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Abstract

More than 1 million homicides, robberies, and aggravated as-
saults occur in the United States each year. These crimes are
often further classified into different types based on the cir-
cumstances surrounding the crime (e.g., domestic violence,
gang-related). Despite recent technological advances in AI
and machine learning, these additional classification tasks are
still done manually by specially trained police officers. In this
paper, we provide the first attempt to develop a more auto-
matic system for classifying crimes. In particular, we study
the question of classifying whether a given violent crime
is gang-related. We introduce a novel Partially Generative
Neural Networks (PGNN) that is able to accurately classify
gang-related crimes both when full information is available
and when there is only partial information. Our PGNN is
the first generative-classification model that enables to work
when some features of the test examples are missing. Using
a crime event dataset from Los Angeles covering 2014-2016,
we experimentally show that our PGNN outperforms all other
typically used classifiers for the problem of classifying gang-
related violent crimes.

1 Introduction
There are more than 1 million violent crimes reported in
the United States each year (Federal Bureau of Investiga-
tion 2015). In 2015, for example, there were more 15,696
reported homicides, 764,449 reported aggravated assaults
and 327,374 reported robberies (Federal Bureau of Inves-
tigation 2015). It is no surprise, therefore, that law enforce-
ment agencies are interested in reducing crimes by lever-
aging crime prediction models (Mohler et al. 2011; Green,
Horel, and Papachristos 2017) and intervention strategies
optimized for deterrence (Loughran et al. 2011; Mohler et
al. 2015). Of particular concern is violent crime associated
with gangs. In many large cities, a substantial fraction of the
violent crime can be attributed to the activities of gangs or
gang members. In both Los Angeles and Chicago, for exam-
ple, time-intensive investigative work shows that more than
50% of all homicides appear tied to gangs. Development of
real-time predictive models to deal with the gang violence
problem hangs on the ability to identify gang crimes quickly
and accurately. This is a challenging problem in part because
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of the fragmentary and heterogeneous nature of the data col-
lected about crime event. While investigative effort is often
able to close the gap, this typically takes time that could be
otherwise directed towards intervention. Here we develop a
neural network model that is able to successfully distinguish
gang-related from non-gang crimes given partial data.

Current process of classifying gang-related crimes.
The classification process for identifying gang crimes is
rooted in data collected at the scene of the crime, contex-
tual details that arise during investigation and information
about recent gang activity. The law enforcement approach is
to classify a crime as gang-related if there is any evidence
that the suspect/victim is a gang member, or that the crime
is consistent with gang activity. An individual might self-
identify as a gang member (Decker et al. 2014), or might
bear gang tattoos that signal gang membership (Klein and
Maxson 2006). Evidence that a crime is consistent with gang
activity may include the type of crime (e.g., gun homicide or
assault) (Bjerregaard and Lizotte 1995), the location of the
crime within or near the boundary of a gang territory (Brant-
ingham et al. 2012), the appearance that the crime is a retal-
iation for another previous crime (Jacobs and Wright 2006;
Short et al. 2014), or a connection between the crime and
gang social networks (Green, Horel, and Papachristos 2017;
Papachristos 2009). It is important to recognize the limita-
tions of a binary classification of crimes as gang-related or
not. Criminologists recognize a difference between crimes
that are gang-related, which originate in activities in support
the gang, and crimes that are merely gang-affiliated, mean-
ing that the crime is not connected to gang activities other
than having a victim or suspect tied to gangs (Rosenfeld,
Bray, and Egley 1999). Moreover, it is clear now that indi-
viduals might be socially embedded to different degrees in a
gang (Decker et al. 2014), which presumably translates into
events between differentially tied to gang activity.

Our goal. In present law enforcement contexts, the clas-
sification of gang-related crimes is done manually by some
trained police officers in the criminal gang division. The
process of classification is both labor and time intensive.
Evidence immediately available upon reporting of a crime
may provide strong indications that it is tied to gangs. Data
collected over the process of investigation may reverse this
determination or reinforce it. This information gathering
process may take considerable time (e.g., interviewing vic-



tim(s)/suspect(s) and investigating the crime scenes). Other
demands on time may pull officers away from investigative
activities, the result being different degrees of information
about any individual crime. Moreover, since each crime is
unique in some sense, it is also common for the final infor-
mation to display different degrees of completeness beyond
any effects of the investigative activity. Overall, crimes with
incomplete or partial information are quite common. Moti-
vated by these facts, our goal is to build classifiers to au-
tomatically classify gang-related crimes where some crucial
pieces of crime information are not currently available or are
missing. In particular, we:

• Study the classification problems of determining whether
a crime with partial information is gang-related

• Introduce a novel Partially Generative Neural Network
(PGNN) for general supervised learning problems where
some features of test/new examples are missing

• Show experimentally that our PGNN is effective in clas-
sifying gang-related crimes with full and partial informa-
tion and outperforms other baseline classifiers.

To the best of our knowledge, we are the first to consider
gang-crime classification problem in the AI, machine learn-
ing, and criminologist domains. More broadly, our PGNN is
the first generative-classification model of its kind for gen-
eral supervised learning tasks when some features of the test
examples are missing, which is incredibly common in real-
life settings. Our PGNN works by generating the missing
feature values and makes a prediction using the generated
feature values and the available features. Our PGNN can
also be used to make a prediction when there are no missing
features. As we will show in Section 4, PGNN outperforms
other classifiers in the standard supervised learning setting
and our setting with missing information.

1.1 The General Problem Statement
In our work, we assume that there are two types of features
related to a given task, 1) base features Fb and 2) additional
features Fa. As the names denote, Fb has basic features re-
garded as easily-collectible features and expected that this
set of features is always available. On the other hand, it is
expensive to constantly observe Fa which has additional in-
formation. G is a set of targets such as labels for classifi-
cation. Although our model does not assume the types of
tasks, i.e., G can be any forms, we assume that the task we
are interested in is a classification and G is a class label in
this work. In the training phase, for each training example l,
we are giving the base features F (l)

b , the additional features
F

(l)
a , and the labelG(l) of l. In the test/prediction phrase, we

are given a set of T examples such that, for each t ∈ T , only
F

(t)
b is available. Our goal is to learn a classifier that would

predict the (true) label of each t ∈ T .
In the context of gang-related crime prediction, l is a pre-

vious crime record with information Fb, Fa, and G (i.e.,
gang-related or not). For each new crime t ∈ T , Fb are avail-
able but Fa (such as the narrative of the crime as in Table 1)
are missing in the current police data collection process. As

DO-S1 AND S2 BECAME INVOLVED IN AN ARGUMENT WITH

MUTIPLE V S2 SWUNG AT V,WITH A BAT SS ARRESTED

AND ARE *** GANG MEMBERS

Table 1: An example of crime narrative

we mentioned, Fa such as narrative information may take
considerable time to gather from the investigation.

1.2 Related Work
Gang-related works. Relatively little attention has yet been
directed to using neural networks or machine learning to
classify or predict crime. Some notable exceptions include
point process approaches that use the time and location
of known crimes to predict where and when future crimes
will occur (Mohler et al. 2015). In (Stomakhin, Short, and
Bertozzi 2011) they use a related point process model to
identify which gangs may be responsible for a given crime
over a network of rivals. Similarly, (Green, Horel, and Pa-
pachristos 2017) use a point process on a social network of
an individual to map the contagion of gun violence. Mov-
ing beyond crime data, (Wang, Gerber, and Brown 2012)
uses latent Dirichlet allocation (LDA) to extract topics from
Twitter posts and then develops a general linear model to
predict hit-and-run traffic incidents from the topic models.
Similarly, (Gerber 2014) also uses LDA to extract topics
from Twitter but then fuses those topics with kernel density
estimation estimates of crime density to show that the Twit-
ter features improve predictability of crime. Most related
to the present work is (Kuang, Brantingham, and Bertozzi
2017), which uses NMF-based topic modeling to investigate
the relationships between the full array formal crime type
classifications used by police and narrative texts associated
with crime events. We leverage similar features below. How-
ever, (Kuang, Brantingham, and Bertozzi 2017) do not build
a classifier based on topic structures.

Missing values. In the past decades, many ap-
proaches (Kreindler and Lumsden 2012) have been inves-
tigated to handle missing values in different domains. For
instance, wavelet variance analysis (Mondal and Percival
2010), correlation analysis (Rehfeld et al. 2011), sequential
regression (Raghunathan et al. 2001), and multiple imputa-
tion (White, Royston, and Wood 2011) have been proposed
to impute missing values. Some of these works are based
on the temporal dependencies and others require domain ex-
perts to build the technique, and therefore, it is not easy to
directly use these approaches to our domain.

Recently, data-driven models based on deep learning have
been introduced to handle the missing gaps. (Che et al.
2016) exploit two representations of informative missing
patterns by masking and time interval with Gated Recurrent
Unit (GRU). However, this work does not address how to
impute the random missing gaps but how to utilize the gaps.
Most related to our model is (Hoffman, Gupta, and Darrell
2016) that hallucinate expensive depth images from RGB
images. They propose discriminative networks to mimic the
depth image and illustrate how to define joint loss functions
to facilitate the transferring. Our approach is different, we
focus on the relationship between categorical features and
natural language text summarizing crimes. This relationship
is not very intuitive and we introduce the generative mod-



ule (Kingma and Welling 2013) to transfer the categorical
features to the latent representation of the text.

2 Partially Generative Neural Network
In this section, we propose a novel Partially Generative Neu-
ral Network (PGNN) architecture that enables us to learn
mapping functions not only between an input vector (Fb and
Fa) and an output label (G) but also between a subset of
the input vector (Fb) and another subset of the input vec-
tor (Fa). The former mapping function can be modeled by a
simple classifier such as a logistic regression or a multilayer
neural network. On the other hand, the latter mapping func-
tion is based on the generative variational model to mimic a
set of (relatively expensive) additional features (Fa) which
might not be available at test time from a set of easily avail-
able features. Once all parameters in the proposed model are
trained, it is flexible to use the model no matter whether the
additional features are available.

Fb

Fa

G

Loss1

Loss3

Loss2

GVM

fa

Loss4

Loss5

SM1

SM3

SM5

SM4

SM2

Figure 1: PGNN architecture generating missing features at train-
ing time. NN is neural networks and SM is for softmax activations.

2.1 Architecture
Modules for full features. Figure 1 describes the overall ar-
chitecture internally generating Fa from Fb. First, there are
two input sets, Fb and Fa, and two neural networks denoted
as NN1 and NN2. These neural networks consist of fully
connected layers and they reduce the dimension of features.
Three loss functions denoted as Loss1(L1), Loss2(L2),
and Loss3(L3) correspond to the neural networks (NN1
and NN2) and their forms are defined by a given task. NN1
and NN2 read Fb and Fa as their inputs, respectively, and
they do not require opposite features for the training. Each
output from NN1 and NN2 is used for the classification sep-
arately. For example, L1 is computed by the output of NN1
and the true label G. Similarly, L2 only requires the output
of NN2. Thus, L1 and L2 can be considered as loss func-
tions based on Fb and Fa, independently. On the other hand,
L3 requires both Fb and Fa features. The outputs of NN1
and NN2 are concatenated and used to compute L3. Since
L3 needs entire features and two neural networks, it is ex-
pected to show the least loss value. Overall, these three loss
functions drive parameters in NN1 and NN2 to minimize the
objective, and particularly L3 provides the classification er-
ror when entire features are available.

Modules for missing features. Let fa be the generated
feature from GVM and this is going to replace the role of

Fa when it is not available at the test time. Figure 1 illus-
trates how Generative Variational Module (GVM) is used
to generate fa using NN3 and fa is propagated in PGNN
(dashed arrows). We will discuss GVM below. NN3 is a fully
connected layer which reads fa and encodes it to a low di-
mensional vector. The encoding vector is used in two loss
functions, (Loss4(L4) and Loss5(L5)). First, L4 is sim-
ilar with L2. L4 shows the classification error when fa is
the only available feature. L5 is particularly important since
it provides the error when Fa is unavailable at test time. As
likeL3, it reads the concatenated vector from outputs of NN1
and NN3, and turns out discrepancy from the true label.

2.2 Generative Variational Module (GVM)

To generate missing features Fa, we modify the genera-
tive process in variational autoencoder (VAE) (Kingma and
Welling 2013) which enables latent representations and is
trainable with other neural networks jointly. Specifically, we
derive the appropriate loss function to generate desired fea-
tures in the context of supervised learning.

Latent variable model. Latent variable models describe
a stochastic process which governs the generative process of
an observation from the latent space. Let x and y be “observ-
able” variables and z denote “latent” variables, respectively.
Then, Bayes’ theorem tells us how to infer z from x and
y. In other words, the latent variable from its distribution,
z ∼ P (z), gives a conditional distribution of an observation,
y ∼ P (y|x, z), and the set of parameters governing the dis-
tribution is decided by our model assumption (e.g., neural
networks) and datasets. Since the observations x and y are
given, we are interested in building the latent model to infer
z from observations x, hence the posterior inference, P (z|x),
and to reconstruct y from the x, z, the likelihood. We fol-
low the variational inference (Wainwright, Jordan, and oth-
ers 2008) to infer the posterior. In our model, x and y corre-
spond to Fb and Fa, respectively.

Variational lower bound. The idea behind variational in-
ference is to (1) propose a parametric distribution Qθ(z|x)
with the parameter θ which we know, and to (2) adjust the
parameter θ so thatQθ(z|x) is as close to P (z|x) as possible.

To measure the closest/distance of the two distributions,
we use the typical Kullback-Leibler (KL) divergence, which
is defined below. Let x and y have relations which are able
to be represented as a function F that F(x) ≈ y. Under this
assumption, the KL divergence between two distributions
Q(z|x) and P (z|x, y) is re-written as:

KL(Q||P ) =
∑

z

qθ(z|x) log
qθ(z|x)

p(z|x, y)

=

(∑
z

qθ(z|x) log
qθ(z|x)

p(z,y|x)

)
+ log p(y|x) (1)

where p and q denote the densities of P and Q. To minimize
KL(Q||P ) with respect to the parameters θ, we just have
to minimize the first term of above equation since p(y|x) is



fixed with respect to θ.∑
z

qθ(z|x) log
qθ(z|x)

p(z,y|x)
= EQ

[
log

qθ(z|x)

p(z, y|x)

]
= EQ[log qθ(z|x)− log p(y|z,x)− log p(z|x)] = −L (2)

We call L as the variational lower bound (we will see soon
why) and L is required to be maximized to minimize Eq. 1.
Then, L can be further rearranged as:

L = EQ[log p(y|z, x)]− KL(Q(z|x)||P (z|x)) (3)

Eq. 3 provides the loss function of GVM. First,
log p(y|z, x) is involved with the reconstruction error in su-
pervised learning approach on (x, y) pairs. The second term,
KL(Q(z|x)||P (z|x)), is exactly same as Eq.(1) in (Kingma
and Welling 2013), and therefore, it can be minimized by
maximizing EQ [log p(x|z)]− KL(Q(z|x)||P (z)). Since the
likelihood EQ [log p(x|z)] is not considered in GVM (recon-
struction error is in log p(y|z, x) instead), the optimization is
realized by minimizing KL(Q(z|x)||P (z)).

Finally, the probability distribution of log p(y|x) can be
written as: log p(y|x) = KL(Q(z|x)||P (z|x, y)) + L. Since
the KL divergence is always positive, log p(y|x) must be
larger than L. Therefore, it is possible to minimize the dis-
tance between two posterior distribution Q and P by maxi-
mizing L indirectly.

Reparameterization. As z is a random variable following
the approximate posterior qθe(z|x), it is possible to directly
sample the random variable z from a neural network with an
input x. Since the backpropagation cannot pass the random
variable nodes, (Kingma and Welling 2013) introduce a new
parameter ε which allows to reparameterize z that allows the
backpropagation to flow through the deterministic nodes.

(µ(x),Σ(x)) = Encoder(x; θe), (4)

z = µ(x) + Σ
1
2 (x) · ε,where ε ∼ N (0, 1).

Optimization. The objective of the optimization consists
of two parts, 1) maximization of the likelihood and 2) min-
imization of the KL divergence in Eq. 3. The first objective
is realized by two neural networks, an encoder (θe) and a
decoder (θd). The latent representation z is obtained from x
through the encoder network and ŷ is reconstructed through
the decoder network. To maximize the conditional distribu-
tion p(y|z, x), we implement a loss function that depends on
the difference between ŷ and y. Then, all trainable parame-
ters in the encoder and the decoder are updated through the
backpropagation from the loss function to minimize itself.

The second objective enforces the approximate poste-
rior q(z|x) to be close to the latent variable distribution
p(z). We can assume p(z) as simple as possible, e.g.,
N (0, 1), and the KL divergence between q(z|x) and p(z)
could be provided in a closed form: KL(q(z|x)||N (0, 1)) =
k
2

(
Σ(x)) + µ2(x)− 1− log Σ(x)

)
where k is the dimen-

sion of the latent variable. These two objectives can be opti-
mized through the gradient descent.

Usage. GVM is trained by given pairs of (Fb,Fa) and once
the parameters in the module are updated, it can generate fa
from Fb regardless of corresponding Fa.

2.3 Model Optimization
As noted above, there are a number of loss functions con-
sidered in the model optimization. First, there are two loss
functions in GVM, reconstruction error and KL divergence:

LGVM = EQ[log p(y|z, x)]−KL(Q(z|x)||P (z)) (5)

In Eq. 5, we use mean squared error (MSE) to maximize
EQ[log p(y|z, x)] and N (0, 1) for P (z). Another set of loss
functions is about the classification error, L1,L2,L3,L4,
and L5. In this work, we use the softmax cross entropy
for these losses. Thus, the overall joint cost function of our
model is represented as: Ltot = LGVM + λ1(L1 + L2) +
λ2(L3+L5)+λ3L4 where λ1, λ2, and λ3 are regularization
parameters. In general, we can assign different regulariza-
tion parameters for each loss function. For simplicity, we as-
sign same parameter, λ1, for L1 and L2 which are based on
one feature (Fb or Fa) only. λ2 is assigned for the loss func-
tions handling concatenated vectors, L3 and L5. Finally, we
separate L4 since the highest loss is expected from the loss
function. The total loss function will be minimized jointly
by stochastic gradient descent.

3 Gang-Related Crime Prediction
As discussed in the introduction, we are interested in identi-
fying and predicting gang-related crimes. We begin by dis-
cussing our crime data and features. We then learn and eval-
uate our PGNN presented in Section 2 using the crime data.

3.1 LAPD Crime Data
We use a dataset provided by the Los Angeles Police De-
partment. Our dataset consists of different types of crimes
occurred in 2014, 2015, and 2016. Each crime record may
have associated modus operandi codes (mocodes) providing
some identification of unique behaviors or attributes asso-
ciated with the crime. In the LAPD crime data, an mocode
is used to flag a gang-related crime, which, as discussed,
is labeled by officers in the criminal gang division. As dis-
cussed above, there is some debate about the relative impor-
tance of gang-related versus gang-affiliated crimes (Rosen-
feld, Bray, and Egley 1999). We there concentrate on those
crimes that are more consistently related to gang activity in-
cluding homicide, aggravated assaults, and robberies, and
do not focus on crimes are more likely to simply be com-
mitted by a gang member (e.g., burglary). These more se-
rious violent crimes are expected to more consistently ap-
ply the correct gang-related labels compared to other types
of crimes. Moreover, homicides, aggravated assaults, and
robberies have the highest numbers of labeled gang-related
crimes among other types of crimes (see Table 2). In partic-
ular, only about 1.3 percent of other crimes are gang-related.

Features. In the dataset, each crime has a set of cate-
gorical, textual, and numerical attributes/features recorded
by the police officers or other analytical processes. Note
that some of the features might not be applicable to some
crimes, and they are treated as “blank” entries by the po-
lice officers. Similarly, other features might be recorded but
are relevant to other bureaucratic processes. For example,
the variable LOC TIER is an ordinal measure of the quality



Crime 2014 2015 2016
AGG 10,625 13,808 15,585

(gang-related) (1,873) (2,431) (2,643)
17.63% 17.61% 16.64%

ROBB 7,933 8,994 10,283
(gang-related) (1,056) (1,148) (1,213)

13.31% 12.76% 11.80%
HOM 260 283 294

(gang-related) (158) (167) (171)
60.77 % 59.01% 58.16%

OTH 169,468 185,251 190,597
(gang-related) (2,270) (2,421) (2,415)

1.34% 1.31% 1.27%
Table 2: Crimes in 2014-2016. AGG = Aggravated Assaults, ROBB
= Robberies, HOM = Homicides, OTH = Other Crimes

of the location coordinates generated automatically by the
geocoding engine. The features of a type of crime consist of
the premise (PREMIS), the point of entry (POENTRY), the
street name (STREETNAME), the location region (RD) and
division (DIV) in the LAPD system, the primary weapon
(PRIMARYWEAPON), the property missing/stolen/destroyed
(PROPERTY), the tier (LOC TIER), the maker of the sus-
pect vehicle (SUSPVEHMAKE), the maker of the victim ve-
hicle information (VICVEHMAKE), the number of suspects
(SUSPECTS), the sex of the victim (VICSEX), the narrative
(NARRATIVE), the approximated day of the week (DOW),
the date (MONTH and DAY), the hour (HOUR), the case status
(CASESTATUS), the approximate day-span (WINDOW), and
the match score (SCORE) of the crime.

Gang territory feature. In addition to using crime fea-
tures, we use the 2009 gang territory data to specify the
gang territory of each crime. In particular, for each crime,
we record the name of the gang territory (GANGTERR) that
corresponds to the location of the crime.

Collecting missing features. Each crime record is col-
lected by police officers. Some features of the crimes are
harder and require more effort to obtain than others. This
is particularly the case for collecting narrative details about
a crime, which is a time-consuming task. Moreover, such
feature might not be readily available at test time when all
other features are present. Yet, the narrative feature, as we
will see later in the section, is a powerful feature for pre-
dicting gang-related crimes. As a result, we aim to build a
classifier that would perform well on predicting crimes with
(possibly) missing narratives. If the classifier performs ex-
ceptionally better with narrative text, then a policy recom-
mendation would be to ensure that narrative text is always
collected, perhaps in place of other data types that do not
seem to offer as much information.

3.2 Feature Encoding and Selection
Since some features (e.g., VICSEX) are recorded as categor-
ical types, we use one-hot encoding for the features. For the
NARRATIVE feature, it is inappropriate to encode as a one-
hot vector since the feature is described by natural language.
To encode the description written in natural language to a
numerical dense vector, we use Word2vec (Mikolov et al.
2013) as word embeddings. For each word of the narrative
is represented by a vector, and we take the average of all the

word vectors in a text record as a NARRATIVE-embedding.
Only some features are important to classify gang-related

crimes. Some features are not much better than random
guess (i.e., independent with the target), while other features
show strong relationship with the target. Hence, we want to
select dependent attributes as a set of input features before
simply feeding all attributes into a classifier. To verify the
dependency of each attribute, we repeatedly train a classi-
fier with one attribute and validate the dependency of the
attribute on the held-out dataset.

Feature Type Encoding Dimension
GANGTERR CAT One-hot 262
NARRATIVE Text Word2vec 300
PREMISE CAT One-hot 143

PRIMARYWEAPON CAT One-hot 75
SUSPECTS INT Scalar 1

Table 3: Important features. CAT = Categorical, Int = Integer.

The attributes PREMISE, PRIMARYWEAPON,
SUSPECTS, NARRATIVE, and GANGTERR yield
AUROC>0.6 with low dimensionality, and we select them
as the final set of features of interest (Table 3 lists their
encodings and dimensions).

4 Experiments
In this section, we evaluate the proposed model PGNN on
the LAPD crime datasets over 3 years (2014 - 2016). We ex-
tract three types of crimes (AGG, ROBB, and HOM) which
are highly gang-related crimes as datasets for the evaluation.

Baseline. Many existing models for classification tasks
can be directly used as baselines. Among these models, we
choose representative models such as Logistic regression
(LR), Support vector machine (SVM), Decision tree (DT),
and Neural networks (NN) to compare with PGNN. We use
cross validation to find the optimal hyperparameters for each
model. For the neural networks model, we use the same net-
works (NN1 and NN2) in PGNN for the fair comparison. Fi-
nally, we evaluate a model replacing GVM in PGNN by a
discriminative model (PDNN) to verify the effectiveness of
the generative module. The discriminative module in PDNN
is composed of several fully connected layers. First, Fa is
connected with a layer reducing the dimension of the input
vector to 50. Then, Fb is transferred to the reduced feature
vector by passing the two fully connected layers. With these
two layers, Fb can mimic Fa when Fa is unavailable and the
mapped feature is used for filling the missing part.

Model setting. There are several tunable hyperparame-
ters in PGNN. We first need to define the internal neural net-
works, NN1, NN2, and NN3. Since the size of Fb is around
500 (depending on years), we use two fully-connected layers
for NN1 where the size of the output of each layer is reduced
by half. For NN2 and NN3, a single layer is used to return
output vectors. The size of the output dimension is a third of
the input (Word2vec) dimension which is 300. The layers in
NN1, NN2, and NN3 are trained with 0.5 dropout probability.

In GVM, we need to define parameters in the encoder
and decoder. For the encoder, two fully-connected layers are
used to reduce the dimension of the input vector. The dimen-
sion of the latent variable z is 10. The decoder composed



LR SVM DT NN PDNN PGNN

Full

2014 0.8437 0.7615 0.6304 0.8677 0.8898 0.9180
(0.0142) (0.0181) (0.0204) (0.0102) (0.0182) (0.0056)

2015 0.8462 0.7759 0.6411 0.8697 0.8843 0.9239
(0.0141) (0.0170) (0.0141) (0.0077) (0.0086) (0.0087)

2016 0.8449 0.7730 0.6196 0.8649 0.8742 0.9157
(0.0134) (0.0139) (0.0413) (0.0066) (0.0117) (0.0116)

Partial

2014 0.7566 0.7377 0.6115 0.7905 0.8214 0.8416
(0.0192) (0.0172) (0.0380) (0.0131) (0.0188) (0.0103)

2015 0.7673 0.7599 0.6380 0.7812 0.8028 0.8595
(0.0195) (0.0163) (0.0518) (0.0156) (0.0142) (0.0152)

2016 0.7725 0.7536 0.6195 0.7911 0.8018 0.8538
(0.0147) (0.0160) (0.0414) (0.0079) (0.0117) (0.0124)

Table 4: Experiment results. AUROCs are provided with the standard deviation.

of two layers reconstructs Fa by increasing dimensions of
outputs. A hyperbolic tangent function is used for all acti-
vation functions excluding the encoder (Eq. 4) which uses a
linear activation function. We set the regularization parame-
ters, λ1 = 1.0, λ2 = 1.0, and λ3 = 0.1 obtained from cross
validation. Since L4 is expected to be larger, it is required to
assign a smaller constant to reduce influence of the loss.

Experiment setting. We split the dataset into training and
test sets. For handling the issue of imbalanced labels, we
randomly sample 10% of gang-related crimes and the same
number of non-gang-related samples for the test set, and the
left samples are used for training. We repeat the evaluation
100 times to obtain robust results. We set the learning rate
as 0.01 and use Adam optimizer (Kingma and Ba 2014).

There are two types of inputs at test time: 1) full infor-
mation and 2) partial information. We train all models based
on the full information (Fb and Fa). Once the models are
trained, we use Fb and Fa for the former setting. We only
use Fb for the latter case to see how models can handle the
missing information. Since some baselines excluding PDNN
are not flexible to read different dimensional inputs, we feed
a zero vector for the missing part at test time for them.

Missing feature. For the gang-related crime classifica-
tion, all features are not identically important. As Section 3
shows, we specifically use the important features for the
classification. Although these features are essential for un-
derstanding details of a given crime, it is hard to expect that
all features are available in the realistic setting. Among these
features, NARRATIVE is a powerful feature for predicting
gang-related crimes, however, collecting the feature requires
much effort of domain experts and delays rapid predictions.
Hence, we are interested in a case that the most important
feature, NARRATIVE, is unavailable at test time. Under this
setting, we can see how PGNN can improve the overall per-
formance of the classification task by generating the missing
feature and provide the potential for practical applications.

Result. Table 4 reports classification performance (AU-
ROC) from baselines and PGNN with standard deviations
on 3 year LADP crime datasets. The AUROCs indicated
as ‘Full’ are results when the important features are fully
available. In other words, NARRATIVE is available at test
time as well. Thus, it is expected to provide the highest AU-
ROCs from each classifier. On the other hand, ‘Partial’ de-
notes that NARRATIVE is only available at training and it
is missed at test time. Thus, all baselines excluding PDNN
are trained with the full features and tested on the partial
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Figure 2: 2016 Crimes: ROC curves.

features (GEANGTERR, PREMISE, PRIMARYWEAPON, and
SUSPECTS). Figure 2 illustrates the ROC curves for every
classifier on the 2016 crime data.

As Table 4 shows, PGNN outperforms other baselines on
all datasets. Specifically, LR and NN provide comparable
results, however, SVM and DT show worse classification
quality. As expected, all classifiers show smaller AUROCs
on the partial feature set compared to the full feature case.
The results from NN tell us that the fully connected layers
are effective to encode a given feature into a lower dimen-
sional representation. Furthermore, we can find that the per-
formance of one neural network (NN) can be enhanced by
other side neural networks in PDNN or PGNN.

Compared to PDNN, PGNN is more robust and has higher
AUROCs. It is believed that KL divergence in a generative
model can regularize the model and help not to be suscepti-
ble on over-fitting. Hence, it provides that the GVM module
can improve the overall classification quality. Interestingly,
PGNN provides even better (or comparable) AUROCs under
the partial setting than those of LR, SVM, DT, and NN un-
der the full feature setting. This closeness clearly shows that
PGNN can successfully generate missing features which are
prevalent in the real world. Thus, we could find the effec-
tiveness of generative networks to handle missing features.

5 Conclusion
We have presented the generative module that enables to
generate missing features from partially available features
and showed that it can be embedded into neural networks
to successfully classify gang-related crimes. This procedure
readily extends to other domains handling dependent fea-
ture sets. Finally, we compare PGNN with the discriminative
classifiers to see that the generative module performs well.
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