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ABSTRACT
Election control considers the problem of an adversary who attempts
to tamper with a voting process, in order to either ensure that their
favored candidate wins (constructive control) or another candidate
loses (destructive control). As online social networks have become
significant sources of information for potential voters, a new tool
in an attacker’s arsenal is to effect control by harnessing social
influence, for example, by spreading fake news and other forms of
misinformation through online social media.

We consider the computational problem of election control via
social influence, studying the conditions under which finding good
adversarial strategies is computationally feasible. We consider two
objectives for the adversary in both the constructive and destructive
control settings: probability and margin of victory (POV and MOV,
respectively). We present several strong negative results, showing,
for example, that the problem of maximizing POV is inapproximable
for any constant factor. On the other hand, we present approxima-
tion algorithms which provide somewhat weaker approximation
guarantees, such as bicriteria approximations for the POV objective
and constant-factor approximations for MOV. Finally, we present
mixed integer programming formulations for these problems. Ex-
perimental results show that our approximation algorithms often
find near-optimal control strategies, indicating that election control
through social influence is a salient threat to election integrity.
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1 INTRODUCTION
The integrity of elections is crucial to the functioning of democratic
institutions. As a result, a large body of work has focused on the
robustness of elections to various forms of control, where a mali-
cious party attempts to manipulate election results, for example, by
bribing voters and adding or removing votes. While it is important
to understand the vulnerability of elections to such control, there are
many countries where blatant tampering is (fortunately) uncommon.
For instance, outright voter fraud is very rare in the United States
federal and state elections [1, 13].

However, more subtle forms of election control may attempt to
subvert legitimate information channels towards malicious means.
For example, political advertising and news (in the editorial form)
are common legitimate means for convincing prospective voters.
Such communication, when sufficiently transparent, is often critical
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to the effective functioning of democracy, and can exert considerable
influence on voting behavior [5, 17, 25]. Malicious control over
information promulgated through these channels can thus have con-
siderable impact, but is also difficult to achieve due to the relative
transparency of traditional media sources.

The increasing importance of social media, such as Facebook and
Twitter, for propagating information, including about political issues
[12, 29, 44], is a game changer. Both the decentralized nature of
information sources on social media, and their associated lack of
transparency, present malicious parties with an unprecedented oppor-
tunity to influence a democratic political process. Recent evidence
of deliberate election tampering in the 2016 US presidential election
through fake news—deliberately falsified news content—suggests
that this issue is a major concern for election integerity for years
to come [2]. For example, it is estimated that the typical American
adult saw at least one fake news story during the election cycle [2],
and such stories have been shown to impact voters’ judgment [39].

Motivated by these concerns, we initiate the first algorithmic
study of the problem of election control through social influence.
In our setting, there is a social network of voters who elect a single
winner by plurality vote. An outside party may select a subset of
nodes as seed nodes for a news story or advertisement. Each of these
seed nodes shares the story with their friends. Each friend has some
probability of being influenced in their voting preferences, as well
as sharing the story further. The question is whether, given a limited
budget, the attacker can influence enough voters to ensure that a
target candidate wins or loses the election. This is similar to the
election bribery setting considered by previous work, but with the
added consideration of social influence from the bribed nodes1.

This problem is closely related to influence maximization, which
has been studied primarily in the context of viral advertising. There,
the objective is simply to maximize the expected number of people
who receive a message. While influence maximization admits a
simple (1 − 1/e)-approximation algorithm, election control through
social influence presents a number of new algorithmic challenges.
We study both constructive and destructive control for two different
objectives: 1) maximizing the expected margin by which a target
candidate wins (loses) the election (margin of victory, or MOV), and
2) maximizing the probability that a target candidate wins (loses)
election (probability of victory, or POV).
Summary of main results: We provide a mix of negative (hard-
ness and inapproximability) and positive (algorithmic) results for
the problem of election control through social influence. Our main
contributions are the following:

1Our use of the term “election control" deviates slightly from common terminology.
Here, control refers generically to the objective of changing election outcomes, not the
means of doing so. The means considered in this paper are closest to the bribery setting
in previous work, e.g., we do not study adding or removing candidates or voters.
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• We show that the MOV objective in the two candidate case is
monotone submodular and hence admits a (1 − 1/e) greedy
approximation algorithm.
• We prove that the POV objective is hard to approximate to

within any multiplicative factor for both constructive and de-
structive control, even in elections with only two candidates.
• We provide a bicriteria approximation algorithm for the POV

objective in the two-candidate case. In fact, our algorithm
applies to the more general problem of maximizing the prob-
ability that a submodular function exceeds a given threshold
value and may be of general interest.
• In the multicandidate case, we provide algorithms which

achieve similar guarantees as the two-candidate case up to
the loss of a constant factor (independent of the number of
candidates). Such guarantees hold for both constructive and
destructive control, for both the MOV and POV objectives.
• We give mixed integer linear programming (MILP) formula-

tions for all of the above settings which can be used to find
optimal solutions.
• We experimentally compare our approximation algorithms to

the optimal strategies produced by the MILP. Despite formal
hardness results, our approximation algorithms often find
near-optimal solutions, particularly for the MOV objective.
This suggests that computational hardness may not always be
a practical barrier to controlling elections via social influence.

2 RELATED WORK
Our work is closely related to two research areas: election control
and influence maximization. These bodies of work are separate: to
our knowledge there is no previous work which considers election
control using social influence (though there is a sizable literature
studying opinion dynamics and social choice [15, 36, 40, 43]). The
computational study of election control was started by Bartholdi et
al. [3], who considered constructive control. The destructive control
setting was introduced by Hemaspaandra et al. [28]. A large body of
work has studied election control under different settings and voting
rules [16, 20] including bribing voters [4, 21, 22, 24, 46], adding or
deleting voters [19, 23, 33, 34], and adding or deleting candidates
[8, 23, 33]. The main difference between our work and previous
work on election control is that we introduce and analyze social
influence as a novel mechanism for both constructive and destructive
control. Perhaps the closest related work is that of Bredereck and
Elkind [6], who study the manipulation of opinion dynamics in a
different model (though not in the context of elections).

There is a large, parallel literature devoted to influence maximiza-
tion in social networks. This line of work was introduced by Kempe
et al. [30] who introduced influence maximization in the independent
cascade model and proposed a greedy algorithm based on submodu-
larity. Since then, a number of newer algorithms have been proposed,
mostly attempting to scale up the greedy algorithm to very large
graphs [10, 14, 26, 42]. Subsequent work has also introduced sev-
eral related settings, e.g., continuous time dynamics [18, 41], bandit
settings where dynamics are learned over time [7, 11, 32], or robust
problems where influence probabilities are uncertain [9, 27, 35, 45].
None of this work considers using social influence to control an
election, and our setting brings a range of new technical challenges.

Almost all work on influence maximization is founded on submod-
ularity of the objective function. However, even though we use the
same model of influence spread, objectives related to election control
often violate submodularity, and we need to develop new algorithmic
techniques. We mention here work by Krause et al. [31] on robust
submodular optimization. For optimizing the POV objective, we use
a similar form of surrogate objective. However, our objective is to
maximize the probability of a desired outcome, not the worst-case
value, so both our final algorithm and analysis are novel.

3 PROBLEM FORMULATION
We consider an election with candidates C = {c∗, c1, c2, ...cℓ}. c∗ is
a special target candidate, and the objective of the election control
problem is to make c∗ either win the election (constructive control)
or lose (destructive control). The voters are the nodes of a graph
G = (V ,E). Each voter v has an ordering πv over the candidates and
casts a vote for πv (1), i.e., their first ranked candidate. We assume
that voters do not behave strategically. The winner is decided via the
plurality rule (the candidate with the most votes wins the election).
If there is a tie, we say that the attacker fails. This tie-breaking does
not impact any of our results. Let V j

ci = {v ∈ V : πv (j) = ci } be the
set of voters who rank candidate ci in place j. Initially, ci has |V 1

ci |

votes.
Social influence: There is an attacker who wishes to change the

results of the election by spreading messages which cause voters
to change their ordering over candidates. In constructive control,
the attacker can spread a message which causes any voter v who
becomes influenced to promote c∗ by one place in πv (exchanging
c∗ with the candidate previously ranked above them). If πv (c∗) = 1,
the message has no effect on v, but v may still decide to share the
message with their neighbors. In destructive control, a voter who
is influenced demotes c∗ by one place in πv . Influence spreads via
the independent cascade model (ICM), the most common model in
the influence maximization literature. Each edge (u,v) ∈ E has a
propagation probability pu,v . If u is influenced, it makes one attempt
to influence each neighbor v. Each attempt succeeds independently
with probability pu,v . The attacker may select a set of k seed nodes
who are influenced at the start of the process. The diffusion then
proceeds in discrete time steps until no new activations are made.

We also introduce a useful alternate view of the ICM, the live-
graph model. We can equivalently see the ICM as removing each
edge (u,v) from the graph with probability 1 − pu,v . A node is influ-
enced if it is reachable from any seed node via the edges that remain.
Call any specific setting of present/absent edges a scenario y, with
induced graphGy . Letm = 2 |E | be the total number of scenarios. Let
f (S,y) denote the number of nodes which are reachable from any
seed node in S on graph Gy . The expected number of nodes influ-
enced under the ICM is just f (S) = Ey [f (S,y)]. Similarly, the prob-
ability that the number of influenced nodes exceeds any threshold
value ∆ is Pry [f (S,y) ≥ ∆]. At times, we will want to specifically
reason about the probability some subset of V is influenced. For any
A ⊆ V , let f (S,y,A) denote the number of nodes in A reachable from
S in scenario y. Analogously, f (S,A) = Ey [f (S,y,A)]. We remark
that such functions can be evaluated up to arbitrary precision by
averaging over random samples for y. For simplicity, we ignore such
issues here since they are well understood [10, 14, 42].
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Objectives: We now formally introduce our two objectives, start-
ing with the simpler two-candidate case. In a two-candidate election,
constructive and destructive control are clearly equivalent since max-
imizing the probability that c∗ loses is the same as maximizing the
probability that the other candidate wins (and vice versa). Hence,
we study only constructive control without loss of generality.

In the margin of victory (MOV) objective, we want to maximize
the expected number of votes by which c∗ wins the election. We
define our objective as the change in the expected margin:

MOV(S) = 2E
y

[
f (S,y,V 2

c∗ )
]
.

The factor 2 is present since reaching a voter in V 2
c∗ both adds

a vote for c∗ and removes a vote for the opponent. We study the
expected change in the margin (not the margin itself) so that approx-
imation ratios are well defined even when the margin is negative.

In the probability of victory (POV) objective, we want to maxi-
mize the probability that c∗ wins the election. Let ∆ = 1

2

(
|V 1
c1 |−|V

1
c∗ |

)
+

1 be the number of voters that c∗ needs to reach in order to win the
election. The POV objective is

POV(S) = Pr
y

[
f (S,y,V 2

c∗ ) ≥ ∆
]

which is just the probability that at least ∆ of the voters who have
c∗ in second place are reached.

In the multicandidate case, constructive and destructive control
are no longer equivalent. Further, the impact of messages is more
complex than before. E.g., in constructive control not only does c∗
gain a vote, but another candidates loses a vote; we need to keep
track of the number of votes lost by each other candidate.

We start out by defining functions which give the change in the
margin between c∗ and another candidate ci in a given scenario y
when seed set S is chosen. Let χ (v, S,y) be 1 if node v is reach-
able from seed set S in the graph Gy . The change in margin (in
constructive and destructive control, respectively) is given by

дC (S,y, ci ) =
∑

v ∈V 2
c∗\V

1
ci

χ (v, S,y) + 2
∑

v ∈V 2
c∗∩V

1
ci

χ (v, S,y)

дD (S,y, ci ) =
∑

v ∈V 1
c∗\V

2
ci

χ (v, S,y) + 2
∑

v ∈V 1
c∗∩V

2
ci

χ (v, S,y)

which gives value 2 for every node that is flipped from ci to c∗
(or vice versa) and hence count double towards the margin, and
1 for other nodes. Based on this, we now give expressions for
the change in margin given any fixed scenario y and seed set S .
We start with constructive control. Note that before any interven-
tion, the margin is just maxci |V 1

ci |−|V
1
c∗ |. Afterwards, the margin is

maxc j |V 1
c j |−дC (S,y, c j ) − |V 1

c∗ |. Hence, the change in margin is

mC (S,y) =
[
max
ci
|V 1
ci |−|V

1
c∗ |

]
−

[
max
c j
|V 1
c j |−дC (S,y, c j ) − |V 1

c∗ |

]
= min

c j

(
дC (S,y, c j ) + max

ci
|V 1
ci |−

���V 1
c j

���) .

That is, the change in margin is driven by candidate with largest
starting vote (|V 1

c j |) and smallest loss in vote (дC (S,y, c j )). Now
considering all scenarios y, the constructive control objectives are

MOVC (S) = E
y
[mC (S,y)] POVC (S) = Pr

y
[mC (S,y) ≥ ∆C ] .

where ∆C = maxci |V 1
ci |−|V

1
c∗ |+1 is the necessary change in mar-

gin for c∗ to win. For destructive control, we can similarly write the
change in margin and corresponding objectives as

mD (S,y) = max
ci

(
дD (S,y, ci ) + |V 1

ci |
)
−max

c j
|V 1
c j |

MOVD (S) = E
y
[mD (S,y)] POVD (S) = Pr

y
[mD (S,y) ≥ ∆D ] .

where ∆D = |V 1
c∗ |−maxci |V 1

ci |+1.

4 ELECTIONS WITH TWO CANDIDATES
We start with elections with only two candidates. Recall that in
this setting, constructive and destructive control are equivalent, so
our results are stated only for constructive control (trying to ensure
c∗ wins the election). In order to state our algorithmic results, we
first introduce some background on submodular optimization and
influence maximization. A set function f : V → R is submodular
if for all A ⊆ B ⊆ V and all x ̸∈ B, f (A ∪ {x}) − f (A) ≥ f (B ∪
{x}) − f (B). Intuitively, submodularity formalizes the property of
diminishing returns. The function f (S) which gives the expected
number of nodes reached by S under the independent cascade model
is known to be monotone submodular. It is well known that whenever
f is a monotone submodular function, the greedy algorithm gives a
(1 − 1/e)-approximation to the problem max |S | ≤k f (S).

It is natural to hope that submodularity would transfer to our
election control objectives MOV and POV. Our first result is that
submodularity does in fact hold for the MOV objective with two can-
didates. Previous results for influence maximization do not directly
apply because the MOV objective only counts nodes who have c∗ in
second place. Nevertheless, similar reasoning applies.

THEOREM 4.1. In an election with two candidates, MOV is a
monotone submodular function.

PROOF. We first fix a particular scenarioy and show that the func-
tion f (·,y,V 2

c∗ ) is submodular. This suffices to show that Ey [f (·,y,V 2
c∗ )]

is submodular since a nonnegative linear combination of submodular
functions remains submodular. Monotonicity is clear since adding
additional seeds to A can only make more nodes reachable. To show
submodularity, we can write the marginal gain as

f (A ∪ {x},y,V 2
c∗ ) − f (A,y,V 2

c∗ ) =
∑

v ∈V 2
c∗

(1 − χ (v,A,y))χ (v, {x},y).

Compare the above expression for a set A and any B ⊇ A. For
any single node v, χ (v,B,y) = 1 whenever χ (v,A,y) = 1. Hence, the
term in the above summation for each node v can only be smaller
for f (B ∪ {x},y,V 2

c∗ ) − f (B,y,V 2
c∗ ) than for f (A ∪ {x},y,V 2

c∗ ) −
f (A,y,V 2

c∗ ). We conclude that f (A ∪ {x},y,V 2
c∗ ) − f (A,y,V 2

c∗ ) ≥
f (B ∪ {x},y,V 2

c∗ ) − f (B,y,V 2
c∗ ) and submodularity now follows by

taking the expectation over y. �
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Algorithm 1 Algorithms for MOV objective

1: function GREEDY(h, k)
2: S ← ∅
3: while |S |< K do
4: v ← arg maxv ∈V \S h(S ∪ {v}) − h(S)
5: S ← S ∪ {v}

6: return S
7: function MOVCONSTRUCTIVE(k)
8: h(S) B Ey

[
f (S,y,V 2

c∗ )
]

9: return GREEDY(h, k)
10: function MOVDESTRUCTIVE(k)
11: h(S) B Ey

[
f (S,y,V 1

c∗ )
]

12: return GREEDY(h, k)

Algorithm 2 Algorithms for POV objective

1: function ENUMERATETHRESHOLD(h, ∆, k)
2: for β = ∆...n do
3: h′(S) B Ey [min (β ,h(S,y))]
4: Sβ = GREEDY(h′,k)

5: return arg maxSβ ,β=∆....n Pry
[
h(Sβ ,y) ≥ ∆

]
6: function POVCONSTRUCTIVE(k)
7: //recallmC (S,y) = Ey

[
f (S,y,V 2

c∗ )
]

for 2-candidate case
8: return ENUMERATETHRESHOLD(mC , ∆C , k)
9: function POVDESTRUCTIVE(k)

10: return ENUMERATETHRESHOLD(mD , ∆D , k)

Hence, we can apply a greedy algorithm to MOV to obtain a
(1 − 1/e)-approximation (MOVCONSTRUCTIVE in Algorithm 1).
Moreover, this ratio is tight since MOV contains regular influence
maximization as a special case when all nodes have c∗ in second
place (V 2

c∗ = V ). It is NP-hard to approximate influence maximization
with ratio better than 1 − 1/e [30]. Hence, two-candidate MOV is
computationally intractable with respect to exact optimization but
high quality and efficient approximation algorithms exist.

We now turn to the POV objective, where we maximize the prob-
ability that c∗ wins the election. It is natural to think that submodular-
ity may also carry over to this setting. However, this is not the case;
we can provide a simple counterexample where POV violates sub-
modularity. Consider n isolated nodes, where n

2 −k+1 have c∗ as their
first choice. Hence, to win the election it is necessary and sufficient
to influence k nodes, which can be accomplished by any choice of k
seeds from among those with c∗ as their second choice. Fix a seed set
B containing k−1 of these nodes and consider anyA ⊂ B (that is,A is
strictly smaller). We have POV(B) = POV(A) = 0. By adding a node
v ∈ V 2

c∗ \B to B, we have POV(B∪{v})−POV(B) = 1. However, since
|A|< k−1, POV(A∪{v}) = 0 and hence POV(A∪{v})−POV(A) = 0.
This contradicts the definition of submodularity. Essentially, the POV
objective displays a sharp threshold behavior, where additional seed
nodes have no value until we are close to winning. This behavior in
fact translates into the following strong hardness result:

THEOREM 4.2. It is NP-hard to compute an α-approximation
to the problem max |S | ≤k POV(S) for any α > 0, even for two candi-
dates and even when the instance is deterministic.

PROOF. We consider a deterministic objective: the ICM with all
propagation probabilities either 0 or 1. Without loss of generality, we
have only a single scenario and will drop the dependence on y in f .
Suppose that we have an α-approximation for POV-maximization.
We show how we can use this algorithm to optimally solve the
influence maximization problem (i.e., maximizing f (·,V )), which is
known to NP-hard since it includes maximum coverage as a special
case. Let OPTIM be the optimal value of the influence maximization
problem and OPTPOV (∆) be the optimal value for Problem 1 with
the given threshold. Fix any ∆ > 0. If ∆ ≤ OPTIM , then there is a
set S with POV(S) = 1 and hence OPTPOV (∆) = 1. Otherwise, there
is no set with value ∆ and OPTPOV (∆) = 0. Since the objective to
the POV problem is either 0 or 1, any α-approximation algorithm
for it must return 1 whenever OPTPOV (∆) = 1. Now, we can just
enumerate over ∆ = 1...n, where n is the number of nodes in the
graph. At each value of ∆, we ask the α -approximation algorithm to
solve the POV maximization problem with that value of ∆. We return
the solution corresponding to the highest value of ∆ for which we
can find a set with f (S,V ) ≥ ∆. By the above, this set is an optimal
solution to the influence maximization problem. �

We remark that since this hardness result has broader implications.
Recall that POV(S) = Pry

[
f (S,y,V 2

c∗ ) ≥ ∆
]

where by Theorem 4.1,
f (S,y,V 2

c∗ ) is a submodular function. Therefore, the inapproximabil-
ity result in Theorem 4.2 shows that it is in general hard to approxi-
mate the problem of of maximizing the probability that a submodular
function exceeds a given threshold value. This is a natural objective
in other domains, e.g. for a risk-averse decision maker who wants to
control the probability of a bad outcome.

We pair this hardness result with a positive algorithmic result
regarding bicriteria approximations. A bicriteria approximation al-
gorithm gives up solution quality in more than one dimension, and
is of interest when hardness results preclude the usual notion of
approximation (as for our problem). We provide an algorithm which
has a solution quality guarantee whenever the election is winnable by
a “large margin". That is, there is a seed set with high probability of
greatly exceeding ∆ votes. Our algorithm will attempt to maximize
the probability of exceeding exactly ∆ votes, but has a guarantee
relative to the optimal value for threshold 1

α ∆ for some α < 1. That
is, it is only compared to the optimal value of a harder problem.

Our algorithm is a greedy strategy based on the surrogate func-
tion h(S) = Ey

[
min{β , f (S,y,V 2

c∗ )}
]
, where β is a chosen threshold

value. The intuition is to replace the sharp discontinuity of the orig-
inal POV objective by a surrogate which interpolates smoothly up
to the threshold β . However, we do not give any “credit" for nodes
reached beyond β since (unlike in the MOV case) we only care
about crossing the threshold. It is easy to see that the minimum
of a submodular function and a constant is itself submodular [31].
Hence, h is submodular and amenable to greedy optimization. POV-
CONSTRUCTIVE (Algorithm 2) iterates over a series of possible
thresholds for h, optimizes each one greedily, and outputs the best
of the resulting seed sets. Specifically, it tries every value of β from
∆...n. For each β , it finds a seed set Sβ by greedily optimizing
Ey

[
min{β , f (S,y,V 2

c∗ )}
]

(Algorithm 2, Lines 3-4). Then, it outputs
the Sβ which maximizes Pry

[
f (Sβ ,y,V 2

c∗ ) ≥ ∆
]
, i.e., the one which

has the best probability of exceeding the true objective (Line 5).
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The reason that we need to enumerate over values for β , instead
of just using the true threshold ∆, is that optimizing the surrogate h
might result in a solution which has value below β in every scenario.
However, we can show that if OPT (β) is high, there must be many
scenarios where Sβ has value close to β (a notion formalized in our
proof). Hence, if we try a sufficiently large β > ∆ and OPT (β) is
still high, there must be many scenarios with value at least ∆. This
is formalized in the following guarantee:

THEOREM 4.3. In an election with two candidates, POVCon-
structive produces a solution S such that

Pr
y

[f (S,y,V 2
c∗ ) ≥ ∆] ≥ max

0<α<1

(
1 − 1

e

)
OPTPOV

(
1
α ∆

)
− α

1 − α

PROOF. POVCONSTRUCTIVE enumerates over values of α by
trying thresholds β = ∆...n. Fix a specific β and set α = ∆

β . We will

prove that Pry [f (Sβ ,y,V 2
c∗ ) ≥ ∆] ≥ (1−

1
e )OPTPOV ( 1

α ∆)−α
1−α . This

suffices the prove the theorem because we output the best of the Sβ .
A minor point is that the theorem takes the max over 0 < α < 1,
while we try only the discrete points α = ∆

∆ ,
∆

∆+1 , ...,
∆
n . However,

these are equivalent because f (S,y,V 2
c∗ ) is always integral.

We divide the set of scenarios into those where the Sβ has value at
least αβ and those where it has less value. LetA = {y : f (Sβ ,y,V 2

c∗ ) ≥
αβ} and B = {y : f (Sβ ,y,V 2

c∗ ) < αβ}. We have

1
m

∑
y∈A

min{β , f (Sβ ,y,V 2
c∗ )} +

1
m

∑
y∈B

min{β , f (Sβ ,y,V 2
c∗ )}

≥

(
1 −

1
e

)
max
|S | ≤k

h(S) ≥
(
1 −

1
e

)
βm ·OPTPOV (β)

where the first inequality follows from submodularity and the
second follows since the solution attaining value OPTPOV (β) for the
POV maximization problem is a feasible solution to the problem
max |S | ≤k h(S) which has value at least βm · OPTPOV (β). We are
interested in the minimum possible size of A given that the total
value is lower bounded as above. By inspection, |A| is minimized
when min{β, f (S,y)} = β for each y ∈ A and f (S,y) = αβ for each
y ̸∈ A. In this case, we have

|A|

m
+ α

(
1 −
|A|

m

)
≥

(
1 −

1
e

)
OPTPOV (β)

and hence

|A|

m
=

1
m

m∑
i=1

1[f (Sβ ,y,V 2
c∗ ) ≥ αβ] = Pr

y

[
f (Sβ ,y,V 2

c∗ ) ≥ ∆
]

≥

(
1 − 1

e

)
OPTPOV

(
1
α ∆

)
− α

1 − α
which completes the proof. �

Theorem 4.3 in fact applies to the general problem of maximizing
the probability that a submodular function exceeds a threshold value
(complementing our hardness result in Theorem 4.2). As discussed
above, this may be of interest independently of election control.

5 MULTIPLE CANDIDATES
We now consider election control with more than two candidates.
There is a target candidate c∗ and other candidates c1...cℓ . Note
that constructive and destructive control are distinct in this setting.
We will give algorithms for both cases for both the MOV and POV
objectives.

The problem becomes significantly harder in the multicandidate
setting because we must now reason simultaneously about several
objectives – whether each alternate candidate ci will accumulate
more votes than c∗. We demonstrate that, up to the loss of a con-
stant in the approximation ratio, it suffices to concentrate only on
the number of votes gained or lost by c∗ (not the margin against
each ci individually). This concept yields (bicriteria) approximation
algorithms for each setting along the lines of the two-candidate case.

We start out with the MOVC objective (constructive control for
the margin of victory), since the idea is simpler to illustrate in
this case. The basic intuition is that the change in margin between
candidate ci and c∗ can be re-expressed as follows:

дC (S,y, ci ) =
∑

v ∈V 2
c∗\V

1
ci

χ (v, S,y) + 2
∑

v ∈V 2
c∗∩V

1
ci

χ (v, S,y)

= f
(
S,y,V 2

c∗

)
+ f

(
S,y,V 2

c∗ ∩V
1
ci

)
Now, we can express the final margin in scenario y as

mC (S,y) = f
(
S,y,V 2

c∗

)
+ min

c j

(
f

(
S,y,V 2

c∗ ∩V
1
c j

)
+ max

ci
|V 1
ci |−

���V 1
c j

���)
where the first term is common to all candidates and reflects the

total number of voters who switch to c∗ and the min term selects
the c j who has the most remaining votes. In general, this second
term can be very difficult to approximate because it is the minimum
of submodular functions, which is not in general submodular (or
even approximable [31]). We might hope that there is some special
structure to the election control problem, but this is not the case:

THEOREM 5.1. For any ϵ > 0, it is NP-hard to compute any
Ω

(
1

n1−ϵ

)
-approximation to the problem

max
|S | ≤k

min
c j

(
f

(
S,y,V 2

c∗ ∩V
1
ci

)
+ max

ci
|V 1
ci |−|V

1
c j |

)
PROOF. We will consider instances where all of the c j start with

an equal number of votes and so maxci |V 1
ci |−|V

1
c j |= 0 for all c j . Thus,

the problem is just max |S | ≤k minc j f
(
S,y,V 2

c∗ ∩V
1
ci

)
. We reduce

from the robust influence maximization (RIM) problem [9, 27].
In RIM, we are given a set of objectives f1... fr , each of which
represent expected influence spread in an instance of the independent
cascade model on a common underlying graph G. He and Kempe
[27] show that it is NP-hard to compute Ω

(
1

n1−ϵ

)
-approximation

to the problem max |S | ≤k mini=1...r fi (S). Their proof holds when
each fi is deterministic (assigns probability 0 or 1 to each edge),
so we will assume that the instance is in this form. Let Gi be a
graph in which each edge of G assigned probability 0 by fi has been
removed. We create a graph G ′ as follows. G ′ contains each Gi as
a disconnected subgraph. For every v ∈ G, we add a vertex v ′ to
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G ′. v ′ has an outgoing edge to the copy of node v in each of the Gi
subgraphs. Each such edge has propagation probability 1. There is a
target candidate c∗ and r additional candidates c1...cr . Each of the
v ′ nodes that were added has c∗ as their first choice. Each node in
subgraph Gi has ci as their first choice and c∗ as their second choice.

Suppose that we have an α -approximation algorithm for our prob-
lem for some α = Ω

(
1

n1−ϵ

)
. Without loss of generality, we will

assume that this algorithm only selects nodes from the v ′ (since
if a seed set contains the copy of v in any subgraph, we can only
obtain greater influence spread by exchanging it for v ′). Note that,
for any such set of seed nodes, fi (S) = f (S,V 2

c∗ ∩V
1
ci ) Thus, if S is

an α-approximate solution for our problem, it is also an Ω
(

1
n1−ϵ

)
-

approximate solution to the RIM problem. �

Therefore, we should not hope for any algorithm which can
closely approximate the entirety of the objective; the min compo-
nent is too difficult to handle. However, we can leverage the fact
that the first term, f (S,y,V 2

c∗ ), is easy to optimize because it is just a
submodular function. Hence, the objective is the sum of an easy term
and a hard term. Importantly, we can show that optimizing just the
easy term (which is what MOVCONSTRUCTIVE does) is sufficient
to obtain a constant factor approximation.

THEOREM 5.2. MOVConstructive obtains a 1
3

(
1 − 1

e

)
- approxi-

mation to the MOVC problem with any number of candidates.

PROOF. Let c(S,y) = arg minci f (V 2
c∗ ∩ V

1
ci ) − |V

1
ci | be the can-

didate achieving the minimum in the definition of mC . Let S∗ be
an optimal seed set. Note that for all scenarios y, seed sets S , and
candidates ci , f (S,y,V 2

c∗ ) ≥ f (S,y,V 2
c∗ ∩V

1
ci ). Hence, we have

E
y

[
f

(
S∗,y,V 2

c∗

) ]
≥

1
3
E
y

[
f

(
S∗,y,V 1

c∗

)
+ f

(
S∗,y,V 1

c∗ ∩V
1
c (S∗,y)

)
+ f

(
S∗,y,V 1

c∗ ∩V
1
c (S,y)

) ]
Note that Ey [f (·,y,V 2

c∗ )] is a monotone submodular function,
which MOVCONSTRUCTIVE greedily maximizes. Let S be the re-
sulting seed set. We have

E
y

[
f

(
S,y,V 2

c∗

)
+ f

(
S,y,V 2

c∗ ∩V
1
c (S,y)

) ]
≥ E

y

[
f

(
S,y,V 2

c∗

) ]
≥

1
3

(
1 −

1
e

)
E
y

[
f

(
S∗,y,V 2

c∗

)
+ f

(
S∗,y,V 2

c∗ ∩V
1
c (S∗,y)

)
+ f

(
S∗,y,V 2

c∗ ∩V
1
c (S,y)

) ]
which allows us to bound the margin of victory relative to S∗ as

MOVC (S)

= E
y

[
f

(
S,y,V 2

c∗

)
+ min

c j
f

(
S,y,V 2

c∗ ∩V
1
c j

)
+ max

ci
|V 1
ci |−|V

1
c j |

]
= E
y

[
f

(
S,y,V 2

c∗

)
+ f

(
S,y,V 2

c∗ ∩V
1
c (S,y)

) ]
+ max

ci
|V 1
ci |−Ey

[
|V 1
c (S,y) |

]
≥

1
3

(
1 −

1
e

)
E
y

[
f

(
S∗,y,V 1

c∗

)
+ f

(
S∗,y,V 2

c∗ ∩V
1
c (S∗,y)

)

+ f
(
S∗,y,V 2

c∗ ∩V
1
c (S,y)

) ]
+ max

ci
|V 1
ci |−Ey

[
|V 1
c (S,y) |

]
and some additional algebra (deferred to the supplement) yields

MOVC (S) ≥
1
3

(
1 −

1
e

) (
MOVC (S∗) + E

y

[
f

(
S∗,y,V 2

c∗ ∩V
1
c (S,y)

)
+ |V 1

c (S∗,y) |−|V
1
c (S,y) |

] )
.

Now by definition of c(S∗,y), f (S∗,y,V 2
c∗ ∩V

1
c (S∗,y))− |V

1
c (S∗,y) |≤

f (S∗,y,V 2
c∗ ∩V

1
c (S,y)) − |V

1
c (S,y) | and so

|V 1
c (S∗,y) |−|V

1
c (S,y) |≥ f

(
S∗,y,V 2

c∗ ∩V
1
c (S∗,y)

)
− f

(
S∗,y,V 2

c∗ ∩V
1
c (S,y)

)
This yields

MOVC (S) ≥
1
3

(
1 −

1
e

) (
MOVC (S∗) + E

y

[
f

(
S∗,y,V 2

c∗ ∩V
1
c (S,y)

)
+ f

(
S∗,y,V 2

c∗ ∩V
1
c (S∗,y)

)
− f

(
S∗,y,V 2

c∗ ∩V
1
c (S,y)

) ])
=

1
3

(
1 −

1
e

) (
MOVC (S∗) + E

y

[
f

(
S∗,y,V 2

c∗ ∩V
1
c (S∗,y)

) ])
≥

1
3

(
1 −

1
e

)
MOVC (S∗).

�

We also have a corresponding result for the destructive control
case. Here, we can rewrite the change in margin as mD (S,y) =
f (S,y,V 1

c∗ )+maxci
(
f (S,y,V 1

c∗ ∩V
2
ci ) + |V 1

ci |−maxc j |V 1
c j |

)
. MOVDE-

STRUCTIVE greedily optimizes the submodular function Ey
[
f (S,y,V 1

c∗ )
]
,

which we show is a good surrogate for Ey [mD (S,y)].

THEOREM 5.3. MOVDestructive obtains a 1
2

(
1 − 1

e

)
-approximation

to the multicandidate MOVD problem.

The proof, which is similar to that of Theorem 5.2, can be found
in the supplement.

Now, we extend these ideas to obtain similar guarantees for the
POVC and POVD objectives. Starting with POVC , recall that our
objective is to maximize Pry [mC (S,y) ≥ ∆C ], the probability that
the change in margin exceeds the number of votes needed to win. We
will prove a guarantee for the same algorithm POVCONSTRUCTIVE

as from the two-candidate case. Recall that POVCONSTRUCTIVE op-
timizes the surrogate Ey

[
min

(
β , f

(
S,y,V 2

c∗

))]
, enumerating over

possible values of the threshold β . We have the following bicriteria
approximation guarantee:

THEOREM 5.4. LetOPT (∆) denote the optimal value of the prob-
lem max |S | ≤k Pry [mC (S,y) ≥ ∆]. Let S be the set produced by POV-
Constructive. We have

POVC (S) ≥ max
0<α<1

e−1
3e−1OPT

(
1
α ∆C

)
− α

1 − α
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The proof can be found in the supplement. The main differ-
ence from the two candidate case is that we do not directly opti-
mize 1

m
∑
y min (β ,mC (S,y)) since it may no longer be submodu-

lar. Instead, we greedily optimize the submodular surrogate func-
tion 1

m
∑
y min

(
β , f (S,y,V 2

c∗ )
)

and show that this surrogate approx-

imates 1
m

∑
y min (β,mC (S,y)). From there, the same argument as

in Theorem 4.3 extends to the multicandidate case. Analogous rea-
soning also yields a bicriteria guarantee for destructive control:

THEOREM 5.5. Let OPT (∆) denote the optimal value of the
problem max |S | ≤k Pry [mD (S,y) ≥ ∆]. Let S be the set produced
by POVDestructive. We have

POVD (S) ≥ max
0<α<1

e−1
3e−1OPT ( 1

α ∆) − α
1 − α

6 MIXED-INTEGER PROGRAMS
Thus far, we have only considered approximation algorithms for
election control, motivated by computational hardness results for
exact optimization. Now we give mixed-integer linear programming
(MILP) formulations to find exact solutions. This serves two pur-
poses. First, it allows us to study the effectiveness of election control
for problem instances with are within the range of state of the art
MILP solvers. Second, we can determine the empirical effectiveness
of the approximation algorithms proposed in earlier sections.

There are two principal difficulties in obtaining MILP formula-
tions. First, the objective is stochastic, ranging over an exponential
number of scenarios. Second, even for a single fixed scenario, the
number of nodes reached by a seed set is a nonlinear function.

We first show how to linearize the problem when have only a
single scenario y. Recall that y corresponds to a sampled graph
Gy , where every edge e is removed independently with probability
1 − pe . Our MILP will have a binary variable sv ∈ {0, 1} for each
node v ∈ V , where sv = 1 indicates that v is a seed node. We
will maximize an objective over all sv ∈ {0, 1} |V | which satisfy∑
v ∈V sv ≤ k (at most k nodes are seeded). The challenge is to

embed the nonlinear objective into the constraints of the MILP. Let
x
y
v ,v ∈ V be a binary variable indicating whether v is influenced in

scenario y. We must constrain x
y
v to be 1 only if v truly is reachable

in Gy from some node with sv = 1. To accomplish this, let R(v,y)
be the set of nodes which have a directed path to v in scenario y.
R(v,y) does not depend on the decision variables s and can easily
precomputed. Using this set, we constrain the x variables as:

x
y
v ≤

∑
u ∈R(v,y)

su ∀v ∈ V .

Now ee deal with stochasticity using sample average approxima-
tion. We first sample scenarios Gyi , i = 1...r , maintaining a separate
copy x

yi
v for each sampled scenario. Finally, we average over the

variables in each scenario to obtain the final objective.
Using these components, we now give concrete formulations for

each of the problem instances that we consider. We will assume that
scenarios y1...yr have been sampled, where r is a tunable parameter
trading off computational cost and sampling error.

6.0.1 Constructive control. We create a variable дC (yi , c j ) for
each scenario yi and candidate c j which represents the change in the
margin between c j and c∗ in scenarioyi . Using these variables, we set
a variablemC (yi ) for each scenario yi which represents the overall
change in margin. These variables are set using the constraints

дC (yi , c j ) ≤
∑

v ∈V 2
c∗

x
yi
v +

∑
v ∈V 2

c∗∩V
1
cj

x
yi
v

mC (yi ) ≤ дC (yi , c j ) + max
ci
|V 1
ci |−|V

1
c j |∀i, j

which gives the following MILP to maximize the MOV:

max
s,x,дC ,mC

1
r

r∑
i=1

mC (yi )∑
v ∈V

sv ≤ k

The next formulation maximizes the POV:

max
s,x,дC ,mC ,u

1
r

r∑
i=1

ui

−M(1 − ui ) + max
ci
|V 1
ci |−|V

1
c∗ |+1 −mC (yi ) ≤ 0∑

v ∈V
sv ≤ k, ui ∈ {0, 1} i = 1...r

Here, ui is a binary variable representing whether c∗ wins the
election in scenario yi , while M is a large number.

6.0.2 Destructive control. Now, we use an analogous set of
constraints to set variables дD (yi , c j ) andmD (yi ):

дD (yi , c j ) ≤
∑

v ∈V 1
c∗

x
yi
v +

∑
v ∈V 1

c∗∩V
2
cj

x
yi
v

−M(1 − z ji ) +mD (yi ) −
(
дD (yi , c j ) + |V 1

c j |−max
k
|V 1
ck |

)
≤ 0 ∀i, j∑

j
z
j
i ≥ 1 ∀i, z

j
i ∈ {0, 1} ∀i, j

The second and third constraints use a new set of binary variables
z
j
i , where z

j
i = 1 indicates that in scenario yi , mD (yi ) is at most

the change in margin between c j and c∗. The constraint
∑
j z

j
i ≥ 1

requires thatmD (yi ) must be bounded by one such value, and so can
be at most the maximum margin. Using these variables, the MOV
and POV MILPs are analogous to those for constructive control.

7 EXPERIMENTS
We now present experimental results comparing the performance of
our approximation algorithms to the solutions found via mixed inte-
ger programming. We show results on four datasets. First, netscience,
a collaboration network of researchers in network science, with 1461
nodes [38]. Second, facebook, the subgraph centered on 10 Facebook
users, with 2888 nodes [37]. Third, polblogs, a network of links be-
tween political blogs, with 1224 nodes [38]. Fourth, irvine, a graph
representing instant messages exchanged between students at U.C.
Irvine, with 1889 nodes [37]. We select these datasets because they
represent the kinds of networks on which political messages (such as
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Table 1: Percent of MILP value obtained by approximation algorithm.

netscience facebook polblogs irvine

k = 25 50 100 25 50 100 25 50 100 25 50 100

Constructive

|C |= 2 99.5 99.3 100. 100 100 100 100 100 99.4 100 100 99.4

|C |= 5 82.8 90.1 91.5 90.8 90.9 90.9 97.4 97.8 99.5 97.7 95.4 96.8

|C |= 10 80.9 89.1 98.3 80.9 83.7 88.6 98.7 99.2 99.6 96.9 97.4 98.9

Destructive

|C |= 2 99.9 99.6 99.9 100 100 100 100 100 99.4 100 99.8 98.8

|C |= 5 73.8 73.2 83.3 87.7 79.7 81.6 100 97.8 99.3 100 99.0 100

|C |= 10 75.9 87.2 97.2 81.8 85.0 89.0 98.9 99.3 99.6 100 97.3 99.0
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Figure 1: Probability of victory. Top: constructive. Bottom: de-
structive. Left: netscience. Right: polblogs.

fake news) spread. We also note that our approximation algorithms
can easily be scaled to much larger networks since we can apply the
same techniques developed in the influence maximization literature
[14, 42]. However, our focus here is to characterize the performance
of our algorithms in comparison to the optimal solution, so we select
datasets which are feasible for mixed integer programming. For each
network, we randomly generated 30 sets of voter preferences.

We start out with the MOV objective. Table 1 shows the percent-
age of the MILP’s value which is obtained by our approximation
algorithms (MOVCONSTRUCTIVE and MOVDESTRUCTIVE re-
spectively), averaging over the 30 instances on each network with
propagation probability p = 0.1. We vary the number of seed nodes k
and the number of candidates |C |. We see that the approximation al-
gorithms perform well across all settings, obtaining expected change
in margin at least 73% of that of the MILP. Variance over the 30
sampled instances was uniformly low (with standard deviation less
than 0.05 of the reported mean in almost all cases). For 2-candidate
elections the approximation algorithms obtain nearly 100% of the
optimal value on all networks. The empirical approximation ratio de-
grades with the number of candidates, particularly when the budget k
is small. Overall, our approximation algorithms are highly effective

for election control via the MOV in both constructive and destructive
control, particularly with a moderate number of candidates.

We now turn to the POV objectives. We show results for k =
50, |C |= 5, comparing our bicriteria approximation algorithms to the
corresponding MILP formulations. To keep the experiments timely,
we ran each approximation algorithm for 150 random values of
the threshold β instead of enumerating over all (empirically, this
resulted in very similar solution quality). Figure 1 shows the results
on netscience and polblogs for constructive and destructive control.
Results for facebook and irvine can be found in the supplement. The
x axis shows the starting margin (∆C or ∆D ) in each randomly gener-
ated instance while the y axis shows the POV. The instances fall into
three groups. First, when the margin is small, both the approximation
algorithms and the MILP have a high POV. Second, when the margin
is large, both have a small POV. Third are intermediate points where
the approximation algorithm and MILP strongly diverge. Averaged
over all random instances, the approximation algorithm obtains 40-
60% of the MILP’s value (depending on the network). However,
there are instances among the intermediate cases where, e.g., the
approximation algorithm obtains a POV of 0.1%, but the MILP finds
a solution with POV 99%. We conclude that election control for
the POV objective can be very computationally difficult in narrowly
winnable elections, dovetailing with our theoretical results.

8 CONCLUSION
Fake news and other targeted misinformation are an increasingly
prevalent way of interfering with democratic elections. We introduce
and study the problem of election control through social influence,
providing algorithms and hardness results for maximizing both the
margin and probability of victory for an attacker in both constructive
and destructive control. Our results indicate that social influence is
a salient threat to election integrity, particularly in the MOV case
where we provide high-quality approximation algorithms. Maximiz-
ing the probability of victory is manageable in easier instances, but
difficult both theoretically and empirically in narrow races.
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