer, computes the probability that a poacher will attack a given target i at time step t. Similar

to SUQR, which has been used to describe human players’ stochastic choice of actions in security

games, CAPTURE predicts attacks based on a linear combination of domain features xt,i, ranger

coverage probability ct,i at the current time step t, and whether the target was attacked in the

previous time step at−1,i. With this last feature, at−1,i, CAPTURE models attacker behavior as

being temporally dependent on past attacks.

p(at,i = 1|at−1,i, ct,i, xt,i) =
eλ

ᵀ[at−1,i,ct,i,xt,i,1]

1 + eλ
ᵀ[at−1,i,ct,i,xt,i,1]

(8.1)

λ is a parameter vector representing the importance of the features.

CAPTURE’s second layer, the observation layer, computes the probability that rangers will

observe an attack if poachers did attack that patrolled area based on a subset of domain features

(e.g., habitat and slope) x̂t,i and ranger coverage probability ct,i.

p(ot,i = 1|at,i = 1, ct,i, x̂t,i) = ct,i ×
eω

ᵀ[x̂t,i,1]

1 + eω
ᵀ[x̂t,i,1]

(8.2)
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ω is a parameter vector that measures how domain features impact observation probability. The

model parameters (λ, ω) that can maximize the likelihood of observations are estimated via the

Expectation Maximization (EM) algorithm.

However, CAPTURE has a few limitations that lead to poor predictive performance in its

attackability layer. First, CAPTURE’s attackability predictions would sometimes predict too

many targets to be attacked with a high probability (e.g., 80% of the targets will be attacked with

almost 100% probability), leading to poor performance (see Section 9.2). One explanation is

CAPTURE’s parameter learning algorithm focuses on maximizing the performance of the obser-

vation layer rather than on the attackability layer. As the observation layer acts as a filter for the

attackability layer, CAPTURE’s learning process will converge to solutions that obtain decent

performance for the observation layer even if the attackability layer’s performance is poor.

Therefore, we propose several novel variants of CAPTURE as attempts to improve its predic-

tions. In an attempt to restrict the degrees of freedom in the observation layer, and thus restrict

the values the attackability layer can take in the learning process, we propose CAPTURE-LB

which replaces the observation layer with a simpler observation layer, adapted from (Critchlow,

Plumptre, Driciru, Rwetsiba, Stokes, Tumwesigye, Wanyama, & Beale, 2015), described as fol-

lows:

p(ot,i = 1|at,i = 1, ct,i) = 1− e−β×ct,i (8.3)

where β ∈ [0, 1] is the parameter that estimates the detection efficiency. This not only provides

a straightforward way of assessing the performance of patrol effort to observations but also has a
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smaller chance of overfitting, due to fewer parameters. For a given attack probability p(at,i = 1),

the unconditional probability of observing an attack at target i at time step t is given by:

p(ot,i) = p(at,i = 1)× p(ot,i = 1|at,i = 1, ct,i) (8.4)

Second, CAPTURE’s attackability layer assumes that poachers plan attacks based on the

patrol coverage in the current time step, which may not be realistic in the real world as the

poachers may not get up-to-date information about the current patrol strategy and thus would

rely on historical patrol coverage instead (Fang et al., 2015). Therefore, we propose another

variant of CAPTURE, CAPTURE-PCov, that learns based on the previous time step’s patrol

coverage instead of the current time step’s patrol coverage (Equation 8.5). Similarly, we propose

CAPTURE-PCov-LB, a model that uses the attackability layer of CAPTURE with previous

coverage as a feature but instead uses the LB observation layer defined in Equation 8.3.

p(at,i = 1|at−1,i, ct−1,i, xt,i) =
eλ

ᵀ[at−1,i,ct−1,i,xt,i,1]

1 + eλ
ᵀ[at−1,i,ct−1,i,xt,i,1]

(8.5)

Finally, CAPTURE’s attackability predictions fail to take into account the domain knowledge

that inaccessible and unattractive areas of the park will not be attacked with high probability, and

I thus propose another variant CAPTURE-DKHO, which is the same as CAPTURE-PCov-LB

except that it exponentially penalizes the attractiveness of inaccessible areas (Equation 8.6).

p(at,i = 1|at−1,i, ct−1,i, xt,i) =
eλ

ᵀ[at−1,i,ct−1,i,x
′
t,i,1]

1 + eλ
ᵀ[at−1,i,ct−1,i,x′t,i,1]

(8.6)
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x′ corresponds to the linear combination of features x but with the modified habitat feature σ′i =

−σieσi which heavily penalizes high habitat values (i.e., hard to access areas).

8.3 INTERCEPT

The attempts of using the best previous model CAPTURE and the more complex variants of

CAPTURE, proposed to address the limitations of CAPTURE, all suffered from poor attacka-

bility prediction performance as shown in Section 9.2. The natural progression then would have

been to pursue more complex models in this behavioral game theory family of models with the

expectation that they would improve performance on my real-world data. However, as reported

in (Nguyen et al., 2016), complex models such as CAPTURE and its variants incur heavy compu-

tational costs; it takes approximately 6 hours for these models to complete execution. In addition,

these models become more difficult to interpret when the dimensionality of the feature space

increases (e.g., more numerical values to simultaneously account for in a single interpretation).

We wanted to use models that would address all of these shortcomings by, not only significantly

reducing computational costs so as to be usable by rangers with limited computing power in

Uganda, but also remain interpretable to domain experts as the feature space dimensionality in-

creases. All of these factors pointed against using more complex behavioral models. Therefore,

we break from the current trend in behavior modeling in security games and model adversary

behavior in terms of decision tree-based behavior models, even thoughwe were initially skeptical

about its predictive capabilities. Surprisingly, this simpler approach led to significant improve-

ments in performance over the prior state-of-the-art (i.e., CAPTURE).
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Algorithm 2 BoostIT
1: D0 ← learnDecisionTree(Θ0)
2: while Stopping Criteria Not Reached do
3: hΘ ← calcHotspotProximity(PΘm−1(Dm−1), α)
4: hΨ ← calcHotspotProximity(PΨm−1(Dm−1), α)
5: Θm ← addFeature(Θ0, hΘ)
6: Ψm ← addFeature(Ψ0, hΨ)
7: Dm ← learnDecisionTree(Θm)
8: m = m+ 1
9: end while

10: return P

8.3.1 BoostIT

A binary decision tree D is trained on a set Θ of independent variables x (the domain features), a

dependent variable o (attack observations), and outputs a binary classification Di for each target

i: {not attacked (Di = 0), attacked (Di = 1)}. A decision tree’s negative predictions for a test set

Ψ are denoted by P−Ψ (D) and positive predictions by P+
Ψ (D) (i.e., vectors of binary predictions).

Crime hot spots are part of a well-known theory in Criminology (Eck, Chainey, Cameron, &

Wilson, 2005) that views crime as an uneven distribution; crime is likely to be concentrated in par-

ticular areas called hot spots. If a particular geographic area has a high concentration of predicted

attacks, it is reasonable to interpret these predictions as a hot spot prediction (i.e., predicting a

high concentration of crime). While CAPTURE explicitly models attacks as a probability distri-

bution decided by a linear combination of feature values and thus can implicitly represent the hot

spots with soft boundaries in the geographic space, decision trees’ rules with hard boundaries in

the feature space would lead to fine-grained segmentations in the geographic space and is thus

less capable of representing hot spots. As such, we designed the Boosted decision tree with an

Iterative learning algorithm (henceforth referred to as BoostIT) (Algorithm 2), where proximity

to a predicted hot spot is encoded as an additional input feature.
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D0 is the initial decision tree learned without the hot spot proximity feature h, and Θ0 and Ψ0

correspond to the initial training and test sets, respectively. For each level of iterationm, a feature

hΘ (and hΨ) is computed for each target i ∈ I that corresponds to whether that target is close

to a predicted hot spot in the training (and test sets); for example, if a target i ∈ PΘm−1(Dm−1)

is adjacent to α or more targets in P+
Θm−1(Dm−1) (i.e., targets that are predicted to be positive),

then hΘ
i = 1. We then re-learn the decision tree at each iteration m with a feature augmented

dataset Θm. As an example, BoostIT may add a feature to a target i that i is near a hot spot if there

are two adjacent targets that are predicted to be attackable. In the next iteration, this new feature

(“near a hot spot”) will get used in learning about predicting attacks on i. This continues until an

iteration criterion is reached. Note that the test set Ψ is not used while learning new decision trees

(only training data Θ is used) and is only used to update the test set prediction PΨ. In the rest of

the paper, we will refer to BoostIT with an α as BoostIT-αNearestNeighbors (or BoostIT-αNN).

With this algorithm, the final decision tree Dm would generally predict more positive predictions

with concentrated areas (i.e., hot spots) compared to D0, but the set of predictions of Dm is not

necessarily a superset of the set of predictions of D0.

Although we are primarily interested in predicting attackability, we can also predict where

patrollers would observe attacks by cascading attackability predictions with the LB observation

layer (Equation 8.3). We convert the unconditional observation probability, derived from the

cascaded model (Equation 8.4), to binary predictions by classifying samples as observed/not

observed based on whether they are above or below the mean respectively.
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8.3.2 INTERCEPT: Ensemble of Experts

We investigated the predictions of the traditional decision tree and BoostIT and observed that they

are diverse in terms of their predictions. Here, by diversity, we mean that they predict attacks

at a variety of targets. Therefore, while one model may fail to correctly classify a particular

target as attacked, another model may succeed. This indicates the ability of different models to

correctly learn and predict on different regions of the feature space. For example, let us consider

the following three models: (i) DecisionTree, (ii) BoostIT-3NN and (iii) BoostIT-2NN. While

computing pairwise disagreement between the models’ attackability predictions, I observed that:

(i) DecisionTree and BoostIT-3NN disagree on 105 out of 2211 target samples; (ii) DecisionTree

and BoostIT-2NN disagree on 97 out of 2211 samples; and (iii) BoostIT-3NN and BoostIT-2NN

disagree on 118 out of 2211 samples. This observation led us to consider combining the best

decision tree and BoostIT based models, thus forming INTERCEPT–an ensemble of experts.

Because of uncertainty in negative labels, INTERCEPT considers not only decision tree mod-

els with the standard false positive (FP) cost of one, but also decision trees with various FP costs.

For a decision tree with FP cost of 0.6, during the learning process, the decision tree will not re-

ceive the full penalty of 1 but will instead receive a penalty of 0.6 for each false positive prediction

it makes.

In INTERCEPT, each expert model voted for the final attack prediction on a particular target.

We considered three types of voting rules to determine whether a target should be predicted to be

attacked by the ensemble: (a) majority of the experts predict an attack; (b) all experts predict an

attack; and (c) any one expert predicts an attack. INTERCEPT uses the best voting rule: majority.
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We considered ensembles with three and five experts. Having at most 5 experts makes the

ensemble easily interpretable. In other words, the final prediction at a target is due to only 5

decision rules at a maximum, and it is easy to walk the human domain experts through the 5 rules

in a way that the logic is easily verified.
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Chapter 9

INTERCEPT Results

In this chapter, we will present results from our experiments with different models on the QENP

wildlife poaching dataset and also results from ranger deployments at QENP based on our best

performing model.

9.1 Evaluation Metrics

To evaluate INTERCEPT and other models, we first prepared two separate train/test splits on the

dataset. For one dataset, we trained on data from 2003 to 2013 and evaluated our models on data

in 2014, and for the other dataset, we trained on data from 2003 to 2014 and evaluated on data

from 2015. Prior to discussing the evaluation results, we briefly discuss the metrics we use for

computing our performance on predicting attackability and observed attacks.

Any metric to evaluate targets’ attackability in domains such as wildlife poaching must ac-

count for the uncertainty in negative class labels. Therefore, in addition to standard metrics

(Precision, Recall, and F1-score) that are used to evaluate models on datasets where there is no

uncertainty in the underlying ground truth, we also evaluate our models with a metric that ac-

counts for the uncertainty present in our dataset. The metric introduced in (Lee & Liu, 2003),
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henceforth referred to as L&L, is an appropriate metric since it is specifically designed for mod-

els learned on Positive and Unlabeled (PU) datasets (i.e., datasets with uncertain negative labels).

L&L is defined in equation 9.1, where r denotes the recall and Pr[f(Te) = 1] denotes the prob-

ability of a classifier f making a positive class label prediction. I compute Pr[f(Te) = 1] as the

percentage of positive predictions made by our model on a given test set.

L&L(D,Te) =
r2

Pr[f(Te) = 1]
(9.1)

As we are certain about the positive samples in our dataset, L&L rewards a classifier more for

correctly predicting where attacks have occurred (i.e., positive labels). However, it also prevents

models from predicting attacks everywhere, via its denominator, and ensures that the model is

selective in its positive predictions.

We also evaluate the models in terms of observation predictions. Here, we report standard

metrics (Precision, Recall, and F1-score). We also compute the area under the Precision-Recall

curve (PR-AUC). PR-AUC is a more appropriate metric for evaluating models on datasets with

severe class imbalance (Davis & Goadrich, 2006) compared to area under the ROC curve. When

there are many more negative points than positive points, the model can make many false positive

predictions and the false positive rate would still be low, and thus, the ROC curve becomes less

informative. In contrast, precision better captures how well the model is making correct positive

predictions given a small number of positive examples. L&L is no longer used to evaluate the

observation probability model as there is no uncertainty in terms of the observations, i.e., we

either observed or did not observe an attack, and we are measuring the model’s ability to predict

whether we will observe attacks at already attacked targets.
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9.2 Evaluation on Historical Real-world Patrol Data

To compare INTERCEPT with its competitors, we conducted a thorough investigation of the

performance of 41 different models and 193 variants. Only a subset of the best performing ones

are presented in this thesis. This is one of the largest evaluation efforts on a real-world dataset

in the wildlife crime domain, and we compared INTERCEPT against the previous best model

CAPTURE, its variants, and other machine learning approaches such as Support Vector Machines

(SVM), AdaBoosted Decision Trees, and Logistic Regression1. All the numbers highlighted in

bold in the tables indicate the results of the best performing models in that table. The best

performing INTERCEPT system is an ensemble of five decision trees with majority voting. The

five decision trees are: a standard decision tree, two BoostIT decision trees (m = 1) with α = 2

and α = 3 respectively, and two decision trees with modified false positive costs 0.6 and 0.9

respectively. Note that, due to data collection methodology changes in 2015, the distribution

of attack data in 2015 is significantly different than all other previous years; 2015 is a difficult

dataset to test on when the training dataset of 2003-2014 represents a different distribution of

attack data, and we will demonstrate this impact in the following evaluation.

9.2.1 Attackability Prediction Results

In Tables 9.1 and 9.2, we show a comparison of the performance between our best INTERCEPT

system (the five decision tree ensemble with majority voting), the current state-of-the-art CAP-

TURE, its variants, and other baseline models towards accurately predicting the attackability of

targets in QENP for years 2014 and 2015, respectively. The PositiveBaseline corresponds to a
1Note that due to data confidentiality agreements, we are unable to show an example decision tree in this thesis.
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Classifier Type F1 L&L Precision Recall
PositiveBaseline 0.06 1 0.03 1
UniformRandom 0.05 0.51 0.03 0.50
CAPTURE 0.31 3.52 0.25 0.39
CAPTURE-PCov 0.13 1.29 0.08 0.48
CAPTURE-PCov-LB 0.08 0.87 0.04 0.58
CAPTURE-DKHO 0.10 1.05 0.06 0.67
INTERCEPT 0.41 5.83 0.37 0.45

Table 9.1: Attackability Prediction Results on 2014 Test Data

Classifier Type F1 L&L Precision Recall
PositiveBaseline 0.14 1 0.07 1
UniformRandom 0.19 0.50 0.11 0.50
CAPTURE 0.21 1.08 0.13 0.63
CAPTURE-PCov 0.19 0.87 0.11 0.57
CAPTURE-PCov-LB 0.18 0.69 0.11 0.46
CAPTURE-DKHO 0.20 0.71 0.12 0.5
INTERCEPT 0.49 3.46 0.63 0.41

Table 9.2: Attackability Prediction Results on 2015 Test Data

model that predicts every target to be attacked (p(at,i) = 1; ∀i, t), and the UniformRandom cor-

responds to the baseline where each target is predicted to be attacked or not attacked with equal

probability. Note that, in this subsection, when evaluating two-layered models such as CAPTURE

and its variants, we are examining the performance of just the attackability layer output, and we

defer the evaluation of the observation predictions to Section 9.2.2. Since we evaluate the attack-

ability predictions of our models on metrics for binary classification, the real-valued output of the

attackability layer of CAPTURE and its variants were converted to a binary classification where

probabilities greater than or equal to the mean attack probability were classified as positive.

We make the following observations from these tables: First, INTERCEPT completely out-

performs the previous best model CAPTURE and its variants, as well as other baseline models

in terms of L&L and F1 scores. For 2014, INTERCEPT outperforms CAPTURE in terms of

precision, recall, F1, and L&L score. For 2015 test data, INTERCEPT represents an even larger

performance increase by approximately 3.50 times (L&L score of 3.46 vs 1.08) over CAPTURE
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and even more so for CAPTURE-PCov (L&L score of 3.46 vs 0.87). CAPTURE-PCov doesn’t

even outperform the positive baseline. Second, CAPTURE performs better on the 2014 dataset

(when the training and testing data were similarly distributed) than on the 2015 dataset. In con-

trast, INTERCEPT remained flexible enough to perform well on the difficult 2015 testing set.

However, CAPTURE-PCov, the more realistic variant of CAPTURE that can actually be used for

forecasting, fails to make meaningful predictions about the attackability of targets. Its similar per-

formance to PositiveBaseline demonstrates the need for models to learn the attackability of targets

independently of observation probability to avoid learning models that make incorrect inferences

about the attackability of the park (e.g., the entire park can be attacked). This is particularly

important in the wildlife poaching domain because, due to the limited number of security re-

sources, rangers cannot patrol every target all the time. Therefore, the attack probability model’s

predictions need to be extremely precise (high precision) while also being useful indicators of

poaching activities throughout the park (high recall). Third, CAPTURE-PCov-LB performs even

worse than CAPTURE-PCov in terms of L&L score for these attackability predictions, although

the only difference between the two models is the observation layer. This occurs because the

attackability prediction layer and the observation layer are not independent of one another; with

the EM algorithm, the parameters are being learned for both layers simultaneously. In addition,

by incorporating domain knowledge and penalizing the unattractive areas, CAPTURE-DKHO

unfortunately does not lead to a significant improvement in performance. Fourth, INTERCEPT’s

precision values are significantly better compared to CAPTURE-PCov in 2014 and both CAP-

TURE and CAPTURE-PCov in 2015 with only modest losses of recall, indicating a significant

reduction in the number of false positive predictions made throughout the park.
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Classifier Type F1 L&L Precision Recall
Weighted DecisionTree 0.11 1.01 0.06 0.48
SVM-BestFPCost-0.3 0.13 1.18 0.46 0.45
Logistic Regression - - - 0
AdaBoostDecisionTree-
BestFPCost-0.2

0.13 1.22 0.07 0.48

INTERCEPT 0.41 5.83 0.37 0.45

Table 9.3: Additional Attackability Prediction Results on 2014 Test Data

Classifier Type F1 L&L Precision Recall
Weighted DecisionTree 0.25 1.42 0.15 0.69
SVM-BestFPCost-0.25 0.19 0.72 0.12 0.43
Logistic Regression - - - 0
AdaBoost-DT-
BestFPCost-0.15

0.21 0.86 0.13 0.49

INTERCEPT 0.49 3.46 0.63 0.41

Table 9.4: Additional Attackability Prediction Results on 2015 Test Data

In Tables 9.3 and 9.4, we also compare INTERCEPT with other models including: (i) a de-

cision tree where each sample was weighted based on the patrol intensity for the corresponding

target (Weighted Decision Tree); (ii) the best performing SVM; (iii) Logistic Regression (which

predicted no attacks and thus metrics could not be computed); and (iv) the best performing Ad-

aBoosted Decision Tree. INTERCEPT provides significantly better performance than these other

models as well.

9.2.2 Observation Prediction Results

Tables 9.5 and 9.6 correspond to how accurately each model predicted the observations in our

test datasets. For a fair comparison, we also cascade the attackability predictions of the Positive-

Baseline and UniformRandom baselines with an LB observation layer, and convert those uncon-

ditional observation probabilities to binary predictions with a mean threshold, as was done for

CAPTURE’s attackability predictions. We observe the following. First, incorporating the obser-

vation model in Equation 8.4 improved the PR-AUC score of CAPTURE in both test datasets (for
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Classifier Type F1 Precision Recall PR-AUC
PositiveBaseline 0.13 0.07 0.79 0.12
UniformRandom 0.09 0.05 0.46 0.07
CAPTURE 0.14 0.08 0.73 0.33
CAPTURE-PCov 0.12 0.07 0.61 0.31
CAPTURE-PCov-
LB

0.13 0.08 0.48 0.36

CAPTURE-DKHO 0.16 0.09 0.72 0.33
INTERCEPT 0.36 0.32 0.89 0.45

Table 9.5: Observation Prediction Results on 2014 Test Data

Classifier Type F1 Precision Recall PR-AUC
PositiveBaseline 0.26 0.16 0.66 0.20
UniformRandom 0.19 0.12 0.45 0.14
CAPTURE 0.29 0.18 0.70 0.29
CAPTURE-PCov 0.29 0.18 0.70 0.29
CAPTURE-PCov-LB 0.34 0.21 0.85 0.32
CAPTURE-DKHO 0.36 0.24 0.79 0.32
INTERCEPT 0.50 0.65 0.41 0.49

Table 9.6: Observation Prediction Results on 2015 Test Data

2014, 0.36 vs 0.33; for 2015, 0.32 vs 0.29). Second, INTERCEPT outperforms the other models

by a large margin, both in terms of F1 and PR-AUC, for both test datasets. Combined with the

attackability results, these results demonstrate the benefit of learning more precise attackability

models in order to better predict observation probability.

9.2.3 Impact of Ensemble and Voting Rules

INTERCEPT consists of five experts with a majority voting rule. We now investigate the impact

of combining different decision trees into an ensemble, and the impact of different voting rules.

Tables 9.7 and 9.8 show that constructing an ensemble, INTERCEPT, significantly improves the

performance of the system as a whole, compared to the performance of its individual decision

tree and BoostIT members. The standard decision tree is more conservative as it predicts less

false positives, leading to higher precision, but suffers from low recall.
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Table 9.9 shows the impact that a voting rule has on performance on 2015 test data (2014

test data results are omitted as it exhibits the same trends). We evaluate the performances of the

best ensemble compositions, with three and five experts for each voting rule. We observe that:

(i) Ensembles which predict an attack if any one expert predicts an attack (Any) are significantly

better in terms of recall (0.68), but do poorly in terms of precision (0.23). This is because such

ensembles are more generous in terms of predicting an attack, and this leads to a significantly

higher number of false positives; (ii) Ensembles with a voting rule where all experts have to agree

(All) perform worse in terms of recall (0.16), but do best in terms of precision (0.89) as it makes

less positive predictions (both true positives as well as false positives). This would mean that it

would miss a lot of attacks in our domain, however; (iii) The majority voting based ensembles

(Maj), used by INTERCEPT, provide an important balance between precision (0.63) and recall

(0.41) as they are neither extremely conservative nor generous in terms of their predictions and

therefore outperform other voting rules significantly (L&L of 3.46).

This analysis provides important guidance for selecting ensembles depending on the require-

ments of the domain. For example, if it is extremely crucial to predict as many true positives

as possible and a high number of false positives is acceptable, then using an Any voting method

would be beneficial. However, in our wildlife poaching prediction problem, we have limited se-

curity resources and therefore cannot send patrols to every target all the time. Therefore, we not

only wish to limit the number of false positives but also increase the number of correct poaching

predictions. The majority voting rule provides this important balance in our domain.
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Classifier Type F1 L&L Precision Recall
PositiveBaseline 0.06 1 0.03 1
DecisionTree 0.2 1.8 0.14 0.36
BoostIT-1NN 0.19 2.23 0.12 0.55
BoostIT-2NN 0.21 2.13 0.13 0.45
BoostIT-3NN 0.2 2.01 0.13 0.45
INTERCEPT 0.41 5.83 0.37 0.45

Table 9.7: Attackability Prediction Results For Decision Tree Models on 2014 Test Data

Classifier Type F1 L&L Precision Recall
PositiveBaseline 0.14 1 0.07 1
DecisionTree 0.39 2.01 0.39 0.38
BoostIT-1NN 0.39 2.16 0.32 0.50
BoostIT-2NN 0.37 2.00 0.30 0.50
BoostIT-3NN 0.42 2.45 0.35 0.52
INTERCEPT 0.49 3.46 0.63 0.41

Table 9.8: Attackability Prediction Results For Decision Tree Models on 2015 Test Data

9.3 Evaluation on Real-World Deployment

INTERCEPT represents a paradigm shift from complex logit-based models such as CAPTURE

(Nguyen et al., 2016), and many others, to decision tree-based models. During development, we

worked with a domain expert from the Wildlife Conservation Society to improve and validate our

decision tree models and their corresponding predictions. Indeed, one advantage of shifting to a

decision tree-based approach (as opposed to methods like CAPTURE) is that the underlying rules

can be easily expressed to experts in non-AI fields.

After this development and evaluation on historical data was completed, we deployed IN-

TERCEPT to the field. Based on INTERCEPT’s predictions, we chose two patrol areas for QENP

rangers to patrol for one month. We selected these areas (approximately 9 square km each) such

that they (1) were predicted to have multiple attacks but did not have any attack observations

in the past and (2) were previously infrequently patrolled as rangers did not previously consider

these as important as other areas (and thus are good areas to test our predictions). Selecting areas

that our model deemed attackable but where no past observations exist was important for our field
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Classifier Type F1 L&L Precision Recall
BoostIT-3Experts-Any 0.36 2.11 0.26 0.59
BoostIT-5Experts-Any 0.34 2.13 0.23 0.68
BoostIT-3Experts-All 0.36 2.68 0.88 0.22
BoostIT-5Experts-All 0.28 1.97 0.89 0.16
BoostIT-3Experts-Maj 0.49 3.34 0.58 0.43
INTERCEPT 0.49 3.46 0.63 0.41

Table 9.9: Attackability Prediction Results For Different Ensembles on 2015 Test Data

test to demonstrate that a naive approach which only focuses on patrolling areas where at least

one observation has been made in the past will not be able to perform as well as our learning

model which has the capability to generalize across the entire park. After providing the rangers

with GPS coordinates of particular points in these areas, they patrolled these areas on foot and

utilized their expert knowledge to determine where exactly in these areas they were most likely

to find snares and other signs of illegal human activity (e.g., salt licks, watering holes). On each

patrol, in addition to their other duties, rangers recorded their observations of animal sightings

(i.e., 21 animals were sighted in one month) and illegal human activity.

We now present our key findings in Tables 9.10 and 9.11 and provide a selection of photos in

Figures 9.1(a)–9.1(d). The most noteworthy findings of these patrols are those related to elephant

poaching; rangers, unfortunately, found one poached elephant with its tusks removed. However,

this result demonstrates that poachers find this area, predicted by our model, attractive for poach-

ing. On a more positive note, our model’s predictions led rangers to find many snares before they

caught any animals: one large roll of elephant snares, one active wire snare, and one cache of

ten antelope snares. INTERCEPT’s predictions assisted rangers’ efforts in potentially saving the

lives of multiple animals including elephants.

In addition to wildlife signs, which represent areas of interest to poachers, the findings of

trespassing (e.g., litter, ashes) are significant as these represent areas of the park where humans
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Week# Illegal Activity Count
2 Trespassing 19
3 Active Snares 1

Plant Harvesting 1
4 Poached Elephants 1

Elephant Snare Roll 1
Antelope Snares 10
Fish Roasting Racks 2

Table 9.10: Real World Patrol Results: Illegal Activity

were able to enter illegally and leave without being detected; if we can continue to patrol areas

where poachers are visiting, rangers will eventually encounter the poachers themselves.

(a) Elephant snare rolls (b) Elephant snares

(c) Illegal campfire ashes (d) Antelope snare rolls

Figure 9.1: Illegal activities detected by rangers directed by INTERCEPT. Photo credit: Uganda

Wildlife Authority ranger
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Crime Type INTERCEPT Average Percentile
AnimalCom 1 0.16 89%
AnimalNoncom 3 0.73 91%
Fishing 1 0.73 79%
PlantNoncom 1 0.46 76%
Trespassing 19 0.20 100%
Total 25 2.28

Table 9.11: Base Rate Comparison: Hits per Month

So as to provide additional context for these results, we present a set of base rates in Table

9.11. These base rates, computed in and around our proposed patrol areas, correspond to the av-

erage number of observed crimes per month from 2003-2015. Animal commercial (AnimalCom)

crimes correspond to elephant, buffalo, and hippopotamus poaching; animal noncommercial (An-

imalNoncom) corresponds to all other poaching and poaching via snares; and plant noncommer-

cial (PlantNoncom) corresponds to illegal harvesting of non-timber forest products (e.g., honey).

The percentile rank corresponds to the number of months where our deployed patrols recorded

more observations than in the historical data. For animal noncommercial crime, there was an

average of 0.73 attacks observed monthly; for our deployed patrols, there were 3 separate obser-

vations (such as a roll of elephant snares), and in 91% of the months from 2003-2015, 2 or fewer

observations were recorded.

9.4 Lessons Learned

After our extensive modifications to the CAPTURE model and our subsequent evaluation, it is

important to identify the reasons why we obtained such a surprising result: decision trees out-

performed a complex, domain-specific temporal model. (1) The amount of data and its quality
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need to be taken into consideration when developing a model. The QENP dataset had signif-

icant noise (e.g., imperfect observations) and extreme class imbalance. As such, attempting to

develop a complex model for such a dataset can backfire when there does not exist sufficient data

to support it. Our decision tree approach, generally regarded as simpler, benefits from being able

to express complex relationships with limited noisy data. SVMs, also able to express non-linear

relationships, appear to fail due to their complexity and attempt to define very fine-grained di-

visions of the dataset. (2) Model interpretability and speed are a necessity when working in the

real-world. Our decision tree model was deployed because, not only did it have superior perfor-

mance to CAPTURE, but it was also easy to directly look at the rules the decision tree had learned

and evaluate whether or not those rules were reasonable (according to a domain expert). (3) The

tradeoff between interpretability and performance, studied in domains where interpretability is

key (e.g., biopharmaceutical classification) (Johansson, Sönströd, Norinder, & Boström, 2011),

may not always exist. Indeed, the most interpretable and the fastest executable model, out of all

that we evaluated, was also the best performing (by a large margin!); future research should (i)

not always forego interpretability and speed in favor of performance under the assumption that

there is always a tradeoff but (ii) instead be sure to investigate simpler models in case there isn’t

a tradeoff.
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Chapter 10

Belief Modeling

As highlighted in the introduction (Chapter 1), a major drawback of existing adversary behavior

models is the assumption that adversaries perfectly observe the defender’s mixed strategy and acts

based on that. In domains such as GSGs, the adversary only observes few pure strategies sampled

from the defender’s mixed strategy and reasons based on that. This chapter first presents a belief

modeling game that we developed to collect belief data in our game settings. The subsequent

sections constitute of three different settings with respect to the amount and type of data available.

Each of these settings lead to the development of different models that exploit the situations in

different ways to make more effective predictions based on the amount and type of data available.

10.1 Belief Modeling Game

We conducted human subjects experiments on AMT to collect data about how humans update

their beliefs about the defender’s mixed strategy while acting as adversaries based on their obser-

vations about the defender. Each observation is a pure strategy sampled from one of four different

defense strategies implemented by the defender (discussed later). Below is an overview of our
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Figure 10.1: Game Interface for simulated online belief modeling game

experimental game, the payoff structures and defender strategies used and the model categories

tested.

10.1.1 Game Overview

In our game, human subjects play the role of poachers (a type of adversary) who are trying

to estimate the defender’s mixed strategy by observing 10 consecutive pure strategies sampled

independently from the corresponding defender mixed strategy. Each pure strategy corresponds

to the strategy used by the defender on one particular day for patrolling the protected park area.

At the end of each day, the participants were required to enter their beliefs about the defender’s

mixed strategy based on their pure strategy observations till the current day. The game interface

is shown in Fig. 10.1.

113



In our game, the Google maps view of the portion of the park shown in the interface is divided

into a 3*3 grid, i.e. 9 distinct target cells. Overlaid on this map to the right of the interface is a

heat-map which represents the participants’ current belief about the rangers’ mixed strategy x —

a cell i where the participant believes that a defender has higher coverage probability xi is shown

more in red, while a cell with lower coverage probability is shown more in green. The participants

can use the sliders, text boxes and +/- buttons to enter their beliefs about the percentage likelihood

of a ranger being present in each cell and this change will be reflected by the color of that cell.

As the subjects play the game, they are given information about the presence/absence of a ranger

for each target i for each day as shown by the map in the left of the game interface. In Fig. 10.1,

you can observe the defender’s pure strategy for Day 2 in the map on the left (three rangers are

circled) and in the right map the participant is currently entering his/her beliefs (64% coverage

on top leftmost target) about the defender’s strategy after having observed two days of defender

patrols. The participant can check all the previous days’ patrols (pure strategies) by scrolling

down in the left side of the interface before entering their beliefs. In our game, M = 3 rangers

were protecting 3 out of 9 grid cells in the park. So, for any day, only 3 out of the 9 targets are

shown to be protected in the per day maps shown in the left of the interface.

As mentioned earlier, the pure strategies shown to the left were drawn independently from a

particular mixed strategy x used by the defender. This is the mixed strategy that the participants

were asked to estimate based on the pure strategy observations. This setting simulates a real-

world situation where poachers have knowledge of previous ranger deployments in terms of their

exact locations per day and they are tasked to form beliefs about the actual mixed strategy based

on these observations. In this paper, we are only interested in modeling the belief formation and

update procedures in such scenarios and hence only collect data about their beliefs and do not ask
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them to choose a target to attack after any day of play in the game. This would be an interesting

direction for future work.

10.1.2 Experimental Procedure

After an introduction to the game setting, the participants had to answer two validation questions

which tested their understanding of the game, and were allowed to proceed to a trial and then the

actual game if they answered them correctly. In the actual game, one of four mixed strategies was

randomly selected for each participant to eliminate any bias and he/she was shown the 10 pure

strategies sampled from the chosen mixed strategy.

Payment Scheme: We set up the payment scheme to not only reward participation but also to

incentivize truthful reporting of the participants’ beliefs. Specifically, each participant was paid a

‘base compensation’ of 0.50$ for participation. To motivate the participants to enter their beliefs

accurately after each day, we gave them an incentive called ‘performance bonus’, based on the

difference between the entered beliefs after each day and the actual mixed strategy from which

the pure strategies were sampled. For a particular day, the maximum amount (M) a participant

can earn is 0.30$, i.e., when their belief estimation is identical to the actual mixed strategy. Let

the deviation between the entered strategy for any day i and the actual mixed strategy be di.

Also, D represents the maximum possible deviation from the actual mixed strategy. Then the

performance bonus for the belief entered for dayi is M − (di/D) ∗M . The total reward was the

sum of their performance bonuses and base compensation.

Payoff Structures: We randomly generated two game boards showing how animals are

spread out across the 9 targets, which determines the payoff structure for the game. We hence-

forth refer to payoff structures and animal density structures interchangeably in this paper. The
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(a) ADS1 (b) ADS2 (c) Maximin (d) SUQR

Figure 10.2: (a,b): Animal Densities; (c) Maximin; (d) SUQR

total number of animals on the board is constant across games (= 40). Figs. 10.2(a)–10.2(b) show

animal densities used; they are referred to as ADS1 and ADS2 respectively in the paper.

Defender Strategies: We experimented with four different defender strategies to test how

humans form and update their beliefs when faced with different strategies. These are: (i) Max-

imin, (ii) Proportional, (iii) SUQR, and (iv) Uniform. Maximin and SUQR strategies for ADS1

are shown in Figs. 10.2(c) – 10.2(d). As explained in Chapter 2, while Maximin is a robust

game-theoretic strategy, an SUQR based strategy is generated by assuming a model of the human

adversary learned from prior data. SUQR strategy was computed based on learned weights in the

SUQR model as reported in (Nguyen et al., 2013) from a previous human subjects experiment

in security games. Proportional strategy puts coverage probabilities on targets in proportion to

the number of animals in that target. In a Uniform strategy, each target is covered with equal

probability by the defender. Since three defender resources were protecting 9 targets, sum of

the coverages (in terms of percentages) is ≤ 300. Coverages and adversary’s beliefs about the

coverages could be computed in terms of either probabilities or percentages.

We deployed our game on AMT and collected data for 191 and 160 participants forADS1 and

ADS2 respectively. Since each participant was randomly allocated to a condition corresponding

to one of the four mixed strategies, the number of participants for each condition in the resulting

data set varies. In the experiments with ADS1, Maximin, Proportional, SUQR and Uniform
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strategies were played by 35, 55, 44 and 57 participants respectively. We divided each of these

four groups of participants randomly into 10 train-test splits with 70% of the participants in the

training data and remaining 30% from the same split in the test data. Training data (whenever

used) is for learning our models. We will make belief predictions for participants in the test sets.

Non-learning models were evaluated on the same test sets as the learning models to enable fair

comparison.

Models Tested: The literature on belief modeling can be broadly categorized as: (a) Bayesian

updating models; (b) Heuristic belief updating; (c) Bayesian Theory of Mind (BTOM); and (d)

Level-k models. Here we will provide a description of models that fall in categories (a) and (b)

only, as these were earlier shown to be the best performing models in the SSG literature and

other related fields (e.g., psychology). We have extensively experimented with such models and

we present those results in Chapter 11. Models that belong to categories (c) and (d) will not

be presented in this thesis because: BTOM models ((Baker, Saxe, & Tenenbaum, 2011)) use

POMDPs to model beliefs, and are therefore not easily applicable in our setting due to infinite

state space (all possible mixed strategies); and Level-k models ((Wright & Leyton-Brown, 2014))

have only been used to predict actions in simultaneous-move games and it is non-trivial to adapt

to our belief updating setting in repeated SSGs.

Earlier work on belief modeling in categories (a) and (b) can be broadly classified into two

types based on the assumption about the amount of information available. First is the case when

no prior data is available to learn about the belief formation and update process of human agents

in a given situation. This is what has been used in SSGs. Second is the scenario when historical

belief update data for a group of human agents is available (training set). This facilitates learning

a generalized model of human belief formation and update, and apply the learned model to predict
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Figure 10.3: Model names and assumptions

belief updates for a previously unknown set of human agents (testing set). The assumption about

having access to training data is common in the psychology literature and we adapt one popular

model from that literature to SSGs. In this thesis, we will also discuss another setting where,

in addition to the training data about a group of participants, we will use information about

the previously unseen (test set) participants’ past beliefs (when available) to predict their future

beliefs. Fig. 10.3 provides a summary of the models presented in this paper along with the

corresponding assumptions.

10.2 Proposed Models: Setting without training data

For this setting where we have no training data, we first applied previous existing models (Sec-

tion 3.4.1) and observed that these models perform poorly in terms of predicting beliefs of the

test set adversaries. Therefore, we developed new models assuming both perfectly rational and
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boundedly rational adversaries that improve the state-of-the-art by providing new methods for (a)

prior initialization and (b) the updating scheme. Performance results for all models proposed in

this section are reported in Section 11.1.

10.2.1 Perfectly Rational Adversary

In this section, we consider two scenarios for modeling perfectly rational adversaries that make

different assumptions about the amount of information the adversary may have about the strate-

gies the defender is employing. In the first setting, we assume the adversary knows nothing about

the possible set of defender strategies. In the second setting, the adversary knows a set of can-

didate strategies of size |Θ| (=4 in our case) the defender may employ but does not know which

strategy among this set the defender chooses to implement. In my experiments, this candidate set

is composed of Maximin, SUQR, Uniform and Proportional strategies. The motivation for the

second scenario is that there may be an inside informant on the defender side who has secretly

revealed this information to the adversary, and therefore we were interested in investigating the

performance of a belief prediction model that accounts for this.

10.2.1.1 Uninformed Adversary

In the existing belief update model for a perfectly rational adversary in an SSG setting (Section

3.4.1), the adversary has no information about the types of strategies the defender may deploy. In

their model, (An et al., 2012) further assume that the adversary (a) starts from a uniform Dirichlet

prior and (b) only updates the prior corresponding to the observed pure strategies. We relax these

assumptions and improve the existing approach by proposing an informative Dirichlet prior based

on domain features and a similarity based updating mechanism.
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Informative Dirichlet Prior: We hypothesize that instead of starting from a uniform Dirich-

let prior (see Sec. 3.4.1) the adversary may start with an informative Dirichlet prior based on the

features of the domain. Intuitively, in our game, since animal density is the most important factor

in determining defender allocations in the wildlife crime domain, we hypothesize that this would

be an important feature that would influence the adversary’s prior beliefs about the defender’s

mixed strategy. Therefore, we compute an informative Dirichlet prior which puts prior values

on each pure strategy in proportion to the sum of the animal densities at the targets protected by

that pure strategy. We refer to this model as NBi, where B will henceforth represent Bayesian

models, i denotes informative prior, and N indicates that these models correspond to the case of

an non-informed adversary. The existing model (Section 3.4.1) will be referred to as NBu, where

u stands for uniform prior.

Updating Method: The intuition behind our novel updating method is generalizing the ob-

servations about pure strategies employed by the defender to other, similar pure strategies so that

a more informed updated belief can be generated even after making limited pure strategy obser-

vations. In this work, we assume that two pure strategies are similar if they differ in terms of

defender allocation in only one of the three protected targets. For example, in Eqn. 3.2, if a

pure strategy j ∈ P is observed three times in 5 days, then not only is αj + o5
j = 3, but also

αk + o5
k = 3 for pure strategy k which was never observed during the 5-day timeframe but is

similar to pure strategy j. The uniform and informative Dirichlet prior models with similar pure

strategy updating will henceforth be referred to as NBs
u and NBs

i respectively, where s denotes

the similarity based updating procedure.
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10.2.1.2 Informed Adversary

Let us denote the set of mixed strategies that the defender chooses from as Θ =<

θ1, θ2, ..., θ|Θ| >. For the case where the adversary has complete knowledge that the de-

fender is deploying one of these |Θ| different mixed strategies, a perfectly rational adversary

will perform Bayesian updates on their belief distribution over these strategies (represented as

ξ =< ξ1, ξ2, ..., ξ|Θ| >) based on the sequence of pure strategy observations. The updated prob-

ability for the kth mixed strategy θk (a vector denoting the coverage probabilities over all the

targets) after observing the pure strategy on day r, denoted as ξrk is computed using Eqn. 10.1

, where Sr denotes the set of all targets protected in pure strategy observation on day r, and xki

denotes the coverage probability at target i for the kth mixed strategy. His belief of the defender’s

mixed strategy after observing pure strategy on day r (denoted as br, which is a vector denoting

the beliefs over all the targets) can then be computed as a weighted average of all the mixed

strategies, where the weights are the updated probabilities (Eqn. 10.2). We denote this model as

IBu, where I denotes informed adversary and u indicates that we start with a uniform prior over

the set of mixed strategies.

ξrk =
ξr−1
k ∗

∏
i∈Sr x

k
i∑

k(ξ
r−1
k ∗

∏
i∈Sr x

k
i )

(10.1)

br =

∑
k(ξ

r
k ∗ θk)∑
k(ξ

r
k)

(10.2)

10.2.2 Boundedly Rational Adversary

The previously proposed belief update model for boundedly rational adversaries (Pita et al., 2009)

in an SSG setting with no training data (Sec. 3.4.1) assumed that the adversary forms beliefs based

on: (a) the actual mixed strategy of the defender, (b) uniform prior belief about the coverage at
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each target, and (c) fixed weight on the prior for all days. They did not propose any generic

method to weight the prior beliefs over days of the game. However, the above assumptions may

not hold in reality and that could be the reason for this model’s poor performance (see results in

Sec. 11.1).

First, the adversary would only observe the defender’s pure strategies and not know the exact

mixed strategy. Therefore, he can only reason based on the empirical probability distribution

of protection at each target. Second, he can have non-uniform prior beliefs about the coverage

probabilities. Finally, an exploration of different weighting methods is necessary as the adversary

can have any arbitrary weighting function for the prior weights over days of the game. None of

these has ever been taken into consideration in any of the existing work in SSGs. Our contri-

butions here are to address these shortcomings and improve the state-of-the-art belief model for

boundedly rational adversaries.

First, we incorporate in the existing model (Eqn. 3.3) the empirical mixed strategy (instead

of actual mixed strategy) of the defender computed using all the pure strategy observations till

the current day under consideration. So, when reasoning about the adversary’s beliefs for day i,

the model would compute the empirical strategy based on all pure strategy observations till day

i. Empirical mixed strategy is denoted as xE . Eqn. 10.3 shows this new model. Second, since

we assume that the defender has no prior training data about belief updates, it is not possible to

learn about the belief update patterns of humans in this scenario. Therefore, instead of learning

a function of how the adversary’s reliance on his prior beliefs changes over days, we experiment

with three different types of discounting functions and compare their performances: (a) linear, (b)

hyperbolic, and (c) exponential. We chose hyperbolic and exponential since these are the most

popular discounting methods in the literature (Frederick, Loewenstein, & O’Donoghue, 2002;
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Samuelson, 1937; Farmer & Geanakoplos, 2009). These models are denoted as linME
u , hypME

u

and expM
E
u . Linear discounting based mixture model is shown in Eqn. 10.3. Similarly for

hyperbolic (Eqn. 10.4) and exponential discounting (Eqn. 10.5).

b = µlin ∗ ρu + (1− µlin) ∗ xE (10.3)

b = µhyp ∗ ρu + (1− µhyp) ∗ xE (10.4)

b = µexp ∗ ρu + (1− µexp) ∗ xE (10.5)

We will henceforth use M to denote mixture models. u denotes uniform prior, E denotes that

empirical strategy is used and lin, hyp and exp denote linear, hyperbolic and exponentially de-

creasing weighting functions respectively. µ =< µ1, µ2, ..., µτ > denotes the weight on the prior

for each of the τ days of observations. In terms of the ith day of the game, µhyp and µexp are

computed as in Eqns. 10.6 and 10.7 respectively.

µhypi =
1

i
(10.6)

µexpi =
1

exp(i− 1)
(10.7)

We will refer to the original model by Pita et al. as discussed in Section 3.4.1 as 0.6M
A
u , where

A represents actual mixed strategy and 0.6 is the fixed weight on the prior.

Although the above models assume a uniform prior, we observed during my analysis that not

all participants start with a uniform prior; in fact while some participants start with a uniform
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prior and update their beliefs, others start with a proportional prior. We observed that 46% of par-

ticipants start with a uniform prior and the rest 54% start with a proportional prior in the Maximin

dataset for ADS1 and similar trends are observed in the other datasets as well. Whether a partic-

ipant starts from a uniform or proportional prior is determined in two ways: (i) by computing the

difference between the uniform mixed strategy and day 1 beliefs of participants, and (ii) compar-

ing the average (over all days) errors between a model that starts with a uniform mixed strategy

as the prior vs a model that starts with a proportional prior (denoted simply as p). Therefore,

since it is unknown which category of prior belief a previously unseen adversary would belong

to, we apply a model linME
{u,p} shown in Eqn. 10.8 that uses a weighted (weight=β) combination

of uniform and proportional strategies as the prior (Eqn. 10.9). Due to absence of data to learn

from, we assume β=0.5 in our experiments. We show interesting observations with these models

in Section 11.1.

b = µlin ∗ ρcomb + (1− µlin) ∗ xE (10.8)

ρcomb = β ∗ ρu + (1− β) ∗ ρp (10.9)

10.3 Proposed Models: Setting with training data

In order to explore the benefits of having prior training data on model performances, we present

models that learn adversary’s belief update process using training data and then use those learned

models to predict belief updates for new participants in the test dataset and evaluate their perfor-

mances. In this scenario, the set of participants in the train and test sets are disjoint. We first

applied the popular non-linear log-odds model from the psychology literature (Section 3.4.2) for

the first time in an SSG setting. However, contrary to our expectations the performance of the
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more complex log-odds model was similar or poor as compared to the existing models that do not

assume data availability(Section 11.2). Here, we propose an improved version of the log-odds

model and customize existing and our proposed models from previous section to take advantage

of training data when available.

10.3.1 Perfectly Rational Adversary

The first model assuming perfectly rational adversaries improves upon the previously existing

model (Eqn. 3.2) by learning the Dirichlet prior that best fits the training set participants’ beliefs,

uses the learned prior as the starting prior for any test set participant and then updates the prior

based on the observation sequence in the same way as Eqn. 3.2. We refer to this model as

NBlearn where learn denotes learned prior, and N indicates that this model corresponds to the

case of an uninformed adversary, i.e., the adversary has no information about the number and

types of strategies employed by the defender. In addition to learning the prior from data, we

also use my proposed updating scheme from Section 10.2.1.1 in a new model to update the

prior corresponding to unobserved pure strategies that are similar to the observed pure strategies.

Hereafter, the learned Dirichlet prior model with similar (denoted by s) pure strategy updating

will be referred to as NBs
learn.

10.3.2 Boundedly Rational Adversary

In this section, we propose three types of learning models assuming boundedly rational adver-

saries: (i) linear mixture models; (ii) non-linear mixture models; and (iii) clustering based models

that exploit the heterogeneity in adversary behavior.
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Linear Mixture Models: Given training data about belief formation and update from a set of

participants, the defender can learn the weighting function for the prior that best fits the training

data. Here, by best fit we mean that we compute the weight µ =< µ1, µ2, ..., µτ > that minimizes

the average root mean squared error (rmse) between the model’s predicted beliefs and those of the

training set participants. Therefore, instead of using a fixed weighting function as in our proposed

models in Section 10.2.2, we use model learnME
u shown in Eqn. 10.10.

b = µlearn ∗ ρu + (1− µlearn) ∗ xE (10.10)

Consistent with our non-learning model with combined prior in Sec. 10.2.2, we propose a learn-

ing variant learnME
{u,p} (Eqn. 10.11) where we learn β in Eqn. 10.9 along with µ.

b = µlearn ∗ ρlearncomb + (1− µlearn) ∗ xE (10.11)

Non-linear Mixture Models: As discussed earlier in Section 3.4.2, Fox et al. (See et al.,

2006) considered one ignorance prior term representing the uniform belief distribution. We relax

this assumption and consider another informative prior term. We re-write Eqn. 3.4 as:

ln
bi

1− bi
= a1 + a2 ∗ ln

uniF
uniA

+ a3 ∗ ln
f i(F )

f i(A)
+ a4 ∗ ln

pniF
pniA

(10.12)

Here, pniF corresponds to the new prior term (represents proportional distribution) for the event

that target i is covered. Similarly for the alternate event A that the target is not covered. We then

perform regression analysis(See et al., 2006) with training data to learn the model parameters.

We refer to this model as learnlog{u,p}.
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Clustering based Models: During my comprehensive analysis of the performances of differ-

ent models on the belief data collected on AMT, we observed a heterogeneous behavior among

adversaries in terms of their belief formation process. We primarily made the following observa-

tion in terms of adversary belief updates.

Observation 2. Adversaries can be clustered into four distinct groups based on their belief

updates: (a) participants who start from a uniform prior and then update their beliefs by taking

into account the empirical distribution, (b) participants who start from a proportional prior and

then update their beliefs by taking into account the empirical distribution, (c) participants who

only update based on the empirical distribution and starts with no prior, and (d) participants

whose updates have no clear pattern and could be termed as random players.

This observation inspired us to apply clustering techniques on the belief data of the training

set participants and learn a separate model for each cluster and use those learned models to predict

the beliefs of the test set participants. With respect to our proposed clustering based models, we

look at two scenarios based on the amount of information available to the defender about belief

updates of test set participants. As mentioned earlier, in this section, we assume that the defender

only has training data from a set of participants and no data for any of the days for the test set

participants. We will look at other models that also have additional information about test set

participants in the next section.

For the case where the defender can only learn from given training data, we propose a

weighted clustering based approach to model and predict beliefs of a heterogeneous population

of adversaries. First, we perform c-means clustering on the 10 day belief data of the training set
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participants to determine the clusters of training set participants. Since the c-means algorithm de-

pends on the initial cluster centroids provided, each run of c-means can lead to different clusters

and hence result in different cluster centroids being generated. Since we did not want to influence

the clustering by providing any initial starting point, in order to prevent the algorithm from gener-

ating clusters with huge variations in the cluster centroids for every run, we ran the algorithm for

1000 iterations each time for a total of 1000 initial seeds chosen using the k-means++ heuristic

initialization algorithm. We then selected the clustering (out of the 1000) with the lowest within-

cluster sums of point-to-centroid distances and used it for the next steps. We used the c-means++

heuristic initialization (Arthur & Vassilvitskii, 2007) algorithm with 1000 random initial seeds

and chose the clustering with the lowest within-cluster sums of point-to-centroid distances. Once

the clusters are generated, we learn the model learnME
{u,p} (Eqn. 10.11) for each of the c clusters.

learnM
E
{u,p} was chosen as it performed best (see Section 11.2) among all previously discussed

models, and it is also the most generalized mixture model presented. Next, we compute the

model’s predicted beliefs for any participant after observing pure strategy for day r as a weighted

average of the predictions of each of the models (Eqn. 10.13):

br =

∑c
i=1 γi ∗ ibr∑c

i=1 γi
(10.13)

Here, γi = Nc is the weight given to cluster i and is the number of training set participants that

belong to that cluster. ibr denotes the belief predicted for day r by the learned model learnME
{u,p}

for cluster i. The intuition behind weighting each cluster’s model with the number of participants

in that cluster is that we assume that the test set participant distribution will be similar to the

training set participant distribution and hence we give higher importance to clusters containing
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higher number of participants, and vice versa. We will henceforth refer to this model as B-

REACTwtc .

10.4 Proposed Models: Setting with training and testing data

In the setting studied in the previous section, training data collected from a group of participants

are used to predict belief updates of a completely new set of participants in test set. Here, I assume

that in addition to the training data I also have some data collected from the participants in the

test set (earlier days of belief updates), which are used to predict belief updates in following days.

10.4.1 Instance based Learning Models

Instance-Based Learning Theory (IBLT) (Gonzalez, Lerch, & Lebiere, 2003) is a popular model

used in Cognitive Science that attempts to explain human decision making in dynamic tasks.

Based on past data about various situations and actions of different agents in such situations,

IBLT attempts to predict the behavior of an agent in some situation by reasoning about known

actions of other agents in similar situations. We propose an IBL model for belief prediction of an

unknown adversary Tm after observing pure strategy jr on day r.

We assume that in addition to knowing beliefs over all days of a set of adversaries (training

set), we also gain information about the beliefs of the previously unseen test set adversaries at

the end of each day. This could be achieved by placing an informant or spy among the poachers

who would provide the defender information about the poacher’s day-to-day beliefs. This allows

the defender to make future belief predictions about the test set adversaries using their leaked

beliefs till the current day by reasoning about beliefs of similar adversaries that are in the training
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data. In order to achieve this task, my model first computes similarity between beliefs (till day

r − 1) of a test set adversary and beliefs (till day r − 1) of all training set adversaries. I then

choose the k most similar training set adversaries and compute the belief of test set adversary

Tm upon observing the rth pure strategy based on day r beliefs of the k most similar training

set participants based on Eqn. 10.14, where θi ≡ 1
d(i,Tm)2

and d(i, Tm) denotes the dissimilarity

between the test set adversary Tm and its ith most similar training set adversary.

Tmbr =

∑k
i=1 θi ∗ kbr∑k

i=1 θi
(10.14)

We will refer to this as the IBLk model, e.g., a model based on four nearest neighbors will be

referred to as IBLk=4. Comparison results for various values of k are shown in Section 11.3.

10.4.2 Clustering based Models

We customize my previously proposed clustering based model to take advantage of additional

information about the test set participants (when available). We consider two cases of information

availability: (a) before each day the defender has complete information about a test set adversary’s

beleifs till the previous day– this is same as the assumption for IBLmodels; and (b) the defender

knows the exact cluster a test set adversary belongs to.

For case (a), we compute for each test set adversary, the nearest (k=1) cluster he belongs to

based on the known beliefs of that participant till day i − 1 and apply the model for that cluster

to predict his/her day i beliefs. This model is represented as B-REACT k=1
c .

For case (b), since we assume that the exact cluster for each test set adversary is known to the

defender, we apply the corresponding cluster’s learned model to predict their beliefs for any day
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i. This is a somewhat unrealistic best-case scenario which gives us an important lower bound and

therefore forms a baseline for comparing other models. In order to implement this, an important

question is: how do we determine the exact cluster for a test set participant? In our game, since we

have each participant’s belief information for each of the 10 days, we assume the ideal scenario

where we know the beliefs of all the 10 days for any test set participant ahead of time. This allows

us to perform an exact nearest neighbor computation w.r.t. the c cluster centroids and determine

the cluster for any test set adversary. The model is henceforth referred to as bestB−REACT k=1
c

and its performance is shown in Sec. 11.3.
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Chapter 11

Belief Modeling Experiment Results

In this chapter, we present results for existing and our proposed models (see Figure 10.3 for all

model names and their assumptions). We report the performance of all the models in estimating

the beliefs of the test data set participants in terms of the average root mean squared errors (rmse)

between the human entered beliefs and the models’ predicted beliefs. The averaging is done over

all targets for all days over the total number of participants in the respective test sets and over the

total number of train-test splits. We only show results on ADS1 data in this thesis. Results on

ADS2 have the same trends for all the models that we tested, thus confirming the value of our

modeling and analysis. So, those results are omitted from this thesis. In the figures, model names

are on the x-axis and average rmse (lower is better) is on the y-axis. We start y-axis from 8 instead

of 0 to show differences between the model performances more prominently. The four defender

strategies for which we conducted our experiments (Maximin, Proportional, SUQR and Uniform)

are shown by the colored/patterned bars for each model in each of the figures. Any mention of

statistical significance indicates that the discussed model performances are statistically significant

based on two-tailed t-tests at confidence=0.05.
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11.1 Setting without training data
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(a) Existing vs our Best model
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(b) Discounting functions

8

12

16

20

24
Maximin Proportional

SUQR Uniform

          
          

 
    
       

                          

    NBi 
              

    
    

        
    NBu

S      NBi
S 

             

IBu 
     

                      
linM{u,p}

E 

(c) Bayesian models

Figure 11.1: Belief Estimation Errors (average RMSE) for models with NO training data
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In Figs. 11.1(a), 11.1(b) 11.1(c), we first show performances for previously existing and our

proposed models that do not learn on training data. We discuss important observations about

these models below:

Comparison w.r.t. our best model: In Fig. 11.1(a), we demonstrate that our best performing

non-learning mixture model linME
u,p completely outperforms (statistically significant) the three

existing non-learning models in SSGs (NBu, 0.6M
A
u and IU ) in terms of predicting beliefs for

any defender strategy. We also observe that although for existing models, Maximin and SUQR are

hardest to estimate due to their non-intuitiveness (as is evident by comparing their performances

on Maximin and SUQR data against their performances on Proportional and Uniform data), our

best model’s performance on these strategies is similar to intuitive strategies such as Uniform

and Proportional. Our model’s performance further highlights the impact of using the mixed

empirical strategy instead of actual mixed strategy, a linear discounting function to capture the

adversary’s decreasing reliance on their prior beliefs, and a weighted combination of uniform and

proportional prior so as to perform well against an unknown adversary who can belong to either

one of these two groups.

Linear discounting performs best: We show in Fig. 11.1(b) that a simple linearly de-

creasing weighting function on the prior belief in the mixture models assuming boundedly ra-

tional adversaries (linME
u ) surprisingly performs similarly or better when compared to models

that consider more complex discounting functions such as hyperbolic (hypME
u ) and exponential

(expME
u ). Results for linME

u are statistically significant w.r.t. expM
E
u for all strategies except

only on Maximin and Uniform datasets w.r.t. hypME
u . This demonstrates that human adversaries

have extremely strong initial biases towards a prior strategy in these game settings and they only

linearly decrease their reliance on that bias over days of the game. Furthermore, we observe that
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applying a combined prior (the best non-learning model linME
u,p shown at the end in Fig. 11.1(b))

improves performance on SUQR data with statistical significance but only slightly on Maximin

and Proportional datasets. Although intuitively one would expect linME
u,p to perform better, this

model: (a) applies a fixed weight 0.50 on each of proportional and uniform priors; and (b) fails to

personalize the weight for each adversary. We’ll show later that a learning model with clustering

significantly improves the performance.

Informed prior and similarity based updating performs best: We show in Fig. 11.1(c)

that our best non-learning model linME
u,p significantly outperforms all proposed non-learning

Bayesian update models. Furthermore, we make the following observations: (i) the performance

of the previously existing model (NBu shown in Fig. 11.1(a)) assuming perfectly rational adver-

saries significantly improves (20.73 to 16.11 for Maximin data) due to our proposed informative

prior model (NBi). NBi performs comparatively worse when compared to NBu on only the Uni-

form dataset because it performs poorly for participants who start with a uniform prior and stay

there due to observations from a Uniform mixed strategy. When deploying any of the other three

strategies we show that it is beneficial to start with a more informative prior. The improvement

is more pronounced if we only apply our proposed updating scheme to the original model (20.73

for NBu to 14.85 for NBs
u for Maximin data). The best performance is by our model NBs

i ,

which combines the above ideas. This emphasizes the benefit of starting with an informative

prior and updating similar pure strategies when faced with limited observations. The informed

rational adversary model IBu which assumes that adversaries have prior knowledge about the set

of defender mixed strategies, doesn’t perform as well as the uninformed adversary models which

make no such assumption.

135



8

12

16

20
Maximin Proportional

SUQR Uniform

                    
 

    
       

                                        
    

    
        

   
learnlogu learnlog{u,p}    

        N Blearn     NBlearn
S   learnMu

E   
  

learnM{u,p}
E  B-REACTc=4

wt 
linM{u,p}

E 

 

Figure 11.2: Belief Estimation Errors (average RMSE) for models with train data only

11.2 Setting with training data

In Fig. 11.2, we show performances for previously existing and our proposed models that learns

on training data. Important observations are highlighted below:

Existing learning models perform poorly: We observe that the performance of learnlogu is

the worst among all the learning models although its performance improves when an additional

ignorance prior term is incorporated (learnlogu,p) in the existing model.

Clustering significantly improves performance: First, we show that our proposed cluster-

ing based model B-REACTwtc with c = 4 clusters outperforms (statistically significant) the

previous best non-learning model linME
u,p (shown as the last model) on 3 out of 4 datasets. More

importantly, it also outperforms all other learning models. The significant difference between the

non-clustering model learnME
u,p andB-REACTwtc=4 which learns the same model but on different

clusters, can be attributed to our earlier Observation 2 in Sec. 10.3.2 about the four distinct groups
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of adversary belief updates. This is consistent with our observation about the weights learned for

each model for each of the four clusters: (a) Cluster 1: The learned model’s weight µlearn on

the prior decreases almost linearly from approx. 0.95 to 0.05 over 10 days, and the fixed weight

on proportional prior (1 − β in Eqn. 10.9) is high (approx. 0.95 for most datasets), representing

a group of adversaries who start with proportional prior and then linearly updates their reliance

on the empirical strategy as they observe more pure strategies; (b) Cluster 2: Both µlearn and β

are 0, representing adversaries who only update based on the empirical strategy and do not start

from any prior; (c) Cluster 3: It represents a group of adversaries who start with a uniform prior

and then update their beliefs with more importance on their observations as days progress– the

learned model has a high β value (approx. 0.97 for most datasets) and a µ that is high initially but

gradually decreases (approx. 0.98 to 0.23); and, (d) Cluster 4: The model learns a high weight

on β (approx. 0.97 for most datasets) and a µ that decreases from 0.90 to 0.50 (approx.) over 10

days, thus representing a unique group of adversaries who start with a uniform prior and update

at random on most days, and are not influenced by the pure strategy observations.

Learning Dirichlet prior improves performance: Learning a Dirichlet prior significantly

improves the predictions of the resulting models (NBlearn and NBs
learn respectively). For Pro-

portional data, the average rmse for NBs
learn is 11.86 as opposed to 17.47 for the original model

with no training data (NBu in Fig. 11.1(a)).

Learning weights in mixture models do not help: Mixture models that learn the weighting

function on the prior from training data (learnME
u and learnM

E
u,p) are similar in performance

to the best mixture model that does not learn on any training data (shown as the last graph in

Fig. 11.2 for comparison). This is a surprising observation, especially because we observed

significant improvement in performances due to learning for perfectly rational adversary models
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Figure 11.3: Belief Estimation Errors (average RMSE) for models with train and test data

(discussed above). Further investigation reveals that the shape of the learned weighting function

is approximately linear for majority of the datasets, and hence the similar performance. Although

surprising, this is a significant observation because it demonstrates that in the absence of data

we could simply apply a linear decreasing weighting function irrespective of the deployed mixed

strategy and expect to perform as well as if we had prior data to learn from. Furthermore, this

demonstrates that human adversaries have extremely strong initial biases towards a prior strategy

in our game settings and they only linearly decrease their reliance on that bias over days of the

game.

11.3 Setting with training and testing data

This section discussed results for models that use both training as well as additional information

of test set adversaries to predict future beliefs. In Fig. 11.3, we compare the performance of
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such models against the best performing model discussed in the previous section (B-REACTwtc=4

shown as the last model for comparison).

Testing set information does not help clustering models: B-REACT k=1
c=4 , a model that

uses past beliefs of test set participants to infer their clusters, has similar performance to B-

REACTwtc=4 which does not have this information. An ideal model that assumes complete

knowledge about each test participant’s exact cluster (bestB-REACT k=1
c=4 has rmse of 9.8 for Pro-

portional data) shows improved performance over B-REACTwtc=4 which has an rmse of 10.08.

However, the near similar performance of B-REACTwtc=4 to models that assume additional in-

formation about test set adversaries demonstrates the validity of our weighted clustering based

technique towards making accurate predictions about adversary beliefs even in the absence of

additional information.

IBL models perform best: IBL models (Section 10.4.1) outperform (rmse for IBLk=3

is 8.93 for Proportional dataset) B-REACTwtc=4 (rmse of 10.08), B-REACT k=1
c=4 and bestB-

REACT k=1
c=4 with statistical significance. This shows that, while clustering based models suffer

from abstraction due to clustering, IBL models are able to make more personalized predictions

when information about past beliefs of test set participants is available.

We demonstrate in Fig. 11.3 that the performance gain of our proposed model that learns only

on the training data (B-REACTwtc=4) when compared to previously existing models is due to our

improved performance through all days of observations, with a decreasing trend of the rmse’s over

days. This is also true for the best performing non-learning model (linME
u,p). However, there is no

clear trend in the performance of the previously existing models. In fact, it is surprising that they

perform worse with more observations. We also observe that the model that takes advantage of
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Figure 11.4: Per Day Belief Estimation Errors (average RMSE) for some of the models

both existing training data as well as available data from test set participants bestB-REACT k=1
c=4

performs significantly better over all days as compared to any of the other models.

In conclusion, we highlight three key observations from our extensive analysis with existing

and our proposed belief models. First, contrary to most research in psychology, we observed sur-

prisingly that a linear discounting function best fits adversary behavior in our setting as opposed

to more complex hyperbolic and exponential discounting. Second, we demonstrated the benefit

of modeling heterogeneous groups of adversaries for improved belief prediction. Third, we show

that our models significantly outperform existing models; the difference in performance further

increases when using learning models and becomes even more pronounced when personalized

prediction models (e.g., IBL) are employed.
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Chapter 12

Conclusions and Future Directions

Although several competing human behavior models have been proposed to model and protect

against boundedly rational adversaries in various security and sustainability domains, no study

has yet been conducted either against actual human subjects or based on real-world data to show

which is the best model in different settings. This article provides three major contributions to-

wards answering that question and therefore, provides an advancement to the field of adversary

behavior modeling. Given the important applications in security and sustainability, such as pro-

tecting wildlife and fisheries, my contributions in this thesis are critical for such domains.

My first major contribution is to provide a a novel human behavior model called SHARP for

domains where the challenge is to make fine-grained predictions on a small set of targets based

on plentiful attack data. SHARP has three major novelties: (i) It models the adversary’s adaptive

decision making process by reasoning based on success or failure of the adversary’s past actions

on exposed portions of the attack surface. (ii) It accounts for lack of information about the ad-

versary’s preferences due to insufficient exposure to attack surface by reasoning about similarity

between exposed and unexposed areas of the attack surface, and also incorporating a confidence

based discounting parameter to model the learner’s trust in the available data. (iii) It integrates
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a non-linear probability weighting function to model the adversary’s perception of probabilities.

Based on a repeated measures study of competing models we provide results analyzing the per-

formance of SHARP along with other existing approaches. Besides data collected from AMT,

we also demonstrate SHARP’s superiority by conducting experiments with security experts from

the government of Indonesia as well as various NGOs (WWF, WCS, YABI, etc.) who are in

charge of protecting wildlife in the national park. Results from my experiments show that: (i)

Human perceptions of probability are S-shaped, contradicting the inverse S-shaped observation

from prospect theory. (ii) Existing human behavior models and algorithms perform poorly in ini-

tial rounds; and (iii) SHARP consistently performs significantly better than existing approaches,

most notably in the initial rounds.

Our second major contribution is to present INTERCEPT, a paradigm shift from complex

temporal models for data rich scenarios to simpler decision tree-based models for domains requir-

ing coarse-grained predictions over large geographical areas based on sparse and noisy historical

data. Previous state-of-the-art models developed for such settings suffer from poor performance

and other critical limitations that preclude its actual deployment in the field. Indeed, in the pro-

cess of conducting the most extensive empirical evaluation in the AI literature of one of the largest

real-world poaching datasets from QENP, we show a surprising result: INTERCEPT, based on

a simpler model, significantly outperformed the more complex models in the presence of sparse

(and noisy) attack data. Furthermore, INTERCEPT satisfied other requirements such as fast exe-

cution speed, which are beneficial when deploying such models in the field. Therefore, as a first

for behavior modeling applications for the wildlife conservation domain, we presented results

from a month-long test of INTERCEPT by rangers in QENP where rangers found and confis-

cated an active snare and almost a dozen additional snares, including multiple elephant snares,
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before they were deployed. Given that the rangers also found a poached elephant, their finding

and confiscating of new elephant snares before they were deployed is significant; this research

has potentially saved the lives of elephants and other animals in QENP.

As the third major contribution, we address the lack of empirical evaluation of belief for-

mation models by conducting the first-of-its-kind systematic comparison of existing and new

proposed belief models on belief data collected through human subjects experiments on AMT.

This is important because it relaxes a common assumption in adversary behavior modeling – the

adversaries have access to the actual mixed strategy of the defender while optimizing their own

attack strategies, which is not true for domains such as wildlife protection. Modeling the ad-

versary’s belief formation and update procedure is therefore crucial in developing more effective

attack prediction models by incorporating the best belief model for a particular scenario in the

best behavioral model for that scenario. We highlight three key observations based on my exper-

iments in belief modeling. First, we show that surprisingly a linear discounting function on the

adversary’s prior beliefs best fits adversary belief update process, as opposed to more complex

weighting functions such as hyperbolic and exponential discounting. Second, we demonstrate the

presence of four different types of belief formation and update procedure among human subjects

and show the benefit of modeling such heterogeneous groups of adversaries for improved belief

prediction. Third, we show that my proposed models significantly outperform existing models

for various settings with and without past data; the difference in performance significantly im-

proves when using learning models for heterogeneous adversaries in data-driven settings. This

research provides a clear guidance towards incorporating such belief models in the relevant attack

prediction models for improved predictions in different scenarios in the future.
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Future work could potentially explore the following important research areas: (a) Effects of

opponent player on probability weighting: explore the hypothesis that different shapes of the

probability weighting function could be obtained depending on the opponent in the game, i.e.,

people possibly think about probability differently when playing against nature as opposed to

when playing against an adversary; (b) Information leakage for strategic gain: how the defender

(rangers) can use various signaling schemes to strategically reveal information (Xu, Freeman,

Conitzer, Dughmi, & Tambe, 2016) to catch the adversaries (poachers); (c) Modeling deception:

how the defender (rangers) can strategically deceive the adversaries (poachers) with misinfor-

mation and get higher utility; (d) Cooperative adversary behavior modeling: address the prob-

lem of modeling the attackers’ bounded rationality in a more complicated, cooperation-enabled

(Gholami, Wilder, Brown, Sinha, Sintov, & Tambe, 2016) and repeated SSG setting for wildlife

protection; (e) Modeling more intelligent adversaries such as the ones who can influence (not just

learn) the distribution of animals through changes to the environment (food sources, water, natu-

ral shelter, etc); and (f) Application of adaptive adversary models in other domains: explore the

suitability of adaptive adversary behavior models proposed in this thesis, for different domains

such as cybersecurity and urban crimes.
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Chapter 13

Appendix

13.1 Algorithm to learn PSU model parameters

The algorithm first randomly divides all data from past rounds into training and testing data (Line

2), and then splits the training data into K training and validation data sets (Line 3). Considering

a set of {δ , γ} combinations, we learn the other parameters of the model and compute the average

validation error over all the validation datasets for each {δ , γ} combination (Line 14). We then

choose the {δ , γ} combination with the minimum average validation error (Line 16) and using

that combination we re-learn the other model parameters and that forms our final weight vector

(Line 17).
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Algorithm 3 Algorithm to learn the weights of P-SUQR and its variations in repeated SSGs
INPUT: Data from R rounds: D1, D2, ... , DR.

OUTPUT: Learned weights (δp, γp, ω1, ω2, ω3, ω4).

1: for r=1 to R do

2: Randomly divide the collected data Dr into one training (Trr) and test (Ter) set.

3: Take the training samples (Trr) and randomly divide it into K training (kTrvr) and vali-

dation (kV alr) splits (1 ≤ k ≤ K).

4: end for

5: Consider a range of values for both δ and γ (Eqn. 5.1 in the article).

6: Discretize each range and consider all possible M pairs for {δ , γ} in that range.

7: for i=1 to M do

8: for k=1 to K do

9: Given training splits kTrv1, kTrv2, ... , kTrvR, learn the weights kω=(kω1, kω2, kω3,

kω4) of Eqn. 10 using MLE to maximize the sum of log-likelihoods.

10: Predict using learned weights kω on the validation splits kV al1, kV al2, ... , kV alR.

11: Calculate the prediction errors kErr1, kErr2, ... , kErrR on the validation sets kV al1,

kV al2, ... , kV alR respectively.

12: Calculate the sum of all prediction errors kErr1, kErr2, ... , kErrR and let it be kErr.

13: end for

14: Calculate the average of all K prediction errors kErr (1 ≤ k ≤ K) and let that be

AvgErri.

15: end for

16: Let p be the index of the {δ , γ} pair with the minimum AvgErri (i=1 to M ). Choose {δp ,

γp} as the best parameter values for the probability weighting function.

17: Given training sets Tr1, Tr2, ... , TrR and {δp , γp}, learn the weights ω=(ω1, ω2, ω3, ω4)

of Eqn. 10 using MLE . The final learned weight set is then (δp, γp, ω1, ω2, ω3, ω4).
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13.2 Proof of Theorem 1

Proof. Assume Rdi (> 0), P di (< 0), Rai (> 0) and P ai (< 0) Also assume that the defender has

M ∈ N+ defender resources. Let qi be the attacking probability for target i. According to SUQR

model,

qi =
eω1xi+ω2Rai +ω3Pai∑
j e

ω1xj+ω2Raj+ω3Paj

We rewrite the defender’s expected utilityUdi (x) as: Udi (x) = (Rdi−P di )xi+P
d
i . Then defender’s

overall expected utility can be represented as

f(x) =
∑
i

qiU
d
i (x)

and the optimization problem is to maximize f(x) under the constraints
∑

i xi ≤ K and 0 ≤

xi ≤ 1.

Assume x̄ is the optimal defender strategy and opt is the optimal value of defender’s overall

expected utility. Let S̄ be the set of targets with positive coverage probability, i.e., S̄ = {i|x̄i >

0}. Then ∀i ∈ S̄, ∂f
∂xi
|x̄ ≥ 0. Otherwise, a defender strategy with a lower coverage probability

on target i will achieve a higher defender expected utility than x̄, contradict with the optimality.

Formally, let ∆i = (0, 0, ..., δ, 0, 0) be a vector with an infinitesimal positive value in ith row. If

∂f
∂xi

< 0, then f(x̄−∆i) = f(x̄)− δ ∂f∂xi |x̄ > f(x̄).

Further, the targets in S̄ can be devided into two subsets S̄1 and S̄2 where S̄1 = {i|x̄i = 1}

and S̄2 = {i|0 < x̄i < 1}. Then ∀i, j ∈ S̄2, ∂f
∂xi
|x̄ = ∂f

∂xj
|x̄ ≥ 0. Otherwise, a defender strategy

that moves a little bit coverage probability from a target with higher partial derivative to a target
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with a lower partial derivative will achieve a higher defender expected utility than x̄, contradict

with the optimality. Formally, if ∂f
∂xi
|x̄ > ∂f

∂xj
|x̄,

f(x̄+ ∆i −∆j)− f(x̄) = f(x̄+ ∆i −∆j)− f(x̄+ ∆i) + f(x̄+ ∆i)− f(x̄) (13.1)

= −δ ∂f
∂xj
|x̄+∆i + δ

∂f

∂xi
|x̄ (13.2)

= −δ( ∂f
∂xj
|x̄ + δ

∂f2

∂xi∂xj
|x̄) + δ

∂f

∂xi
|x̄ (13.3)

= δ(
∂f

∂xi
|x̄ −

∂f

∂xj
|x̄)− δ2 ∂f2

∂xi∂xj
|x̄ (13.4)

> 0 (13.5)

The last inequality is achieved by neglecting the second order term. So f(x̄+ ∆i−∆j) > f(x̄).

Moreover, when ω1 > 0, ∀i, j ∈ S̄2, ∂f
∂xi
|x̄ = ∂f

∂xj
|x̄ = 0. Select two targets i, j ∈ S̄2.

As ∂f
∂xi
|x̄ = ∂f

∂xj
|x̄, f(x̄ + ∆i − ∆j) − f(x̄) = −δ2 ∂f2

∂xi∂xj
|x̄ according to line (4). The partial

derivative of function f is

∂f

∂xi
|x̄ = ω1qi(U

d
i − f) + qi(R

d
i − P di )

If ∂f
∂xi
|x̄ = ∂f

∂xj
|x̄ > 0, then we have

ω1(f − Udi ) < Rdi − P di (13.6)

and

ω1(f − Udj ) < Rdj − P dj (13.7)
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Thus

∂2f

∂xi∂xj
= ω2

1qiqj(2f − Udi − Udj )− ω1qiqj(R
d
i − P di +Rdj − P dj ) (13.8)

= ω1qiqj(ω1(f − Udi ) + ω1(f − Udj )− (Rdi − P di +Rdj − P dj )) (13.9)

< ω1qiqj(R
d
i − P di +Rdj − P dj − (Rdi − P di +Rdj − P dj )) (13.10)

= 0 (13.11)

The inequality in line (10) comes from (6) and (7) and the fact the ω1 > 0. So we have

f(x̄ + ∆i −∆j) − f(x̄) > 0, which means moving some coverage probability from target i to

target j in S̄2 leads to a defender strategy with higher expected utility. It contradicts with the

optimality.

We now prove that ‖S̄2‖ < 2. As we know∀i, j ∈ S̄2, ∂f
∂xi
|x̄ = ∂f

∂xj
|x̄ = 0 and ∂f2

∂xi∂xj
= 0, so

f(x̄+ ∆i −∆j)− f(x̄) = 0 and we can move some coverage probability from target i to target

j to get another optimal strategy x̂ with the same expected defender utility opt while i, j ∈ Ŝ2.

As the x̂ is also an optimal strategy, it also satisfies ∂f
∂xi
|x̂ = ∂f

∂xj
|x̂ = 0. So we have

ω1(opt− Udi (x̂i)) = Rdi − P di (13.12)

ω1(opt− Udi (x̄i)) = Rdi − P di (13.13)

From (12)-(13), we get

(Rdi − P di )(x̂i − x̄i) = 0 (13.14)
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As x̂i 6= x̄i, we get Rdi = P di , which contradicts with the payoff structure of the game.

Next, we prove ‖S̄2‖ 6= 1. Assume target i is the only element in S̄2. If ∂f
∂xi
|x̄ > 0, we

can increase xi to get a better defender strategy without violating the constraint of total number

of resources as K ∈ N and all targets other than i are covered with probability 0 or 1. This

contradicts with optimality. So ∂f
∂xi
|x̄ = 0, i.e., ω1(f − Udi (x̄i)) = Rdi − P di . Then

∂2f

∂x2
i

= ω1qi(ω1(1− 2qi)(U
d
i − f) + 2(Rdi − P di )(1− qi))

= 3ω1qi(R
d
i − P di )

> 0

So xi is a minimum point and increasing xi can get a better defender strategy. Again, this contra-

dicts with optimality.

So S̄2 = ∅ and the coverage probabilities of the optimal strategy are chosen only from 0, 1,

i.e., the optimal defender strategy is a pure strategy.

13.3 Sample Email

Hi,

Thank you for participating in our experiment. Your base compensation for round

3 has been paid to you via AMT. Thank you also for your valuable comments and

suggestions about the game and its strategies. We will definitely take those into ac-

count later on. Now, we would want you to participate in the 4th round of our exper-

iment. Please follow the link below to participate: http://cs-server.usc.edu:

16568/gamelink/index.jsp
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In the first page, please read carefully the compensation details. You will be starting

with the performance bonus that you earned in the last round. The last date to participate

in this round of our experiment is Wednesday (November 6 2014) 4 pm PST. Please try to

complete the experiment by the deadline because otherwise deployment of the next round

gets delayed.

You are very important to the study and your continued participation is critical.

Don’t be discouraged if you got caught by a ranger in this round. The chance to play

again and earn performance and completion bonuses are coming in a few days. We look

forward to your continued participation.

Thank you.

13.4 Challenges and Remedies of Online Repeated Measures

Experiments

In this section we discuss a set of challenges that we faced during our repeated measures experi-

ments on AMT and our methodological contributions towards mitigating those challenges.

For our repeated measures experiments, due to unavailability of data, the strategy shown for

each first round of the real game was Maximin. We then learned the model parameters based on

previous rounds’ data, recomputed and redeployed strategies, and asked the same players to play

again in the subsequent rounds. For each model, all five rounds were deployed over a span of

weeks. Such repeated measures studies on AMT are rare in game-theoretic studies; and certainly

none have been conducted in the context of SSGs. Indeed, while the total time of engagement
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Table 13.1: Average time (in seconds) taken to play the actual game per round
Round 1 Round 2 Round 3 Round 4 Round 5

61 52 47 43 39

over our 20 experimental settings was 46 weeks, each setting required on average 2.3 weeks

(See Table 4.1). One interesting statistic to note is that the average amount of time taken by the

participants to play the actual game based on which the results in our experiments are generated,

is 45 seconds, as obtained by computing from the data over all four payoff structures. The average

time spent on the actual game per round is shown in Table 13.1. This, in addition to comments

and feedback from the participants (Appendix 5), indicates that the participants were spending

time considering the trade-offs between the risk of getting captured and obtaining high rewards.

When we started conducting the experiments, we observed that there were very high attrition

rates (i.e. people dropped out) for the number of participants between rounds of the game. The

varying number of participants from one round to another made it difficult to not only compare

between the performance of the model between rounds but also at the end of the five rounds.

We hypothesized that the low participant retention rates were due to the following reasons: (i)

our initial payment scheme for the participants did not have a large payout at the end of all the

rounds of the experiment and therefore participants could potentially leave the experiment at

any time depending on how much money they were satisfied with; (ii) initially, each round on

average lasted 3.5 weeks as some participants would complete the experiments quickly while

others would take a long time to respond: hence several participants may have been dropping

out due to such lengthy rounds; and (iii) the lack of commitment to complete a few weeks long

repeated measures experiment could also be an issue, as has previously been found in similar

repeated measures studies (Estrada, Woodcock, & Schultz, 2014).
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To mitigate the above challenges, we took the following steps: (i) We set up the payment

scheme to consistently reward participation in each round plus offering a relatively high comple-

tion incentive at the end of the experiment; (ii) Although we allowed respondents sufficient time

(3-4 days on average) to respond (Menard, 2008), as giving them an immediate deadline to finish

a particular task can result in high attrition rates, we also maintained persistent contact by send-

ing repeated reminders (Cotter, Burke, Stouthamer-Loeber, & Loeber, 2005) to the participants,

especially to participants who did not respond immediately; (iii) Prior to beginning the first round

of our experiment, we asked participants to commit to completing all five rounds, i.e, remain in

the study through completion, to be eligible for study enrollment.

The problems addressed by the development of each of our strategy (for example, the choice

of concrete metrics, payoffs and incentive mechanisms) does indeed lead to the development of

some methodological contributions towards conducting such repeated measures experiments on

crowdsourcing platforms like AMT. Since we did not find any related research in this area which

specifies a minimum accepted participant retention rate for a repeated measures study, in our

work we attempted to achieve a retention rate of at least 80%. this also ensured sufficient number

of participants for statistical significance tests. We therefore implemented the steps mentioned

above, in order, and measured the effect of the implementation of the corresponding strategy until

we achieved the desired participant retention rate. Next, we discuss the implementation details

of each of the steps taken (in the order they were implemented) to reduce attrition rates and also

provide results showing the improvements due to our approaches.
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13.4.1 Step 1: Payment Scheme

In our initial payment scheme, shown in Table 13.2, column 2, participants were paid a fixed ‘base

compensation’ (=$0.50) for participation in each round of the experiment and a ‘performance

bonus’ based on the points earned (or lost) in each round by attacking a particular target region in

the game. The participants started with an initial amount of $0.50 as the ‘performance bonus’ in

each round. For each reward point earned in a particular round (i.e., if they successfully poached),

$0.10 was added to the initial ‘performance bonus’. For each point lost (i.e., if they were captured

by the ranger), $0.10 was deducted from their current ‘performance bonus’. The bonus at the end

of a particular round was not carried forward to the next round and was paid along with the fixed

‘base compensation’ for that round. For example, for an experiment with two rounds and $0.50

as the ‘base compensation’ for each round, if a participant earned a reward point of 9 in the

first round and got a penalty of 1 in the second round, (s)he was paid $(0.50+(0.50+9*0.10)) =

$1.90 at the end of round 1 and $(0.50+(0.50-0.10*1)) = $0.90 at the end of round 2. With this

payment scheme in place, we observed that there were very high attrition rates, i.e., very few

people returned to play in each round, thus making it difficult to compare the performances on

various models on a varying number of participants for each model. This is shown in Fig. 13.1(a),

where the x-axis shows rounds of the game and the y-axis shows retention rates. Note that we

had to abandon the experiments due to high attrition rates (low retention rates) in round 5 for one

of the models (PSUQR) in the first trial and rounds 4 and 5 for PSUQR in the second trial. The

failure of this method led us to implement a new payment scheme which is discussed below.

We made three changes to our first method of compensation. First, we introduced a ‘com-

pletion bonus’ (=$2.50) for completing all the rounds of the experiment. Second, like before, to
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motivate the subjects, the participants were incentivized based on the reward/penalty of the re-

gion they chose to attack, i.e., ‘performance bonus’. However now, while the base compensation

was paid after each round was completed, the ‘performance bonus’ was carried forward from one

round to the next and paid along with the ‘completion bonus’ at the end of all the rounds of the

experiment. Third, the players now started with an initial ‘performance bonus’ of $1.50 in round

1 and they could win up to a maximum and a minimum amount in each round and hence a very

high ‘performance bonus’ at the end of all the rounds, based on how successful they were. We

still had the same ‘base compensation’ for each round as $0.50, thus resulting in a total base com-

pensation of $2.50 over 5 rounds. However, the maximum amount they could potentially earn at

the end of all the rounds from only the performance and completion bonus was as high as $7.60.

The performance and completion bonus together at the end of all the rounds was much higher as

compared to the total base compensation earned for playing all the 5 rounds. This ensured that

majority of the participants remained motivated and returned to play all the rounds. A detailed

comparison of the initial and modified payment schemes are shown in Table 13.2.

To better understand the impact of our new payment scheme, let us take the previous example

of a two-round experiment where a participant earned a reward point of 9 in the first round and a

penalty of 1 in the second round. According to our new payment scheme, (s)he was paid $0.50

at the end of round 1 (the bonus compensation for round 1). (S)he also earned a performance

bonus of $(1.50+9*0.1) = $2.40 in round 1 which was carried forward to round 2 and not paid at

the end of round 1. Then at the end of round 2 she was paid $(0.50+(2.40-1*0.1)+2.50) = $5.30

(base compensation for round 2 (=$0.50) + performance bonus at the end of round 2 (=$2.30) +

completion bonus (=$2.50)). As mentioned before, as compared to our initial payment scheme,

this high amount at the end of all the five rounds of our experiments ensured that a relatively high
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Table 13.2: Comparison between payment schemes
Types of

Compensation
Initial Payment Scheme Modified Payment

Scheme
Base

Compensation per
round

0.50$
— paid after each round

0.50$
— paid after each round

Performance
Bonus per round

0.50$ + 0.10$ per reward
point (or -0.10$ per

penalty point)
— paid after each round

start with 1.50$ in round
1, then 0.10$ per reward

point (or -0.10$ per
penalty point) in every

round
— added to previous
rounds’ performance
bonus and gets caried

forward; total
accumulated amount is

paid after 5 rounds
Completion Bonus 0$ 2.50$

—paid after 5 rounds

number of participants were retained till the end of the study. On an average, including all the

compensations, each participant was paid $7.60 upon completion of our five-round experiments.

There were also participants who earned as high as $9 at the end of the five rounds including all

the compensations. The effect of this payment scheme on participant retention rate can be seen

in Fig.13.1(b).

Although the new payment scheme proved effective in retaining more participants, one possi-

bility to be considered is that the performance bonus should not have caused any bias such that the

subjects who performed well are more likely to participate in future rounds but who performed

poorly are more likely to drop off. We observe from our data that the average retention rates over

all games for people who succeeded in the previous round and those who failed in the previous

round are 90% and 92% respectively. Therefore, we conclude based on our data that no bias was

introduced due to the design of our payment schemes.
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(a) before payment scheme (b) after payment scheme and before initial study enroll-
ment

(c) after payment scheme and after initial study enroll-
ment

Figure 13.1: Retention Rates for various models (a) before implementation of our payment
scheme, and (b) after implementation of our payment scheme and before implementation of ini-
tial study enrollment procedure, and (c) after implementation of our payment scheme and initial
study enrollment.

13.4.2 Initial Study Enrollment

Even though the implementation of the new payment scheme saw an increase in retention rate

as shown in Fig. 13.1(b), there was still a decrease in retention rates over rounds. Therefore,

we implemented an approach where the participants had to commit to completing all five rounds

before starting the first round of the game. Commitment has been shown to be effective in the

past in various scenarios (Aharonovich, Amrhein, Bisaga, Nunes, & Hasin, 2008; Baca-Motes,

Brown, Gneezy, Keenan, & Nelson, 2013). In our game, the participants were asked to either
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‘agree’ or ‘disagree’ to this commitment. On an average, 96% of the participants who enrolled in

AMT for our study agreed to this commitment. These participants were then allowed to proceed

towards playing the first round of the game. On the other hand, if they did not agree, they were

thanked for their interest in our study, but not allowed to participate any further. The effect of this

on the retention rate can be seen in Fig. 13.1(c). This clearly shows that a significant number of

participants with prior commitment towards completing all the rounds of the experiment, returned

and completed all the rounds.

13.4.3 Reminder Emails

Even though the implementation of the payment scheme and initial study enrollment procedures

increased the retention rate as shown in Fig. 13.1(c), the retention rate still decreased over rounds

for some of the experiments, even though at a slower rate. Therefore, we sent repeated reminders

to the participants with clearly stated deadlines to ensure that they (i) do not forget to participate

in the current round, and (ii) also remain motivated throughout the study. The emails were worded

carefully and a sample email is shown in Appendix 3. Results are shown in Figs. 13.2(a) and

13.2(b).

In this section, we gave an overview of our trial and validation games, tested a set of hy-

pothesis to improve participant retention rates for our AMT repeated measures experiments and

showed the results of the deployment of each of our strategies to mitigate the challenges in retain-

ing participants. We observed that a delayed compensation scheme along with prior participant

commitment and repeated reminders throughout the course of the experiment helped in achiev-

ing an average retention rate of 83.69%, which is above the 80% retention rate. In Section 7,
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(a) ADS1 (b) ADS2

Figure 13.2: Retention Rates for various models over 4 rounds, starting from round 2 to round 5,
on (a) ADS1 and (b) ADS2 respectively.

we will show results from the comparison of our models based on the data obtained from the

corresponding number of participants retained per round.

13.5 Participant Feedback

After the actual game was over, we asked the participants for feedback regarding the games they

played. We asked them two specific questions regarding: (i) their experiences playing the game;

and (ii) any strategy they employed while playing the actual game. For point (i), participants

primarily mentioned that they enjoyed playing the game and that the instructions were easy to

understand while some even mentioned that it was interesting to play a game that involved tak-

ing decisions while balancing risk and reward. For point (ii), most participants mentioned that

they tried to balance risk and rewards by looking for target areas close to their starting point that

had relatively high animal density but still a reasonable probability of success. This risk-reward

balance is consistent with the model we learned which put different weights on defender cover-

age and adversary reward and penalty. This feedback in essence supports formulations such as
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SHARP studied in this article. Few participants mentioned that they took risks by attacking target

areas with high animal density even if the coverage probabilities in that target area was relatively

high. Below we share some key feedback by the participants regarding their game playing expe-

riences. Note that these are actual comments from the participants and have not been modified in

any way.

13.5.1 Feedback for ”Please tell us about your experience playing the game”:

(a) Easy to understand and the visual indications make it even easier, (b) The game was enjoyable

and easy to understand, (c) The game was interesting, no bugs encountered, (d) I thought it was

fun, very clearly laid out and enjoyable to play, (e) It was fun and kind of exciting. I liked the

opportunity and it was interesting to balance risk and reward.

13.5.2 Feedback for ”Did you use a particular strategy in playing the game? If

yes, please specify.”:

(a) Find a greenish square with many hippos, as close as possible to the starting location, (b) I

would only target areas with greater than 50% success rate, (c) My basic strategy was to find the

most populated, greenest and closest square, (d) I stayed away from the darker red areas, (e) I

tried to balance the risk and reward factors. That is, what would be acceptable as a loss versus

what I could possibly gain, (f) I tried to get the maximum payoff while minimize the risk of

getting caught to an acceptable level, (g) I decided to risk it and set traps in areas that payed well,

even though there is high chance that I will get caught.
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13.6 Additional Experimental Results on ADS3 and ADS4

13.6.1 Defender Utilities

(a) Results on ADS3 (b) Results on ADS4

Figure 13.3: Defender utilities for various models on ADS3 and ADS4 respectively.

(a) Results on ADS3 (b) Results on ADS4

Figure 13.4: Cumulative defender utilities for various models on ADS3 and ADS4 respectively.
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13.6.2 Learned Probability Curves

(a) ADS3 (b) ADS4

Figure 13.5: Learned probability curves for P-SUQR on ADS3 and ADS4 respectively.

(a) ADS3 (b) ADS4

Figure 13.6: Learned probability curves with Prelec’s probability weighting function for P-SUQR

on ADS3 and ADS4 respectively.

(a) ADS3 (b) ADS4

Figure 13.7: Learned probability curves for PWV-SUQR on ADS3 and ADS4 respectively.
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13.6.3 Evidence of Attack Surface Exposure

(a) ADS3

(b) ADS4

Figure 13.8: Total number of unique exposed target profiles till the end of each round for each

coverage probability interval for ADS3 and ADS4.
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13.6.4 Adaptiveness of SHARP

(a) ADS3 (b) ADS4

Figure 13.9: Adaptivity of SHARP and Convergence of P-SUQR on payoff structures ADS3 and

ADS4 respectively.

13.7 Robustness of SHARP’s results across domains

One might argue that since the wildlife poaching game requires participants to place snares with

the goal of poaching animals, responses from human subjects and hence the results may be biased

due to their moral dilemma. In order to verify this, we conducted a separate set of human subjects

experiments on ADS1 and ADS3 with a game (see Figure 13.10) where the participants play the

role of a soldier who is looking to place a bomb to attack enemy trucks. This is exactly same as

the wildlife poaching game and data is also collected in the same way, with the only exception

that this game revolves around a different attack scenario. In this game, there is no moral dilemma

in terms of conducting the attack because the backstory primes them to acts as soldiers fighting

for their as well as the country’s honor. The results, in terms of the defender’s utilities over rounds

of the game, as well as the learned probability weighting functions, are similar to those obtained

from the poaching game, as can be seen in Figures 13.11(a) to 13.12(b).
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Figure 13.10: Soldier Game Interface for our simulated online repeated SSG

(a) Results on ADS1 (b) Results on ADS3

Figure 13.11: Defender utilities for various models on ADS1 and ADS3 respectively.
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(a) ADS1 (b) ADS3

Figure 13.12: Learned probability curves for SHARP on ADS1 and ADS3 respectively on the

Soldier game data.
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