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Abstract

Worldwide, conservation agencies employ rangers to protect
conservation areas from poachers. However, agencies lack the
manpower to have rangers effectively patrol these vast ar-
eas frequently. While past work modeled poachers behavior
so as to aid rangers in planning future patrols, those mod-
els predictions were not validated by extensive field tests. We
conducted two rounds of field tests in Ugandas Queen Eliza-
beth Protected Area to evaluate our proposed spatio-temporal
model that predicts poaching threat levels. In the first round,
a one-month field test was conducted to test the predictive
power of the model and in the second round an eight-month
test was conducted to evaluate the selectiveness power of the
model. To our knowledge, this is the first time that a predic-
tive model is evaluated through such an extensive field test
in this domain. These field tests will be extended to another
park in Uganda, Murchison Fall Protected Area. Once such
models are evaluated in the field, they can be used to generate
efficient and feasible patrol routes for the park rangers.

Introduction
Wildlife poaching continues to be a global problem as key
species are hunted toward extinction. For example, the latest
African census showed a 30% decline in elephant popula-
tions between 2007 and 2014 (Chase et al. 2016). Wildlife
conservation areas have been established to protect these
species from poachers, and these areas are protected by park
rangers. These areas are vast, and rangers do not have suffi-
cient resources to patrol everywhere intensively.

At many sites now, rangers patrol and collect data related
to snares they confiscate, poachers they arrest, and other ob-
servations. Given rangers’ resource constraints, patrol man-
agers could benefit from tools that analyze these data and
provide future poaching predictions. However, this domain
presents unique challenges. First, this domain’s real-world
data are few, extremely noisy, and incomplete. To illustrate,
one of rangers’ primary patrol goals is to find wire snares,
which are deployed by poachers to catch animals. However,
these snares are usually well-hidden (e.g., in dense grass),
and thus rangers may not find these snares and (incorrectly)
label an area as not having any snares. Second, poaching ac-
tivity changes over time, and machine learning models must
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account for this temporal component. Third, because poach-
ing happens in the real world, there are mutual spatial and
neighborhood effects that influence poaching activity. Fi-
nally, while field tests are crucial in determining a model’s
efficacy in the world, the difficulties involved in organizing
and executing field tests often precludes them.

In this paper, we summarize our efforts for conduct-
ing field tests in Ugandas Queen Elizabeth Protected Area
(QEPA) which were reported in details in (Kar et al. 2017)
and (Gholami et al. 2017). Also, we discuss our attempts
for extending of such field tests to other protected areas in
Uganda.

Related Works

(Nguyen et al. 2016) introduced a two-layered temporal
Bayesian Network predictive model (CAPTURE) that was
also evaluated on real-world data from QEPA. CAPTURE,
however, assumes one global set of parameters for all of
QEPA which ignores local differences in poachers’ behavior.
While CAPTURE includes temporal elements, it does not
include spatial components and thus cannot capture neigh-
borhood specific phenomena. In contrast to CAPTURE,
(Kar et al. 2017) presented a behavior model, INTERCEPT,
based on an ensemble of decision trees and was demon-
strated to outperform CAPTURE. While that model ac-
counted for spatial correlations, it did not include a temporal
component. In contrast to these predictive models, our latest
model addresses both spatial and temporal components.

In game theory literature, learning adversary models has
been mostly done based on simulated games where data
is collected by human subject experiments in the labora-
tory (Gholami et al. 2016) rather than real world poachers.
It is vital to validate predictive models in the real world,
(Critchlow et al. 2016) conducted a controlled experiment
where their goal, by selecting three areas for rangers to pa-
trol, was to maximize the number of observations sighted
per kilometer walked by the rangers. Their test successfully
demonstrated a significant increase in illegal activity detec-
tion, but they did not provide comparable evaluation metrics
for their predictive model. Also, our second field test was
much larger in scale, involving 27 patrol posts compared to
their 9 posts.



Wildlife Crime Dataset
This study’s wildlife crime dataset is from two wildlife con-
servation parks in Uganda. There are several patrol posts sit-
uated across the parks from which Uganda Wildlife Author-
ity rangers conduct patrols to apprehend poachers, remove
any snares or traps, monitor wildlife, and record signs of il-
legal activity. Along with the amount of patrolling effort in
each area, both datasets contain 14 years (2003-2016) of the
type, location, and date of wildlife crime activities.

Rangers lack the manpower to patrol everywhere all the
time, and thus illegal activity may be undetected in unpa-
trolled areas. Patrolling is an imperfect process, and there
is considerable uncertainty in the dataset’s negative data
points (i.e., areas being labeled as having no illegal activity);
rangers may patrol an area and label it as having no snares
when, in fact, a snare was well-hidden and undetected. These
factors contribute to the dataset’s already large class imbal-
ance. It is thus necessary to consider models that estimate
hidden variables (e.g., whether an area has been attacked).
We divide the parks into 1 square kilometer grid cells, and
we refer to these cells as targets. Each target is associated
with several static geospatial features such as terrain (e.g.,
slope), distance values (e.g., distance to border), and animal
density. Each target is also associated with dynamic features
such as how often an area has been patrolled (i.e., coverage)
and observed illegal activities (e.g., snares).

Hybrid of Markov Random Fields and
Bagging Ensemble

(Kar et al. 2017) proposed INTERCEPT, which is a model
based on an ensemble of decision trees. This model was
shown to predict poachers’ attacks more effectively com-
pared to the previous models. The first round of experi-
ments was conducted based on this technique. To improve
the predictive accuracy even more, the next generation of the
predictive models which was a hybrid of Markov Random
Fields and Bagging ensemble was developed in (Gholami et
al. 2017).

Since the amount and regularity of data collected by
rangers varies across regions of QEPA, predictive models
perform differently in different regions. As such, the lat-
ter paper proposed using different models to predict over
different regions; first, a Bagging ensemble model is used,
and then predictions were improved in some regions us-
ing the spatio-temporal model with graphical modeling ap-
proaches, i.e, Markov Random Fields (MRF). A Bagging
ensemble model or Bootstrap aggregation technique, called
Bagging, is a type of ensemble learning which bags some
weak learners, such as decision trees, on a dataset by gen-
erating many bootstrap duplicates of the dataset and learn-
ing decision trees on them. Each of the bootstrap duplicates
are obtained by randomly choosing M observations out of M
with replacement, where M denotes the training dataset size.
Finally, the predicted response of the ensemble is computed
by taking an average over predictions from its individual de-
cision trees.

Capturing temporal trends requires a sufficient amount of
data to be collected regularly across time steps for each tar-

get. Due to the large amount of missing inspections and un-
certainty in the collected data, more complex models like
MRF with hidden layer for latent poaching activity focuses
on learning poaching activity only over regions that have
been continually monitored in the past. The spatio-temporal
model is designed to account for temporal and spatial trends
in poaching activities. However, since learning those trends
and capturing spatial effects are impacted by the variance
in local poachers’ behaviors, a geo-clustered model was ex-
amined which consists of multiple sets of local parameters
throughout QEPA with spatial effects.

For geo-clustered models, for targets in the continually
monitored subset (where temporally-aware models can be
used practically), the MRF model’s performance varied
widely across geo-clusters according to the experiments.
Thus, for each geo-cluster, if the average Catch Per Unit
Effort (CPUE), is relatively large, the MRF model is used.
In Conservation Biology, CPUE is an indirect measure of
poaching activity abundance. A larger average CPUE for
each cluster corresponds to more frequent poaching activ-
ity and thus more data for that cluster. Consequently, us-
ing more complex spatio-temporal models in those clusters
becomes more reasonable. To compute CPUE, effort corre-
sponds to the amount of coverage (i.e., 1 unit = 1 km walked)
in a given target, and catch corresponds to the number of ob-
servations. Hence, boosting is done selectively according to
the average CPUE value; some clusters may not be boosted
by MRF, and so only Bagging ensemble model is used for
making predictions on them. Experiments on historical data
show that selecting 15% of the geo-clusters with the highest
average CPUE results in the best performance for the entire
hybrid model (Gholami et al. 2017).

Experiment A: One-month Field Test
In the first round of the experiments, INTERCPET (or in
short INT) was tested to evaluate the predictive ability of
the model. After development and evaluation of the model
on historical data, it was deployed to the field. Based on
the predictions, two patrol areas were chosen for QEPA
rangers to patrol for one month. These areas were selected
(approximately 9 square km each) such that they were (1)
predicted to have multiple attacks and (2) previously in-
frequently patrolled as rangers did not previously consider
these as important as other areas (and thus are good areas to
test the model predictions). After providing the rangers with
GPS coordinates of particular points in these areas, they pa-
trolled these areas on foot and utilized their expert knowl-
edge to determine where exactly in these areas they were
most likely to find snares and other signs of illegal human
activity (e.g., salt licks, watering holes). On each patrol, in
addition to their other duties, rangers recorded their obser-
vations of animal sightings (i.e., 21 animals were sighted in
one month) and illegal human activity. The key findings are
demonstrated in Tables 1 and 2 and a selection of photos
taken by park rangers are shown in Figures 1(a) and 1(b).
The most noteworthy findings of these patrols are those re-
lated to elephant poaching; rangers, unfortunately, found one
poached elephant with its tusks removed. However, this re-
sult demonstrates that poachers find this area, predicted by



Week# Illegal Activity Count
2 Trespassing 19
3 Active Snares 1

Plant Harvesting 1
4 Poached Elephants 1

Elephant Snare Roll 1
Antelope Snares 10
Fish Roasting Racks 2

Table 1: Real World Patrol Results: Illegal Activity

(a) (b)

Figure 1: Elephant snare roll found by rangers directed by
INT Photo credit: Uganda Wildlife Authority ranger

the model, attractive for poaching but they had missed to
visit them thoroughly in the past. On a more positive note,
the model’s predictions led rangers to find many snares be-
fore they caught any animals: one large roll of elephant
snares, one active wire snare, and one cache of ten antelope
snares. In fact, the machine learning model predictions as-
sisted rangers’ efforts in potentially saving the lives of mul-
tiple animals including elephants.

In addition to wildlife signs, which represent areas of in-
terest to poachers, the findings of trespassing (e.g., litter,
ashes) are significant as these represent areas of the park
where humans were able to enter illegally and leave with-
out being detected; if we can continue to patrol areas where
poachers are visiting, rangers will eventually encounter the
poachers themselves.

So as to provide additional context for these results, set
of base rates are presented in Table 2. These base rates,
computed in and around the proposed patrol areas, corre-
spond to the average number of observed crimes per month
from 2003-2015. Animal commercial (AnimalCom) crimes
correspond to elephant, buffalo, and hippopotamus poach-
ing; animal noncommercial (AnimalNoncom) corresponds
to all other poaching and poaching via snares; and plant
noncommercial (PlantNoncom) corresponds to illegal har-
vesting of non-timber forest products (e.g., honey). The per-
centile rank corresponds to the number of months where the
deployed patrols recorded more observations than in the his-
torical data. For animal noncommercial crime, there was an
average of 0.73 attacks observed monthly; for the deployed
patrols, there were 3 separate observations (such as a roll of
elephant snares), and in 91% of the months from 2003-2015,
2 or fewer observations were recorded.

Experiment B: Eight-month Field Test
As the efforts for improving model performance continued,
it was important to extend the field test to evaluate the pre-
dictive power and selectiveness of the new models which

Crime Type INT Average Percentile
AnimalCom 1 0.16 89%
AnimalNoncom 3 0.73 91%
Fishing 1 0.73 79%
PlantNoncom 1 0.46 76%
Trespassing 19 0.20 100%
Total 25 2.28

Table 2: Base Rate Comparison: Hits per Month

(a) Patrolled areas
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Figure 2: Patrol Area Statistics

were shown to be outperforming the previous ones. Exper-
iment A was conducted in collaboration with the Wildlife
Conservation Society (WCS) and the Uganda Wildlife Au-
thority (UWA) and showed promising improvements over
previous patrolling regimes. Due to the difficulty of organiz-
ing such a field test, its implications were limited: only two
9-sq km areas (18 sq km) of QEPA were patrolled by rangers
over a month. Because of its success, however, WCS and
UWA graciously agreed to a larger scale, controlled experi-
ment: also in 9 sq km areas, but rangers patrolled 27 of these
areas (243 sq km, spread across QEPA) over eight months;
this is the largest to-date field test of ML-based predictive
models in this domain. We show the areas in Figure 2(a).
Note that rangers patrolled these areas in addition to other
areas of QEPA as part of their normal duties.

This experiment’s goal was to determine the selectiveness
of the hybrid model’s snare attack predictions mentioned
earlier in this paper: does the model correctly predict both
where there are and are not snare attacks? We define attack
prediction rate as the proportion of targets (a 1 km by 1 km
cell) in a patrol area (3 by 3 cells) that are predicted to be
attacked. We considered two experiment groups that corre-
sponded to the hybrid model’s attack prediction rates from
November 2016 - March 2017: High (group 1) and Low
(group 2). Areas that had an attack prediction rate of 50%
or greater were considered to be in a high area (group 1);
areas with less than a 50% rate were in group 2. For ex-
ample, if the model predicted five out of nine targets to be
attacked in an area, that area was in group 1. Due to the
importance of QEPA for elephant conservation, we do not
show which areas belong to which experiment group in Fig-
ure 2(a) so that we do not provide data to ivory poachers. To
start, we exhaustively generated all patrol areas such that (1)
each patrol area was 3x3 sq km, (2) no point in the patrol
area was more than 5 km away from the nearest ranger pa-
trol post, and (3) no patrol area was patrolled too frequently
or infrequently in past years (to ensure that the training data



Table 3: Patrol Area Group Memberships
Group All Patrol Areas Final Patrol Areas
High 50 (9%) 5 (19%)
Low 494 (91%) 22 (81%)

Table 4: Field Test Results: Observations
Group Counts (%) Mean (std) Effort CPUE
High 15 (79%) 3 (5.20) 130 0.12
Low 4 (21%) 0.18 (0.50) 322 0.01

associated with all areas was of similar quality); in all, 544
areas were generated across QEPA. Then, using the model’s
attack predictions, each area was assigned to an experiment
group. Because we were not able to test all 544 areas, we se-
lected a subset such that no two areas overlapped with each
other and no more than two areas were selected for each pa-
trol post (due to manpower constraints). In total, 5 areas in
group 1 and 22 areas in group 2 were chosen. Note that this
composition arose due to the preponderance of group 2 areas
(see Table 3).

We provide a breakdown of the areas’ exact attack pre-
diction rates in Figure 2(b); areas with rates below 56%
(5/9) were in group 2, and for example, there were 8 areas
in group 2 with a rate of 22% (2/9). Finally, when we pro-
vided patrols to the rangers, experiment group memberships
were hidden to prevent effects where knowledge of predicted
poaching activity would influence their patrolling patterns
and detection rates. The field test data we received was in
the same format as the historical data. However, because
rangers needed to physically walk to these patrol areas, we
received additional data that we have omitted from this anal-
ysis; observations made outside of a designated patrol area
were not counted. Because we only predicted where snaring
activity would occur, we have also omitted other observa-
tion types made during the experiment (e.g., illegal cattle
grazing). We present results from this eight-month field test
in Table 4. To provide additional context for these results,
QEPA’s park-wide historical CPUE is also computed (from
November 2015 to March 2016): 0.04.

Areas with a high attack prediction rate had significantly
more snare sightings than areas with low attack prediction
rates (15 vs 4). This is despite there being far fewer group 1
areas than group 2 areas (5 vs 22); on average, group 1 areas
had 3 snare observations whereas group 2 areas had 0.18
observations. It is worth noting the large standard deviation
for the mean observation counts; the standard deviation of
5.2, for the mean of 3, signifies that not all areas had snare
observations. Indeed, two out of five areas in group 1 had
snare observations. However, this also applies to group 2’s
areas: only 3 out of 22 areas had snare observations.

Catch per Unit Effort (CPUE) results are presented in
Table 4. When accounting for differences in areas’ effort,
group 1 areas had a CPUE that was over ten times that of
group 2 areas. Moreover, when compared to QEPA’s park-
wide historical CPUE of 0.04, it is clear that the new hybrid
model successfully differentiated between areas of high and
low snaring activity. The results of this large-scale field test,

the first of its kind for Machine Learning models in this do-
main, demonstrated that the Machine Learning model’s su-
perior predictive performance in the laboratory extends to
the real world.

Experiment C: Ongoing Field Test
To evaluate the capability of the models to be generalized
to other conservation areas, we aim to test it in Murchi-
son Fall park in Uganda. Basically, two datasets (i.e., Queen
Elizabeth and Murchison Fall) have similar set of covari-
ates and features, however, the amount of poaching activi-
ties detected in them are different. So we are extending the
field tests in collaboration with Wildlife Conservation So-
ciety and the Uganda Wildlife Authority. While the target
regions are selected from three groups of low, medium and
high in terms of likelihood of poaching activity occurrence,
they are transferred to the park rangers without group labels.
The field tests are planned to begin in late November, 2017.
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