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ABSTRACT
Significant research effort in security games has focused in devising

strategies that perform well even when the attacker deviates from

optimal (rational) behavior. In most of these frameworks, a price

needs to be paid to ensure robustness against this unpredictabil-

ity. However, equilibrium refinement is an attractive alternative to

boost solution robustness at no cost even though it has not received

as much attention in security game literature. In this framework,

resources are strategically allocated to secure an optimal outcome

against a rational adversary while simultaneously protecting other

targets to ensure good outcomes against boundedly rational or

constrained attackers. Unfortunately, existing approaches for equi-

librium refinement in security games cannot effectively address

scheduling constraints that arise frequently in real-world applica-

tions. In this paper, we aim to fill this gap and make several key

contributions. First, we show that existing approaches for equilib-

rium refinement can fail in the presence of scheduling constraints.

Second, we investigate the properties of the best response of the at-

tacker. Third, we leverage these properties to devise novel iterative

algorithms to compute the optimally refined equilibrium, with poly-

nomially many calls to an LP oracle for zero-sum games. Finally, we

conduct extensive experimental evaluations that showcase i) the
superior performance of our approach in the face of a boundedly

rational attacker and ii) the attractive scalability properties of our

algorithm that can solve realistic-sized instances.

KEYWORDS
Equilibrium refinement; security games; arbitrary scheduling con-

straints; strong Stackelberg equilibrium

1 INTRODUCTION
Stackelberg Security Games (SSG) have been successfuly applied in

a variety of domains to optimize the use of limited security resources

against a strategic adversary, with examples such as ARMOR for

airport security [16], IRIS for security of flights [8], ports [20] and

border [3, 11] patrolling, traffic enforcement [17, 18], and transit

network [23]. In SSG, the defender (security agencies) protects

targets using limited security resources, but allocation of resources

to targets must obey many scheduling constraints. For example,

some resources may be prohibited from being assigned to certain

targets or may be able to cover several targets at the same time.
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After conducting surveillance of the defender strategy, the strategic

attacker (terrorists/criminals) may respond with an optimal attack.

The standard solution concept adopted by SSG is the Strong

Stackelberg Equilibrium (SSE) [13, 24]. Significant research in SSG

has focused on providing efficient algorithms to compute SSE un-

der various constraints [8, 21]. Recently, significant research efforts

have focused on devising strategies that perform well even under

uncertainty in the adversary behavior. For example, [15, 25] in-

vestigate adversary bounded rationality, [9] considers execution

uncertainty, and [26] focuses on observational uncertainty. In most

of these frameworks, the defender either pays a price or slightly

sacrifices her first priority target to ensure robustness against un-

predictability in the adversary’s behavior. However, equilibrium
refinement is an attractive alternative to provide robustness at no

cost by choosing, among all SSEs, the one that performs best in all

possible events although it has not received as much attention in

the security game literature.

In most real-world applications, security resources must be al-

located in the presence of scheduling constraints. This is the case

for example of the Federal Air Marshal Service [8], cyber security

[14, 22], network security [10, 19], and more generally in domains

where security resources exhibit protection externalities [5, 7]. Yet,

existing algorithms for equilibrium refinement in security games

do not apply in the presence of such constraints. The presence

of scheduling constraints complicates the problem of equilibrium

refinement significantly, since multiple equilibria are the norm for

security games with schedules, and even finding an arbitrary SSE

[12] is already a challenging task and prevents the adoption of ex-

isting techniques [1] in our problem. To the best of our knowledge,

the only paper to investigate the problem of equilibrium refinement

under scheduling constraints is [6], wherein a heuristic algorithm is

proposed to conduct equilibrium refinement in the spatio-temporal

domain. While the paper provides a significant step in our research

direction, it only addresses a special case of scheduling constraints.

In fact, we are not aware of any algorithm that can cater for arbi-
trary scheduling constraints in security games to provide an optimal

refined equilibrium.

In this paper, we focus on the equilibrium refinement on Secu-

rity Problems with ARbitrary Schedules (SPARS) [8] , where we

assign each resource to cover one schedule and each schedule can

cover multiple targets. We follow the same dominance criteria men-

tioned in [1] and introduce a counterexample showing that in the

presence of scheduling constraints, their method fails to return a

non-dominated equilibrium. We propose a new method to analyze

the topology of the attacker’s best response. This analysis provides

us with key insights into the structure of multiple equilibria. Lever-

aging these insights, we introduce a new iterative (resp. recursive)



AAMAS’18, July 2018, Stockholm, Sweden Kai Wang, Qingyu Guo, Phebe Vayanos, Milind Tambe, Bo An

algorithm that successfully returns the non-dominated solution of

zero-sum (resp. general-sum) SPARS. We show that in the worst

case, our iterative algorithm only necessitates O(n3) calls to an LP

oracle, where n corresponds to the number of targets and an LP

oracle could be either a linear program solver or a column gener-

ation method used to approximate the optimal solution. For the

general-sum games, our recursive algorithm successfully provides

the optimal solution with O(n3) oracle calls for each subproblem.

Our experimental results demonstrate significant improvement

on the robustness of our computed solution over existing approaches

which also serves to showcase the benefit of equilibrium refinement

on SPARS. Moreover, our computations show the average number

of oracle calls is O(n2) in both zero-sum and general-sum cases,

illustrating practical scalability of our approach.

2 SECURITY GAMES WITH ARBITRARY
SCHEDULES

In this work, we consider SPARS [8]. This is a two-player Stack-

elberg game played between an attacker and a defender. The at-

tacker’s pure strategy space is the set of targets T that could be

attacked, T = {t1, . . . , tn }. The attacker’s corresponding mixed

strategy a = ⟨ai ⟩ni=1 is a vector where ai represents the probability
of attacking ti . To protect targets, the defender has at her disposal a
collection of resources indexed by r ∈ R, where the set R collects all

resources. Each resource r can be assigned to a schedule s ⊆ T that

covers multiple targets. Associated with each resource r is the set
of all possible schedules Sr ⊆ P(T ) to which it can be assigned. For

notational convenience, we assume that ∅ ∈ Sr so that a resource

that is assigned to ∅ is effectively unused.

The defender’s pure strategy space J is the set of all joint sched-
ules that assign each resource to exactly one schedule. Thus,

J = {j ⊆ T : j = ∪r ∈Rsr , sr ∈ Sr }

and target t ∈ T is covered by the joint schedule j ∈ J if and only

if t ∈ j. For any joint schedule, a target can be covered by more

than one schedule, and a target is considered covered (or protected)

whenever the total number of resources allocated to a schedule that

covers the target equals or exceeds one (1).

Associated with each joint schedule j ∈ J is a vector Pj =
⟨Pjt ⟩ ∈ {0, 1}n , where Pjt indicates whether target t is covered in

joint schedule j, i.e., Pjt = I(t ∈ j). The defender’s mixed strat-

egy x specifies the probabilities of playing each j ∈ J , where
x j ≥ 0,

∑
j ∈J x j = 1. Let c = ⟨ct ⟩nt=1 be the vector of coverage

probabilities corresponding to x, where ct =
∑
j ∈J Pjtx j , is the

marginal probability of covering t and we can write c = P⊤x.
The payoffs of players are decided by the target chosen by the

attacker and whether the target is protected by the defender. The

defender’s payoff for an uncovered attack on target t is denoted
byUu

d (t) and for a covered attackU
c
d (t). Similarly,Uu

a (t) andU c
a (t)

are the attacker’s payoffs for the uncovered and covered cases,

respectively. A widely adopted assumption in security games is

that U c
d (t) > Uu

d (t) and U
u
a (t) > U c

a (t). In other words, covering

an attack is beneficial for the defender, while hurts the attacker.

Given a strategy profile ⟨x, a⟩, c = P⊤x, the expected utilities for

both players are denoted as follows:

Ud (c, a)=
∑

t ∈T atUd (c, t),whereUd (c, t)=ctU c
d (t)+(1 − ct )U

u
d (t)

Ua (c, a)=
∑

t ∈T atUa (c, t),whereUa (c, t)=ctU c
a (t)+(1 − ct )Uu

a (t)

We adopt a Stackelbergmodel inwhich the defender acts first and

the attacker chooses a strategy after observing the defender’s mixed

strategy. Stackelberg games are common in security domains where

attackers can surveil the defender strategy. The standard solution

concept is SSE [13, 24], in which the leader selects an optimal mixed

strategy based on the assumption that the follower will choose an

optimal response, breaking ties in favor of the leader. There always

exists an optimal pure-strategy response for the attacker, so we

restrict our attention to this set in this paper.

3 REFINEMENT OF SSE IN SECURITY GAMES
A well-known property of SSE is that all SSEs give the same ex-

pected payoff for the leader (defender) [2, 13]. The refinement of

SSEs in security games is first discussed in [1]. They indicate that

multiple equilibria exist frequently (especially when there are re-

sources, scheduling constraints) and in many of these solutions,

a portion of the resources are not efficiently used since they can

be abandoned without affecting the expected utility. We follow

the same dominance criteria in [1]. The defender assumes there is

an infinitesimal probability that the attacker will deviate from his

first choice to his second or other preferable targets due to some

unexpected events. But, even when the attacker is forced to deviate,

he still behaves intelligently by choosing the next-best alternative

rather than acting randomly. Therefore, the defender will still need

to efficiently arrange the remaining resources to achieve her highest

defender utilities, sequentially, on the secondary targets.

Based on this model, our equilibrium concept can be written as

following: Given an SSE ⟨x, a⟩ and its coverage vector c, an ordering
over targets is defined such that target t(1) is the target that will
be attacked by the unconstrained attacker, and t(i) is the target

that will be attacked by the constrained attacker who cannot attack

targets t(1), ..., t(i − 1). Utility vector v = ⟨vi ⟩ni=1 represents the
defender’s utilities where vi is the defender’s utility if target t(i) is
attacked, i.e., vi = ct (i)U

c
d (t(i)) + (1 − ct (i))U

u
d (t(i)). They define a

dominance relation between SSEs based on the utility vectors (if

there is no ambiguity, we will consistently use coverage vector c to
refer the defender’s strategy x).

Definition 3.1. Given two SSEs ⟨c, a⟩, ⟨c′, a′⟩ and their utility

vectors v and v′. We say that SSE ⟨c, a⟩ dominates SSE ⟨c′, a′⟩
if there exists i such that i) vi > v ′i and ii) vj = v ′j for all j such
that 1 ≤ j < i .

There is an iterative algorithm [1] which can find the non-

dominated SSE in the security games without scheduling con-

straints. In those cases, the multiple SSEs only exist when the best

response target of the attacker is fully covered. In the security

games with scheduling constraints, multiple SSEs are more com-

mon which motivates further needs for refinement. Unfortunately,

in the presence of scheduling constraints, the method in [1] may

return a dominated SSE, as illustrated by the following example.

Example 3.2 (Dominated SSEs in zero-sum SPARS games). Con-
sider a zero-sum game with one resource R = {r1}, three targets
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T = {t1, t2, t3}, three schedules S1 = {s1, s2, s3}:
s1 = {t1, t3}, s2 = {t2}, s3 = {t3}

and with the following payoffs:U c
a (t) = U c

d (t) = 0 ∀ t ∈ T

Uu
d (t1) = −3,U

u
d (t2) = −3,U

u
d (t3) = −6, Uu

a (t) = −Uu
d (t) ∀t ∈ T

There are infinite SSE solutions. One possible SSE could be x1 =
⟨ 1
3
, 1
3
, 1
3
⟩ with the corresponding coverage vector c1 = ⟨ 1

3
, 1
3
, 2
3
⟩.

The unsorted defender’s utility vector is given by d1 = ⟨−2,−2,−2⟩
for targets t1, t2, t3. Accordingly, the sorted utility vector is given

by v1 = ⟨−2,−2,−2⟩. In this case, v1 and d1 are the same because

the attacker feels indifferent between all of the targets. Applying

the iterative algorithm from [1], given the arbitrary SSE x1, first
we fix the coverage of one target among those with the highest

attacker expected utility (in this case {t1, t2, t3}), which we assume

the target to be target t1 with c1 =
1

3
here. With c1 =

1

3
fixed

and solve it iteratively, the algorithm will return the same strategy

x1. However, actually the strategy x1 is dominated by strategy

x2 = ⟨ 2
3
, 1
3
, 0⟩ with corresponding coverage c2 = ⟨ 2

3
, 1
3
, 2
3
⟩ which

gives a better defender’s utility vector d2 = ⟨−1,−2,−2⟩ and v2 =
⟨−2,−2,−1⟩ sorted by the attacker’s preference. Both the strategies

x1, x2 provide the highest defender’s utility d∗ = −2.

Example 3.2 shows that a non-dominated solution can perform

significantly better than an arbitrary chosen SSE. In this case, if the

attacker deviates from his best response (target t2, t3) to the third

preferable target (target t1), the defender’s utility will be −2 and
−1 for strategies x1 and x2, respectively, yielding a 50% difference

between refined and arbitrary SSE.
1

4 ZERO-SUM GAMES
In this paper, we start with zero-sum games where the attacker is

completely opposite to the defender. We define the idea of minimum

attack set, prove its uniqueness, and show the SSE with minimum

attack set is better than all the other SSEs. We also show that the

minimum attack set can be computed by a polynomial number

of calls to an oracle that solves linear programs. Accordingly, we

propose an algorithm which iteratively solves the minimum attack

set of restricted instance and fixes the coverage on the minimum

attack set. We prove that our algorithm requires at most O(n3)
oracle calls and returns a non-dominated SSE.

4.1 Uniqueness of Minimum Attack Set of SSE
Definition 4.1. Given a feasible SSE coverage vector c, theAttack

Set Γ(c) := argmaxt ∈T Ua (c, t) is the best response of the attacker.

Definition 4.2. Let Ψ := {T ′ ⊆ T | ∃ SSE ⟨c, a⟩ : Γ(c) = T ′} be
the set of all possible attack sets of SSEs.

In zero-sum games, a smaller size of best options of the attacker

(attack set) implies a smaller set of targets that he can achieve his

highest utility. Thus, for the defender, the SSE with a smaller attack

set is always better than the SSE with a larger attack set.

1
One intuitive heuristic algorithm of refinement, in the presence of constraints, is to

eliminate those inefficient schedules [6]. E.g., in the context of Example 3.2, schedule

s1 = {t1 } is dominated by s3 = {t1, t3 }. However, in the experiment part, we will

show that the heuristic method provides only a little improvement in the zero-sum

games and it does not work in the general-sum games.

Definition 4.3. A Minimum Attack Set is a set M ∈ Ψ such

that any proper subset V of M is not an element of Ψ, i.e., V < Ψ
for all V ⊂ M .

Example 4.4. Consider a zero-sum game with one resource R =
{r1},T = {t1, t2, t3, t4, t5, t6}, and four schedules S1 = {s1, s2, s3, s4}:

s1 = {t1, t2, t3}, s2 = {t2, t3, t4}, s3 = {t3, t4, t5}, s4 = {t6}
with the following payoffs:U c

d (t) = 0 ∀ t ∈ T

Uu
d (t1) = −4,U

u
d (t2) = −4,U

u
d (t3) = −12

Uu
d (t4) = −4,U

u
d (t5) = −2,U

u
d (t6) = −4

There are infinite possible SSE solutions. For example, one possible

SSE is x1= ⟨ 1
4
, 1
4
, 1
4
, 1
4
⟩ with coverage c1= ⟨ 1

4
, 1
2
, 3
4
, 1
2
, 1
4
, 1
4
⟩ which

gives the defender’s utility vector d1= ⟨−3,−2,−3,−2,−1.5,−3⟩ with
d∗ = −3. In this case, the best response of the attacker is Γ(c1) =
{t1, t3, t6}. Similar to the following possible mixed strategies:

x2 = ⟨1
2

,
1

6

,
1

12

,
1

4

⟩, c2 = ⟨1
2

,
2

3

,
3

4

,
1

4

,
1

12

,
1

4

⟩

d2 = ⟨−2,−4
3

,−3,−3,−11
6

,−3⟩, Γ(c2) = {t3, t4, t6}

x3 = ⟨3
8

,
5

24

,
1

6

,
1

4

⟩, c3 = ⟨3
8

,
7

12

,
3

4

,
3

8

,
1

6

,
1

4

⟩

d3 = ⟨−2.5,−5
3

,−3,−2.5,−5
3

,−3⟩, Γ(c3) = {t3, t6}

x4 = ⟨1
4

, 0,
1

2

,
1

4

⟩, c4 = ⟨1
4

,
1

4

,
3

4

,
1

2

,
1

2

,
1

4

⟩

d4 = ⟨−3,−3,−3,−2,−1,−3⟩, Γ(c4) = {t1, t2, t3, t6}
Clearly, all the above strategies are SSE solutions. But the strategy

x3 dominates all the others since the defender’s utility on the third-

preferable target of the attacker is −2.5, which is higher than all

the others’ utility −3. Actually, x3 is the non-dominated strategy.

If we explore all of the possible SSEs in Example 4.4, we will find

that the above attack sets are exactly all the possible attack sets:

Ψ = {{t3, t6}, {t1, t3, t6}, {t3, t4, t6}, {t1, t2, t3, t6}}
Therefore, the only minimum attack set is Γ(c3) = {t3, t6}.

Theorem 4.5 (Intersection Property in Zero-sum Games).

For any two attack setsT 1,T 2 ∈Ψ, we haveT 1∩T 2,∅ andT 1∩T 2 ∈Ψ.

Proof. Given T 1 = Γ(c),T 2 = Γ(c′), there are two cases:

(1) Γ(c)∩Γ(c′) , ∅. Consider another strategy c∗ = αc+(1−α)c′
with α ∈ (0, 1). Since c∗ = αc + (1 − α)c′ = αP⊤x + (1 − α)P⊤x′ =
P⊤(αx + (1 − α)x′), c∗ is a feasible coverage vector of strategy x∗.
It is easy to verify that Γ(c∗) = Γ(c) ∩ Γ(c′) as follows:

Ua (c, t)
{
= v if t ∈ Γ(c)
< v otherwise

Ua (c′, t)
{
= v if t ∈ Γ(c′)
< v otherwise

Ua (c∗, t) = αUa (c, t) + (1 − α)Ua (c′, t)
{
= v if t ∈ Γ(c) ∩ Γ(c′)
< v otherwise

where v is the expected attacker’s utility. Thus, we obtain an SSE

strategy c∗ with a smaller attack set Γ(c) ∩ Γ(c′).
(2) Γ(c) ∩ Γ(c′) = ∅. Similarly, we consider the feasible strategy

c∗ = αc+(1−α)c′ with α ∈ (0, 1). It is easy to verify thatUa (c∗, t) <
v for any t ∈ T . In other words, Ud (c∗, t) > −v where −v is the
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highest expected utility of defender in SSE. This contradicts the

optimality of SSE. That means this case will never happen. □

Consider the SSE strategy x3 in Example 4.4. It can be written

as the combination of SSE strategies x1, x2 by x3 = 1

2
· x1 + 1

2
· x2.

As Theorem 4.5 states, the attack set Γ(c3) = Γ(c1) ∩ Γ(c2).
Theorem 4.6. The minimum attack set M exists and is unique.

Moreover, for each T ′ ∈ Ψ,M ⊆ T ′.

Proof. (1) Existence: Clearly,M =
⋂
T ′∈ΨT

′ , ∅ is a minimum

attack set. (2) Uniqueness: If there are two different minimum attack

sets, then by Theorem 4.5, their intersection will be non-empty and

is a smaller attack set, which is a contradiction. □

In Example 4.4, the minimum attack set is exactly Γ(c3) = {t3, t6}
which is the attack set of the non-dominated solution x3.

4.2 An Iterative Algorithm
In zero-sum games, an SSE with a smaller attack set is better (for

the defender) than an SSE with a larger attack set. This motivates

us to find the minimum attack set. Moreover, the minimum attack

set is included in every attack set, which implies that we can fix

the common coverage on the minimum attack set and solve the

remaining subproblem. For this aim, we define the restricted SPARS

as follows:

Definition 4.7. Given a SPARS instance д, we denote by дc,T
′
the

restricted game with respect to coverage vector c and T ′ ⊂ T . The
restricted SPARS instance дc,T

′
is the same as SPARS instance д

except the following rules:

(R1) The attacker is forbidden to attack targets in T ′.
(R2) The defender’s coverage on t ∈ T ′ is fixed to be ct .
(R3) The defender must cover targets t ∈T \T ′ enough such that the

attacker utility on these targets is at most mint ′∈T ′ Ua (c, t ′).
The SSE in a restricted game follows the same definition as in the

original SPARS. Rule (R1) guarantees that the attacker will only fo-

cus on targetsT \T ′. Rule (R2) guarantees that solving the restricted
SPARS will not alter the existing coverage on T ′ which is already

known. Rule (R3) requires the defender to cover targets t ∈ T \T ′
enough such that the targets in T \T ′ are not more preferable for

the attacker than those in T ′. In addition, we define the restricted
attack set by Γ(c,T ′) = argmaxt ∈T \T ′ Ua (c, t). Note that the re-

stricted attack set is the attack set for the restricted instance дc,T
′
,

thus share the same properties of attack sets. Accordingly, we define

the minimum restricted attack set for the restricted instance,

which is unique too.

Algorithm 1: Iterative Algorithm for Zero-sum Games

1 Parameter: SPARS instance д, T ′ ← ∅, c← 0
2 while |T ′ | < |T | do
3 c← a restricted SSE strategy in the instance дc,T

′

4 M ← the minimum restricted attack set of instance дc,T
′

5 T ′ ← T ′ ∪M
6 Return: non-dominated SSE strategy c

Algorithm 1 depicts the procedure of equilibrium refinement

in zero-sum games. We compute an arbitrary SSE strategy, fix the

coverage on the minimum restricted attack set (we will discuss

how to find the minimum attack set in Section 4.3), and iteratively

solve the remaining restricted subproblem. The following theorems

guarantee the correctness of Algorithm 1.

Proposition 4.8. Given a restricted SPARS instance дc,T
′
, its min-

imum restricted attack set M , and an SSE c∗ of дc,T
′
, we have the

following statement: the strategy c′ is a feasible defender coverage of
дc
∗,T ′∪M (satisfies Rules (R2), (R3)) if and only if c′ is an SSE of дc

∗,T ′ ,
which provides a mapping between two different restricted instances.

Proof. (⇐) Since both c′ and c∗ are SSE strategies andM is the

minimum restricted attack set of дc,T
′
, both c′ and c∗ share the

same value on T ′ ∪M , which satisfies the Rule (R2) of дc
∗,T ′∪M

.

Since c′ is an SSE of дc,T
′
, the attacker’s utility on t ∈ T ′ with

SSE strategy c′ must be greater than all the others t < T ′. By the

definition of minimum restricted attack set M , the best response

of the attacker, it implies that target t ∈ M must have the highest

attacker’s utility among T \T ′. Therefore, the attacker utility on

t ∈ T ′ ∪M is no less than the others’ utilities, which satisfies Rule

(R3) of дc
∗,T ′∪M

.

(⇒) Assume that c′ is a solution of дc
∗,T ′∪M

. By the definition

of restricted instance дc
∗,T ′∪M

, the coverage c′ on targets inT ′∪M
has been fixed to be the same as c∗, and Rule (R3) forces all the

other targets outside of T ′ ∪M to have a smaller attacker’s utility.

It implies that the strategy c′ achieves the highest attacker’s utility
on minimum attack setM in the restricted instance дc,T

′
, thus an

SSE in the restricted instance дc,T
′
. □

Theorem 4.9. The output of Algorithm1 is a non-dominated SSE.

Proof. Denote the sequences of minimum restricted attack sets

and updated coverage in Algorithm 1 asM1, ...,Mk and c1, ..., ck ,
respectively (W.L.O.G letM0 = ∅, c0 = 0). According to Algorithm

1, ci is an SSE,Mi is the minimum attack set of дc
i−1,M1∪...∪Mi−1

.

By Proposition 4.8, ∀i ∈ {1, 2, ...,k} we have: given a restricted

instance дc
k−i ,M1∪M2∪...∪Mk−i , its minimum restricted attack set

Mk−i+1 and its SSE ck−i+1, the strategy c′ is a feasible coverage of
the instance дc

k−i+1,M1∪M2∪...∪Mk−i∪Mk−i+1 if and only if c′ is an
SSE of the instance дc

k−i+1,M1∪M2∪...∪Mk−i .

According to the above argument, ∀i ∈ {1, 2, ...,k} we have:

ck is the non-dominated solution of дc
k−i+1,M1∪M2∪...∪Mk−i+1 ⇔

ck is the non-dominated SSE of дc
k−i+1,M1∪M2∪...∪Mk−i ⇔ ck is

the non-dominated SSE of дc
k−i ,M1∪M2∪...∪Mk−i (since ck−i and

ck−i+1 share the same coverage on M1 ∪ M2 ∪ . . . ∪ Mk−i ) ⇔
ck is the non-dominated solution of дc

k−i ,M1∪M2∪...∪Mk−i (non-

dominated solution must be an SSE). When i = 1, ck is the only

solution (thus non-dominated) solution of дc
k ,M1∪M2∪...∪Mk (since

M1 ∪M2 ∪ . . . ∪Mk = T ). By induction, ck is the non-dominated

solution of дc
k−i ,M1∪M2∪...∪Mk−i . By letting i = k , the statement is

exactly our conclusion: ck is the non-dominated solution of д. □

4.3 Computing the Minimum Attack Set
In the previous section, we showed that a non-dominated SSE

strategy can be obtained by iteratively computing SSE strategies

of restricted SPARS instances and their corresponding minimum
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restricted attack sets. We now propose a method for finding the

unique minimum attack set.

max

c,x
Ud (c, t) (1a)

s.t. Ua (c, t) ≥ Ua (c, t ′) ∀t ′ , t (1b)

P⊤x = c (1c)∑
j ∈J x j = 1. (1d)

First, multiple LPs method [4] is commonly used to compute an

SSE to security games. Each LP (1) corresponds to one target t and
maximizes the defender’s expected utility on this target under the

restriction that t is in the best response for the attacker.

Definition 4.10. Given target t , let Nt be the smallest tight
constraint set with Nt := {t ′ ∈ T | ∀SSE strategies c with t ∈
Γ(c),Ua (c, t) = Ua (c, t ′),Ud (c, t) = Ud (c, t ′)}.

Given target t and its LP (1), we are interested in which con-

straints are necessary and always active for all optimal solutions

(SSEs), which is the smallest tight constraint set Nt . Our main idea

is to slightly alter the constraint of target t ′ in LP (1) to

Ua (c, t) ≥ Ua (c, t ′) + ϵ

where ϵ is a small positive number (e.g., constant times of numerical

error). If the modified version of the linear program still provides

the same maximum objective value (same up to numerical error),

then the constraint with respect to t ′ is not active now, which

means t ′ < Nt . If it provides a smaller objective value or the linear

program is infeasible, that means the constraint with respect to t ′

is always active, which implies t ′ ∈ Nt .

The procedure of Algorithm 2 is to find out the smallest tight

constraint set Nt under the restriction that t is the best response
of attacker. Every Nt can be solved by at most n modified linear

programs. We will show that the intersection of all the smallest

tight constraint sets is exactly the minimum attack set.

Algorithm 2: Algorithm for Finding Minimum Attack Set

1 Parameter: SPARS instance дc,T
′

2 solve an SSE c∗ using the multiple linear program method and

record the primal, dual solution of each LP

3 for t ∈ Γ(c∗) do
4 given the dual solution d′ and primal solution c′ of LP (1)

5 Nt ← At ← {t ′ | d ′t ′ , 0} ∪ {t},Bt ← Γ(c′)\At
6 for t ′ ∈ Bt do
7 solve modified LP (1) with one more constraint

Ua (c, t)≥Ua (c, t ′)+ϵ
8 if the objective value changes then
9 Nt ← Nt ∪ {t ′}

10 Return: minimum restricted attack set

⋂
t ∈Γ(c∗)

Nt , coverage c∗

Proposition 4.11. Given the dual solution d′ of LP (1), the set
{t ′ |d′t ′ , 0} is contained in the smallest tight constraint set Nt .

Proposition 4.12. Given a primal solution c′ of LP (1), every
target t < Γ(c′) is not contained in the smallest tight constraint set.

Proposition 4.11 and 4.12 help eliminate unnecessary enumera-

tions in Algorithm 2. In the average case, there are only a constant

number of targets in Bt (in Algorithm 2) needed to be enumerated

But in the worst case, we still need to run through at most n targets.

The following theorems guarantee correctness of Algorithm 2.

Proposition 4.13. Given target t , Nt =
⋂
T ′∈Ψ:t ∈T ′ T

′. Moreover,
given arbitrary SSE coverage c′,

⋂
t ∈Γ(c′) Nt =

⋂
T ′∈ΨT

′, which is
the minimum attack setM .

Proof. First, for each SSE solution c, the targets in Γ(c)\{t} are
exactly the targets which make the constraints (1b) tight. Thus, the

smallest tight constraints are the same as the intersection of attack

sets containing t as the best response for the attacker, which implies

Nt =
⋂
T ′∈Ψ:t ∈T ′ Γ(c). Second, since Γ(c′) contains at least one

target t in the minimum attack set, the minimum attack setM must

appear in one of the T ′ ∈ Ψ, t ∈ T ′, which implies

⋂
t ∈Γ(c′) Nt =⋂

t ∈Γ(c′)
⋂
T ′∈Ψ:t ∈T ′ Γ(c) = M =

⋂
T ′∈Ψ Γ(c). □

Theorem 4.14. Algorithm 2 correctly returns the minimum re-
stricted attack set of дc,T

′
.

We can employ Algorithm 2 in Algorithm 1 to directly find

the minimum attack set. This provides our iterative algorithm for

finding a non-dominated SSE strategy in zero-sum games. In order

to find every smallest constraint set Nt , we need to enumerate all

target pairs (t , t ′). Therefore, the number of oracle calls of each

iteration isO(n2), where oracles are used to solve variants of LP (1).

There are at most n iterations, thus the overall runtime is O(n3)
oracle calls.

5 GENERAL-SUM GAMES
In this section, we discuss the refinement of SSEs in general-sum

games. The method is similar to the zero-sum case, but one of the

crucial difficulties is that there is no longer a direct relation between

the defender and attacker utilities. Several useful properties of zero-

sum games do not hold either. For example, in the general setting

the intersection of two attack sets may not be an attack set, leading

to non-uniqueness of the minimum attack set. Also, there could

be several completely different non-dominated SSE strategies. This

implies a significant growth of time complexity.

5.1 Non-Uniqueness of Minimum Attack Set
In Section 4, Theorem 4.5 tells us that in zero-sum games the in-

tersection of two attack sets is still an attack set. The following

example shows that it is not necessarily true in general-sum games.

Example 5.1. Consider a game with one resource R = {r1}, five
targets T = {t1, t2, t3, t4, t5}, and three schedules S1 = {s1, s2, s3}:

s1 = {t1, t2}, s2 = {t3, t4}, s3 = {t3, t4, t5}
We have the following payoffs:

t1 : U
c
d (t1) = 10,Uu

d (t1) = −10,U
u
a (t1) = 10,U c

a (t1) = −10
t2 : U

c
d (t2) = 0, Uu

d (t2) = −5, U
u
a (t2) = 5, U c

a (t2) = −5
t3 : U

c
d (t3) = 6, Uu

d (t3) = −4, U
u
a (t3) = 3, U c

a (t3) = −7
t4 : U

c
d (t4) = 3, Uu

d (t4) = −2, U
u
a (t4) = 4, U c

a (t4) = −8.5
t5 : U

c
d (t5) = 4, Uu

d (t5) = −1, U
u
a (t5) = 0, U c

a (t5) = −5
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Figure 1: The attack sets in Example 5.1

Since the schedule s2 is completely contained in the schedule s3,
the intuition tells us choosing s3 will always be better than choosing
s2. However, this is wrong in this case. In order to show that, we

list some SSE solutions with unsorted attacker utility f , unsorted
defender utility d, and defender utility v sorted in attacking order:

x1 = ⟨0.5, 0.1, 0.4⟩, f1 = ⟨0, 0,−2,−2.25,−2⟩
d1 = ⟨0,−2.5, 1, 0.5, 1⟩, v1 = ⟨0,−2.5, 1, 1, 0.5⟩
x2 = ⟨0.6, 0, 0.4⟩, f2 = ⟨−2,−1,−1,−1,−2⟩
d2 = ⟨2,−2, 0, 0, 1⟩, v2 = ⟨0, 0,−2, 2, 1⟩
x3 = ⟨0.6, 0.2, 0.2⟩, f3 = ⟨−2,−1,−1,−1,−1⟩
d3 = ⟨2,−2, 0, 0, 0⟩, v3 = ⟨0, 0, 0,−2, 2⟩

Γ(c1) = {t1, t2}, Γ(c2) = {t2, t3, t4}, Γ(c3) = {t2, t3, t4, t5}
It can be verified that these are all the possible attack sets. We

have that v3 dominates v2 and v1, which implies partially using

inefficient schedule s2 will result in better performance. Figure 1(a)

illustrates all the attack sets in Example 5.1, which shows that the

minimum attack set is not unique in general-sum games.

5.2 Best Attack Set
We introduce the notion of best attack set. Similar to Section 4, we

iteratively fix the coverage on the minimum best attack set: those

targets the attacker will actually attack, up to breaking ties.

Definition 5.2. Given an SSE coverage vector c, the Best Attack
Set Γb (c) is the set of targets in the best response of the attacker

which also achieves the highest defender utility.

In Example 5.1, as shown in Figure 1(b), the best attack sets are

respectively Γb (c1) = {t1}, Γb (c2) = {t3, t4}, Γb (c3) = {t3, t4, t5}.

Definition 5.3. Let Ψb = {T ′ ⊆ T | ∃ SSE ⟨c, a⟩ : T ′ = Γb (c)} be
the set of all possible best attack sets of SSEs.

Theorem 5.4 (Intersection Property in General-sum Games).

For any two attack sets Γ(c), Γ(c′) ∈ Ψ (Definition 4.2), if Γb (c) ∩
Γb (c′) , ∅, we have Γ(c) ∩ Γ(c′) ∈ Ψ, Γb (c) ∩ Γb (c′) ∈ Ψb .

Proof. Given two sets Γ(c), Γ(c′) ∈ Ψ, their corresponding SSEs
⟨c, a⟩ and ⟨c′, a′⟩ with Γb (c)∩ Γb (c ′) , ∅, we follow a similar proof

idea as in Theorem 4.5. Consider another strategy c∗ = αc+(1−α)c′
with α ∈ (0, 1). c∗ is a feasible coverage vector with strategy x∗ =
αx + (1 − α)x′. Moreover, they share some common targets in

their best attack sets and thus the same highest attacker’s utilities

va and the highest defender’s utility vd . It is easy to verify that

Γ(c∗) = Γ(c) ∩ Γ(c′), Γb (c∗) = Γb (c) ∩ Γb (c′) as follows:

Ua (c, t)
{
= va if t ∈ Γ(c)
< va otherwise

Ua (c′, t)
{
= va if t ∈ Γ(c′)
< va otherwise

Ua (c∗, t) = αUa (c, t) + (1 − α)Ua (c′, t)
{
= va if t ∈ Γ(c) ∩ Γ(c′)
< va otherwise

(2)

Ud (c, t)
{
= vd if t ∈ Γb (c)
< vd if t ∈ Γ(c)\Γb (c)

Ud (c′, t)
{
= vd if t ∈ Γb (c′)
< vd if t ∈ Γ(c′)\Γb (c′)

Ud (c∗, t) = αUd (c, t) + (1 − α)Ud (c′, t)

⇒ Ud (c∗, t)
{
= vd if t ∈ Γb (c) ∩ Γb (c′)
< vd if t ∈ (Γ(c) ∩ Γ(c′))\(Γb (c) ∩ Γb (c′))

(3)

Equation (2) guarantees the attack set of strategy c∗ is Γ(c)∩Γ(c′).
Equation (3) guarantees that among the attack set Γ(c) ∩ Γ(c′),
strategy c achieves the highest defender’s utility on target t if and

only if the target t ∈ Γb (c) ∩ Γb (c′) which is non-empty. Thus, the

best attack set of strategy c∗ is Γb (c∗) = Γb (c) ∩ Γb (c′). □

Theorem 5.4 implies that the intersection of attack sets is still

an attack set if the intersection of their best attack sets is non-

empty. But if the intersection of their best attack sets is empty, the

combining strategy c∗ is no longer an SSE, and thus the intersection
of attack sets may not be an attack set. Based on Theorem 5.4, we

can define the minimum best attack set:

Definition 5.5. AMinimum Best Attack Set is a best attack set
M ∈ Ψb such that any proper subset V ⊂ M is not an element of

Ψb , that is V < Ψb for all V ⊂ M ∩V }.

Proposition 5.6. Given any SSE strategy c, its attack set Γ(c)
must contain one of the minimum best attack sets.

Proof. Directly follows from Definition 5.5. □

5.3 A Recursive Algorithm
Based on the above theorems and paralleling Algorithm 1, Algo-

rithm 3 iterates through all minimum best attack setsM and finds

the non-dominated SSE in each restricted instances дc,T
′∪M

. After

enumerating all the possible solutions, it returns the best one. The

following results guarantee correctness of Algorithm 3.

Algorithm 3: RefinedSSE(д)

1 Function RefinedRestrictedSSE(д, c,T ′)
2 Parameter: restricted SPARS instance дc,T

′
, cList ← []

3 for each minimum best attack setM of дc,T
′
do

4 c∗ ← an SSE of instance дc,T
′∪M

5 c′ ← RefinedRestrictedSSE(д, c∗,T ′ ∪M)

6 add c′ into cList

7 return non-dominated coverage vector among cList

8 return RefinedRestrictedSSE(д, c = 0,T ′ = ∅)
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Figure 2: The minimum best attack sets in the Example 5.1

Proposition 5.7. AssumeM is a minimum restricted best attack
set of дc,T

′
and c∗ is an SSE strategy of дc,T

′
containing M in the

attack set. Then, strategy c′ is an SSE of дc,T
′
containing M if and

only if c′ is a solution of дc
∗,T ′∪M .

Theorem 5.8. The output of Algorithm 3 is a non-dominated SSE.

Both proofs are similar to those of Proposition 4.8 and Theo-

rem 4.9. For the later one, we need to further enumerate all of the

minimum best attack sets and then apply Proposition 5.6.

5.4 Computing Minimum Best Attack Sets
Similar to Section 4, we next propose an efficient method to find all

the minimum best attack sets. Following the notations in Section 4.3,

it can be shown that in general-sum games, solving the modified

LPs (1) with respect to target t will yield the smallest tight constraint

set Nt . The following proposition gives an alternative expression

of Nt (the proof is similar to that of Theorem 4.13):

Proposition 5.9. Nt =
⋂
T ′∈Ψb :t ∈T ′ T

′

The set Nt provides the information between targets: if target t
is included in the best attack set T ′, then all the targets in Nt must

be included in the best attack setT ′ too. We can then focus on those

targets which could be in the best attack set.

Definition 5.10. LetQ be the set of targets which achieve the best

defender utility in some SSE strategies.

The set Q is equivalent to the set of targets t for which LP

(1) provides the highest defender utility and that can be derived

while solving the n linear programs. We construct a directed graph

G = (V ,E) to represent the relations between these targets. Let

V = Q be the set of all targets which could achieve the highest

defender’s utility. Let E =
⋃
t ∈Q {(t , s)|s ∈ Nt , s ∈ Q, s , t} where

(t , s) is the directed edge from t to s .

Example 5.11 (Continued from Example 5.1). With the help of Fig-

ure 1(b), we can visualize the sets {Nt |t ∈ Q} (Q = {t1, t3, t4, t5}):
Nt1 = {t1, t2},Nt3 = {t3, t4},Nt4 = {t3, t4},Nt5 = {t3, t4, t5}.

We can draw a corresponding graph (Figure 2(a)) according to

these sets. Figure 2(b) depicts all of the minimum best attack sets.

Notice that the definition of edges implies the inclusion relationship:

e = (t , s) ∈ E if and only if t ∈ Q , and any attack set including

target t must also include target s .

Proposition 5.12. Directed relations are transitive in graph
G = (V ,E), i.e., if (t ,u) and (u,v) ∈ E, then (t ,v) ∈ E.

The transitive rule has an intuitive meaning: if a best attack set

is such that if t is included, so must u; and if u is included, so must

v ; then if it includes t , it must also include v .

Lemma 5.13. M is a minimum best attack set if and only ifM is a
maximal clique without outgoing edge directed fromM to any other
target in Q\M .

Proof. (⇒) ∀t ∈ M , by Theorem 5.9, Nt =
⋂
T ′∈Ψb :t ∈T ′ T

′
.

Notice that the minimum best attack setM satisfiesM ∈ Ψb , t ∈ M ,

thus Nt ⊆ M . Moreover, by Theorem 5.4, Nt is the intersection

of best attack sets, which implies that Nt is a best attack set. But

we have Nt ⊆ M and M is a minimum best attack set. By the

definition of the minimum best attack set, the only possibility is

Nt = M ∀ t ∈ M , which implies thatM is a maximal clique without

outgoing edges. (⇐) SupposeM is a maximal clique without any

outgoing edge. Then Nt = M ∀ t ∈ M . Since Nt is the intersection

of best attack sets,M = Nt is also a best attack set. Moreover, if a

best attack setV includes any vertex t ∈ M ,V must include Nt = M

(since Nt =
⋂
T ′∈Ψb :t ∈T ′ T

′
, V satisfies V ∈ Ψb : t ∈ V ). Next, we

derive a contradiction. Suppose there is a proper subset V ⊂ M
which is also a best attack set. Then, there exists t ∈ V ∩ M . By

the above argument, we haveM = Nt ⊆ V , which contradicts that

V ⊂ M . We conclude thatM is a minimum best attack set. □

Although themaximal clique problem is generically NP-hard, for-

tunately, the transitive law in Proposition 5.12 reduces the maximal

clique problem to a variant of the tournament problem G = (V ,E)
with time complexity O(|V | + |E |) = O(n2). In Algorithm 4, we

leverage the transitive law to propose a random walk method that

successfully discovers all the minimum best attack sets in O(n2).

Algorithm 4: Find All the Minimum Best Attack Sets

1 Transitive graph G = (V ,E),Mlist ← [],V ′ ← V ,E ′ ← E

2 while V ′ , ∅ do
3 Start random walk in G ′ = (V ′,E ′) and record all the

nodes we walked through until we encounter a duplicate

node or we cannot move anymore. Let v be the last node.

4 Nv ← N (v) ∪ {v} where N (v) is the neighborhood of v

5 if Nv is a maximal clique without outgoing edges then
6 add Nv intoMlist

7 V ′ ← nodes in V ′ that have not been passed by

8 E ′ ← edges in E with both endpoints ∈ V ′

9 returnMlist

Theorem 5.14. Algorithm 4 correctly solves the maximal clique
problem with transitive relation in O(n2).

Theorem 5.15. Each subproblem in Algorithm 3 correctly returns
the non-dominated solution in O(n3) oracle calls.

Both the worst-case runtime of Algorithm 4 and the computa-

tion of all the sets {Nt |t ∈ Q} are O(n2) oracle calls. Therefore, the
worst-case runtime of solving each subproblem in the recursive

algorithm is still O(n3) oracle calls, same as the zero-sum cases.

The number of subproblems depends on the number of minimum

best attack sets. In Example 5.1, there are two minimum best attack

sets: {t1} and {t3, t4}, so we need to compute the non-dominated

solutions for both cases and choose the best one. The overall run-

time depends on the number of subproblems that need to be solved.

Fortunately, while iteratively solving the subproblems, rule (R3)

enables us to foresee the defender’s utilities on the first few targets,
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Figure 3: Defender utility in zero-sum games
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Figure 4: Defender utility in general-sum games

thus prune out a large number of subproblems, which reduces the

overall runtime significantly relative to the worst-case (reduce from

exponential to polynomial many oracle calls in practice).

6 EXPERIMENTAL RESULTS
We run experiments to evaluate the solution quality and scala-

bility of the refined SSE on SPARS. All LPs are solved by CPLEX

(version 12.7.1) on a machine with an Intel core i5-7200U CPU

and 11.6GB memory. Our experiments use 100 sampled game in-

stances with 2 defender resources, varying the number of tar-

gets, and randomly generated payoffs. In zero-sum cases, payoffs

Uu
a (t) = −Uu

d (t),U
c
d (t) = −U

c
a (t) are uniformly distributed in the

set {0, 1, . . . , 10}. In general-sum cases, we are motivated by AR-

MOR [16] and adopt the following payoff setting: Uu
a (t)=−Uu

d (t)
uniformly distributed in the set {0, 1, . . . , 10} (completely opposite

on successful attack), U c
d (t) = 0 (zero reward for successful pro-

tect), andU c
a (t) uniformly distributed in {0, 1, . . . , ⌊Uu

a (t)/2⌋}. Each
instance also encompasses O(n) randomly generated scheduling

constraints with each schedule covering 2 to 5 targets depending

on the number of targets. We employ CPLEX as our oracle to obtain

exact solutions to linear programs. We compare the solution quality

of our refined SSE to the SSEs given by the multiple LPs method

[4], heuristic method [6], and greedy iterative method [1]
2
.

Since the defender utilities on the first preferable target are

identical for all SSEs, we display the residual expected utility for

the remaining targets. Suppose the attacker deviates from his target

to the secondary target with probability e . Further assume that the

attacker does not attack the first preferable target, then the attacker

will attack the second preferable target with probability 1 − e , third
preferable target with e(1 − e) and so on. Given the utility vector v

2
The heuristic method starts from an arbitrary SSE and goes through all of the pure

strategies. If there is a strictly better pure strategy than the pure strategy in the current

mixed strategy, then move the weight to the better one. The greedy iterative method

adopts the idea of the iterative algorithm [1] but without finding minimum attack sets.

It iteratively fixes the coverage of an arbitrary target in the attack set (best attack set).

sorted by the attacking order, the residual value is expressible as∑
2≤i≤n (1 − e)ei−2vi .
Figures 3(a), 3(b), 4(a), 4(b) illustrate the residual expected utili-

ties in zero and general-sum games with n = 10 and 20, respectively.

Without spending additional resources, our refined solution out-

performs the other SSE solutions, improving the defender utility by

10 − 40%. Figures 3(c), 3(d), 4(c), 4(d) depict the defender utilities in
attacking order. The figures show that (i) the refined SSE and other

SSEs provide the same defender utility on the first preferable target;

(ii) While the heuristic and multiple LPs methods are a lot faster

than ours (Figures 5(a), 5(b)), they perform significantly worse since

they do not refine the solution; (iii) The refined SSE gives a much

higher defender utility on the following few targets (second and

third preferable) by sacrificing those less preferable targets, which

are even more unlikely to be attacked than the first few targets.

Figure 5(a) (resp. 5(b)) compares the runtime (resp. number of

oracle calls) of our algorithm relative to other algorithms in zero-

sum (ZS) and general-sum (GS) cases. The results show (i) the
runtime of both zero and general-sum cases is of the same order

as the runtime of the greedy iterative algorithm, which requires

O(n2) oracle calls. Thus, the empirical number of oracle calls is

significantly lower than our worst-case estimate of O(n3). This
is due to the fact that in random settings, the cardinality of Q
(Definition 5.10) is small (usually under 4), resulting in a small

number of enumerations of Nt , t ∈ Q ; (ii) Our algorithm for zero-

sum games is almost two times faster than the greedy iterative

algorithm because fixing the minimum attack set can significantly

reduce the number of iterations, which speeds up our algorithm

and also boosts solution quality; (iii) Figure 5(a) also shows that

the runtime of our optimal algorithm is close to the runtime of the

greedy iterative one. Contrary to the greedy iterative approach,

our algorithm guarantees optimality and provides a significant

improvement in defender utility and robustness, see Figures 3(c),

3(d), 4(c), and 4(d) at low computational cost, which provides a more

robust solution with further spending only little more runtime.
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