
Deceiving Cyber Adversaries: A Game Theoretic Approach
Aaron Schlenker, Omkar Thakoor, Haifeng Xu,

Milind Tambe, Phebe Vayanos

University of Southern California

Los Angeles, California

{aschlenk,othakoor,haifengx,tambe,phebe.vayanos}@usc.

edu

Fei Fang

Carnegie Mellon University

Pittsburgh, Pennsylvania

feifang@cmu.edu

Long Tran-Thanh

University of Southhampton

Southampton, United Kingdom

ltt08r@ecs.soton.ac.uk

Yevgeniy Vorobeychik

Vanderbilt University

Nashville, Tennessee

yevgeniy.vorobeychik@vanderbilt.edu

ABSTRACT
An important way cyber adversaries find vulnerabilities in mod-

ern networks is through reconnaissance, in which they attempt to

identify configuration specifics of network hosts. To increase un-

certainty of adversarial reconnaissance, the network administrator

(henceforth, defender) can introduce deception into responses to

network scans, such as obscuring certain system characteristics.

We introduce a novel game theoretic model of deceptive interac-

tions of this kind between a defender and a cyber attacker, which

we call the Cyber Deception Game. We consider both a powerful

(rational) attacker, who is aware of the defender’s exact deception

strategy, and a naive attacker who is not. We show that computing

the optimal deception strategy is NP-hard for both types of attackers.

For the case with a powerful attacker, we provide a mixed-integer

linear program solution as well as a fast and effective greedy algo-

rithm. Similarly, we provide complexity results and propose exact

and heuristic approaches when the attacker is naive. Our exten-

sive experimental analysis demonstrates the effectiveness of our

approaches.
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1 INTRODUCTION
Network security is an important problem faced by organizations

who operate enterprise networks housing sensitive information and

complete important functions. This challenge is highlighted by sev-

eral recent major attacks which have caused severe damage, such

as the Equifax breach in 2017 and Yahoo in 2016 [13, 14]. Criminals

who target networks first map it out by using network scanning

tools. These tools answer important questions such as: which com-

puters are connected to each other and their IP addresses? What

operating system is a computer running? What ports are open and

what services are they running? What are the names of associated

subnetworks and users? Given answers to all of these questions,
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an attacker is able to maximize his chance of successfully infiltrat-

ing the network and gaining a foothold. To gain such information,

attackers can use a suite of requests using tools such as NMap [19].

To protect against attacks, network administrators use tech-

niques such as the whitelisting of applications, locking down per-

missions, and immediately patching vulnerabilities [16]. An inter-

esting direction of research is the use of deception as a framework

to improve cybersecurity defenses [4]. [1] explores ways to achieve

deception through OS and service obfuscation to thwart potential

attackers. Instead of directly stopping an attack, deceptive tech-

niques concentrate on diverting an adversary to attack non-critical

systems or honeypots using deceptive views of the network state.

Essentially, approaches for deception focus on making it difficult

for an attacker to accurately identify information about systems

on the network using tools like NMap. However, one drawback of

most of these previous approaches is that they do not adequately

model the adversarial nature of the cybersecurity domain.

Experienced attackers attempting to infiltrate a network spend

a significant amount of time during the reconnaissance phase of

their attack to find vulnerabilities throughout the network by map-

ping out the network through NMap scans, stealth SYN scans, TCP

connections scans along with others [16, 20]. After gathering all

of this information, the attacker then mounts their attack on a

network. In the cyber domain, the network administrator has an

asymmetric information advantage as she knows the true state of

the network, i.e., properties of the system such as its hardware type

or the operating system, and further, she can control the responses

to scans sent by an adversary [2, 8]. By hiding or lying about part

of each system’s configuration, the defender could make it signifi-

cantly harder for the adversary to determine the true vulnerabilities

present in systems on the network. Since exploits generally rely on

specific vulnerabilities and versions of software, incorrectly identi-

fying a system’s software information decreases the likelihood of a

successful attack.

Our work concentrates on how the defender can benefit the

most from determining a mix of true, false and obscure responses

to deceive the attackers. To highlight the defender’s advantage,

consider a network with 1 system running NGINX and 2 running

Tomcat. Suppose the adversary has a specific exploit for NGINX.

The adversary scans all systems to find the one running NGINX

and then deploys his exploit. However, if the defender can lie about
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the webserver, the adversary potentially has to test his exploit on

all systems to infiltrate the network. This process increases the time

spent by the adversary to infiltrate the network (which gives the

defender time to mount a better defense) and increases the chances

the defender catches an attack. The problem for the defender then is

to determine how to alter the adversary’s perception of the network

to minimize her expected loss from an attack.

Our first contribution is the Cyber Deception Game (CDG) model

which captures the strategic interaction between the defender and

an adversary in network security. In this game, the defender chooses

how systems respond to scans and the attacker chooses which sys-

tem to attack based on the responses. For our second contribution

we show that finding the defender’s optimal strategy against a pow-

erful attacker who knows the defender’s exact deception scheme

in CDGs is NP-hard and provide a Mixed Integer Linear Program

(MILP) to compute the optimal response scheme. We then propose a

greedy algorithm to quickly find good defender strategies in CDGs

which is shown to perform well experimentally in a fraction of the

time of the MILP. Third, we show that surprisingly the problem is

still NP-hard when faced with naive attackers who act according

to prior fixed utilities given budget constraints, and propose an

algorithm to provide the exact solution. Finally, we present experi-

mental results showing the scalability of our solution techniques

and a comparison of the solution quality of proposed techniques

for both types of adversaries.

2 RELATEDWORK
The use of game theory for security has been studied extensively,

which we discuss in Section 3. Game theory has also been studied

in the context cybersecurity problems [5, 18, 24, 25]. [11, 12, 17, 23]

study a honeypot selection game where a defender chooses the

properties of the network where the attacker can use probe actions

to test the network and his actions are represented as attack graphs.

[10] studies a signaling game where the defender signals to an

adversary if a system is either real or a honeypotwhen the adversary

performs a scan. [22] extends the signaling game to account for an

adversary who can gain evidence about the true state of a system.

In our work, we consider a game scenario in which the defender

determines the optimal way to respond to scans sent by a potential

adversary given a set of possible responses. Further, we explore

different types of adversaries with varying awareness of deception.

Deception has also been widely studied as a means to improve

the protection of enterprise networks from potential hackers and

intruders [1, 3]. [2] uses a graph theoretic approach to confuse a po-

tential attacker bymanipulating his view of systems on the network.

However, this work focuses on finding a view which is measurably

different from the true state and does not adequately model the

response of a strategic adversary. [15] is the most closely related to

our work. The authors study how to respond to an attacker’s scan

queries using an annotated probabilistic logic model. We provide

a complimentary view using game theory to determine how a de-

fender manipulates scan responses to confuse an attacker’s view

of systems on the network. We also study varying adversary mod-

els, which can have significant impact on the defender’s optimal

strategy which is not explored in [15].

3 CYBER DECEPTION GAME
The Cyber Deception Game (CDG) is a zero-sum Stackelberg game

between the defender (e.g., network administrator) and an adver-

sary (e.g., hacker). The defender moves first and chooses how the

systems should respond to scan queries from an adversary, and

the adversary subsequently moves by choosing a system to attack

based on the responses. Despite the similarities with game-theoretic

models in security domains, such as [6, 7, 26], there are two key dif-

ferences. First, the defender can only commit to a pure strategy and

not an arbitrary mixed strategy. This is because, in these domains,

network administrators modify the network very infrequently, and

thus, the attackers’ view of the network is static. Second, there are

no explicit security resources for the defender in CDGs. Conse-

quently, the existing approaches for solving standard Stackelberg

games in security domains, cannot be directly applied. The various

components of the game and the aforementioned model character-

istics are described in detail as follows:

Systems and True Configurations. The defender aims to pro-

tect a set K of systems, from possible exploits and intrusions. Each

system has certain attributes, e.g., an operating system, an anti-

virus protection mechanism, services hosted, etc. These attributes

altogether constitute the true configuration (TC) of the system. We

denote the set of all possible TCs by F . We consider a zero-sum

game. Each system has an associated utility, which captures how

much the adversary would get by attacking it. This utility solely

depends on the TC of the system — each f ∈ F induces a utility de-

noted byUf to any system that is assigned f .Uf can be negative if

the security level of the system is so high that the attacker’s efforts

end in vain or the attacker gets fake data from a seemingly success-

ful attack, leading to a loss in the end. It follows that, the true state
of the network (TSN) can be represented as a vector N = (Nf )f ∈F ,
where Nf ∈ Z>0 denotes the number of systems on the network

which have a TC f and

∑
f ∈F

Nf = |K | (We assume Nf , 0, since

such a TC simply need not be considered).

Observed Configurations. The adversary attempts to gain in-

formation about every system on the network, via probes and scans.

By scanning a system, the adversary observes certain attributes,

which constitute the observable configuration (OC) of the system.

We denote the set of possible OCs by F̃ . We assume that it is possi-

ble for the defender to make some of the observable attributes of a

system appear different than what they truly are (e.g., altering the

TCP/IP stack of a system, spoofing a running service on a port). By

means of such alterations at her disposal, the defender controls the

OC an attacker sees when probing a system. Note that it may not be

possible for an arbitrary TC f ∈ F to be made to appear as an arbi-

trary OC
˜f ∈ F̃ — we call such a constraint a feasibility constraint,

and these are denoted by a (0,1)-matrix π . Iff πf , ˜f = 1, we say f can

be covered, or masked with
˜f . We denote the set of OCs which can

mask a TC f , by F̃f = { ˜f ∈ F̃ | πf , ˜f = 1}, and similarly, the set of

TCs which can be masked by an OC
˜f , by F

˜f = { f ∈ F | πf , ˜f = 1}.
From the adversary’s perspective, two systems having the same

˜f as their OC are indistinguishable, and hence, his observed state
of the network (OSN) can be represented as a vector Ñ = (Ñ

˜f ) ˜f ∈F̃
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where Ñ
˜f ∈ Z≥0 denotes the number of systems which have an

OC
˜f . As is the case with the TSN N , we must have

∑
˜f ∈F̃

Ñ
˜f = |K |.

We assume that masking a TC f with an OC
˜f , has a cost of

c(f , ˜f ) incurred by the defender, which typically captures the mon-

etary costs for deploying network modifications necessary for such

a deception.

Defender Strategies. Naturally, F , F̃ , π , c and N are known to

the defender. Given all this information, the defender must decide

her strategy — for each TC f , she must decide how many of the Nf

systems having TC f , should be assigned the OC
˜f , where ˜f ∈ F̃f .

Thus, any possible strategy can be represented as a |F | × |F̃ | matrix

ϕ having non-negative integer entries, with ϕf , ˜f representing the

number of systems having TC f and OC
˜f . Hence, ϕ must satisfy

ϕf , ˜f ∈ Z≥0 ∀f ∈ F ,∀ ˜f ∈ F̃ (1)

Since the TSN N is fixed, ϕ must also satisfy∑
˜f ∈F̃

ϕf , ˜f = Nf ∀f ∈ F (2)

Since feasibility constraints π are specified, ϕ must also satisfy

ϕf , ˜f ≤ πf , ˜f Nf ,∀f ∈ F ∀ ˜f ∈ F̃ (3)

Finally, since setting any OC on a system has an associated cost,

we assume that the defender cannot afford the total cost to exceed

a limit B, which we call the budget constraint. Formally, ϕ must

also satisfy ∑
f ∈F

∑
˜f ∈F̃

ϕf , ˜f c(f , ˜f ) ≤ B (4)

The set of strategies ϕ which satisfy the constraints (1), (2), (3), and

(4), is denoted by Φ.1 When the defender plays ϕ ∈ Φ, the resulting
OSN Ñ is given by Ñ

˜f =
∑
f ∈F

ϕf , ˜f ∀ ˜f ∈ F̃ .

Adversary Strategies. Depending on the defender’s strategy,

the adversary observes Ñ as described above. Since all the systems

having the same OC
˜f are indistinguishable to the adversary, he

must be indifferent between all such Ñ
˜f systems when deciding

which system to attack. As a result, we assume that he attempts

to choose the OC
˜f which gives him the highest expected utility

(described momentarily), and attack all the Ñ
˜f systems having this

OCwith an equal probability. In short, we say “the adversary attacks

an OC
˜f ” to mean he attacks all the systems having OC

˜f with an

equal probability. A general mixed strategy for the adversary is to

attack the set of OCs with any probability distribution. However,

since there always exists a pure best-response strategy in any game,

it suffices to consider the adversary’s strategies as simply attacking

a particular
˜f .

1
The feasibility constraints can simply be captured via the budget constraint by setting

the costs of infeasible assignments to be higher than the budget. However, they are

essential in the model, since, in some cases, having no budget constraint allows an

efficient solution to the problem (e.g. Section 7), while still having the very practical

feasibility constraints keeps the problem non-trivial.

Utilities. When the defender plays a strategy ϕ, the adversary’s

expected utility on attacking an OC
˜f with Ñ

˜f > 0, denoted by

Ū
˜f (ϕ) — or, as Ū

˜f for simplicity, when the underlying ϕ is unam-

biguously understood — is given by

Ũ
˜f = E[Uf |ϕ, ˜f ] =

∑
f ∈F ˜f

P(f |ϕ, ˜f )Uf =
∑
f ∈F

ϕf , ˜f

Ñ
˜f

Uf (5)

(5) follows from computing P(f |ϕ, ˜f ) using the fact that out of Ñ
˜f

systems having an OC
˜f , ϕf , ˜f have a TC f . Since the game is zero-

sum, the defender’s expected utility is−Ũ
˜f when

˜f is attacked. Note

the attacker cannot attack an OC
˜f with Ñ

˜f = 0, or equivalently,

his expected utility is −∞ if he does so.

Next, we illustrate the model using a simple example.

Figure 1: Simple example of an enterprise network.

Figure 1 shows a simple example enterprise network which

will be used as a running example. We have a set of systems K =
{k1,k2,k3}, set of TCs F = { f1, f2, f3} (shown in Figure 1 as the

green boxes) and set of OCs F̃ = { ˜f1, ˜f2} (shown in Figure 1 as the

yellow boxes). Let the feasibility constraints be given by the sets

F
˜f1
= { f1, f2} and F

˜f2
= { f2, f3}. The TCs are as follows:

f1 = [[os] L, [web] T, [ssh] O, [files] S]

f2 = [[os] L, [web] N, [ssh] O, [files] P]

f3 = [[os] W, [web] N, [ssh] O, [files] I]

For the TCs, the utilities are Uf1 = 10, Uf2 = 0, and Uf3 = 6. The

OCs are as follows:

˜f1 = [[os] L, [web] T]
˜f2 = [[os] W, [web] T]

For simplicity, let all the costs c(f , ˜f ) to be 0, so that there is essen-

tially no budget constraint. Based on the TCs assigned as shown,

the state of the network (Nf )f ∈F is (1, 1, 1). When the defender

assigns OCs as shown in Figure 1, her strategy ϕ is given by


˜f1 ˜f2

f1 1 0

f2 1 0

f3 0 1


The expected utility of the adversary (loss of the defender) when

he attacks
˜f1 or ˜f2 is respectively given by Ũ

˜f1
= (10+ 0)/2 = 5 and

Ũ
˜f2
= 6/1 = 6. Thus, attacking

˜f2 leads to highest expected utility

for the attacker.
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AdversaryKnowledge andUtility Estimation. The attacker’s
awareness of the deception and the understanding of the defender’s

strategy may vary. Note that if the adversary is always able to find

the OC with highest expected utility, it is the worst case scenario

for the defender given the game is zero-sum. An attacker who is

fully aware of how the defender send the false responses to scan

requests (via insider threats, information leakage, etc.) would have

such ability. Formally, we define a powerful attacker to be one who

knows F , F̃ , π , U and ϕ and chooses to attack the OC with the

(correct) highest expected utility Ũ
˜f computed through Equation

5. If the defender chooses a strategy that minimizes the expected

utility of a powerful attacker, she gets a robust strategy as the de-

fender can be assured that no matter the extent of the adversary’s

knowledge, no strategy he plays can lead to a greater loss for the

defender, in alignment with the minimax principle.

However, the attacker may not be so powerful. On the other

end of the spectrum, if the attacker is unaware of the defender’s

precise deception scheme or has a very limited understanding of

situation such that he cannot make any meaningful inference, his

decision making would be completely dependent on the observed

configurations of the systems and some fixed preferences over OCs

in terms of the estimated expected utility. Formally, we define a

naive attacker to be one who chooses to attack an existing OC
˜f

(i.e., one at least one system is configured to have) with the highest

Ū
˜f where Ū

˜f is not dependent on the defender’s strategy and is

known to the defender. This is also equivalent to the case where

the attacker just has a fixed preference of the OCs. We analyze

CDGs with powerful attackers in Section 4, and CDGs with naive

attackers in Section 5.

4 OPTIMAL DEFENDER STRATEGY AGAINST
POWERFUL ADVERSARY

In this section, we compute the defender’s optimal strategy in a

CDG assuming a powerful adversary. The adversary attacks an

OC from the set argmax
˜f ∈F̃ Ũ ˜f and gets an expected utility of

max
˜f ∈F̃ Ũ ˜f , denoted in short as Ũ ∗(ϕ), which is also the defender’s

expected loss. Hence, the defender aims to minimize it by choosing

her ϕ from the set argminϕ∈Φ Ũ
∗(ϕ).

4.1 Computational Complexity
We call the problem of finding optimal defender strategy against a

powerful adversary in a CDG as CDG-Robust .
We first investigate a special case. The following proposition

which provides a tight lower bound on minϕ∈Φ Ũ
∗(ϕ).

Proposition 4.1. The expected loss of the defender when playing
her optimum strategy, is no lower than the average utility of the
systems, i.e.,

min

ϕ
Ũ ∗(ϕ) ≥ UAve(K) =

∑
f ∈F Nf Uf

|K |

Proof Sketch. Configuring the systems with different OCs effec-
tively partitions the set K into subsets. Since the average utility of
all the systems in all these subsets is UAve(K), there exist at least
one subset whose average utility is no less than UAve(K). Therefore

the highest expected utility for the attacker, which is the maximum
average utility of all these subsets, is no less thanUAve(K). 2

Thus, even when the defender plays her optimal strategy, the

attacker’s expected utility is at leastUAve(K). Consequently, if the
inequality becomes tight for a strategy ϕ, it must be an optimal

strategy. It is easy to see that the bound becomes tight if and only

if Ũ ∗(ϕ) = Ũ
˜f (ϕ), ∀ ˜f . Clearly, this is true if and only if Ū

˜f is the

same for each
˜f set on any system, trivially so, if only a single OC

is set on all the systems. Thus,

Corollary 4.2. If it is feasible for the defender to set the same
OC on all the systems making them all indistinguishable to the ad-
versary, doing so is an optimal strategy. Formally, if ∃ ˜f ∗ s.t. ∃ϕ∗ ∈
Φ where ϕ∗

f , ˜f ∗
= Nf ,∀f , then ϕ∗ ∈ argminϕ∈Φ Ũ

∗(ϕ).

It is possible to efficiently check if such an OC exists, by enumer-

ation. However, it may not exist, and we show that CDG-Robust is
NP-hard in general.

Proposition 4.3. CDG-Robust is NP-hard.

Proof. We prove the result via a reduction from the Partition

problem (PART ) which is known to be NP-complete. Given a multi-

set S of n positive integers that sum up to 2r , PART is the decision

problem to determine if S can be partitioned into two subsets S1

and S2 such that the sum of integers in S1, and S2 is r each. It can
be reduced to CDG-Robust as follows.

Let the input to PART be a set of integers S = {s1, . . . , sn } whose
elements sum to 2r . To construct a CDG, let the set of TCs be

F = { f1, . . . , fn } ∪ { fn+1, fn+2}, with utilities Ufi = si for each
i ∈ {1, . . . ,n} and Ufn+1

= Ufn+2
= −r . Next, let there be n + 2

systems, each having a different TC. Let the set of OCs be F̃ =

{ ˜f1, ˜f2}, with F̃fi = F̃ for each i ∈ {1, . . . ,n}, and F̃fn+1
= { ˜f1},

F̃fn+2
= { ˜f2}. Let all the costs be 0 so that the budget constraint

can be ignored. Assuming the adversary to be powerful, these

components completely define a CDG-Robust problem.

Note that, by Proposition 4.1 and the fact that

∑
f Uf = 0, we

know that the optimal strategy ϕ must have Ũ ∗(ϕ) ≥ 0. Now,

suppose S can be partitioned in subsets S1 and S2 such that the

numbers in each sum to r . Then, consider the strategy ϕ which

masks the TCs in { fi |si ∈ S1} and fn+1 with
˜f1, and masks the TCs

in { fi |si ∈ S2} and fn+2 with
˜f2. It is easy to check that Ũ

˜f1
(ϕ) =

Ũ
˜f2
(ϕ) = 0 = Ũ ∗(ϕ), making ϕ an optimal strategy. On the other

hand, suppose the defender’s optimal ϕ yields Ũ ∗(ϕ) = 0. Since
˜f1

must mask fn+1, and
˜f2 must mask fn+2, neither of the OCs are

unused. Since Ũ ∗(ϕ) = 0, w.l.o.g., assume Ũ
˜f1
= 0. Hence, the sum

of utilities of the TCs masked with
˜f1 must be 0. Therefore, the sum

of utilities of TCs masked by
˜f ′ is also 0. Then, S1 = {si |ϕfi , ˜f1

=

1}, and S2 = {si |ϕfi , ˜f2
= 1} form a partition of S , each having

sum of the elements r . It follows that, PART should output YES
iff CDG-Robust finds an optimal strategy ϕ with Ũ ∗(ϕ) = 0. This

reduction, being polynomial-time, proves the claim.

□

2
A detailed proof can be found in the online appendix: https://www.dropbox.com/s/

n3wn0glm2clzs7e/Appendix.pdf?dl=0

https://www.dropbox.com/s/n3wn0glm2clzs7e/Appendix.pdf?dl=0
https://www.dropbox.com/s/n3wn0glm2clzs7e/Appendix.pdf?dl=0
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4.2 The Defender’s Optimization Problem
The defender’s optimal strategy ϕ can be computed by solving the

optimization problem given below.

min

u,ϕ
u (6a)

s.t. u
∑
f ∈F

ϕf , ˜f ≥
∑
f ∈F

ϕf , ˜f Uf ∀ ˜f ∈ ˜f (6b)

Constraints (1) ∼ (4)

The objective function in Equation (6a) minimizes the utility u
the adversary receives for the game. Equation (6b) enforces that

the adversary chooses a best response to the defender’s strategy ϕ,

where the expected utility for attacking a given
˜f is given by (5).

Constraints (1)∼(4) represent a feasible defender strategy.
This optimization problem is non-convex due to constraint (6b),

which can be linearized, to convert the optimization problem to

an MILP as follows. First, we devise an alternate representation of

defender’s strategy ϕ, as a |K | × |F̃ | (0,1)-matrix σ , where σk, ˜f = 1

denotes system k is masked with
˜f . Further, we represent the TSN

N via a vector x, where xk ∈ F represents the TC for system k .
Then, for each TC f , we have Nf = |Kf | where, Kf = {k ∈ K |
xk = F }, and ϕf , ˜f =

∑
k ∈Kf σk, ˜f ∀f ,∀ ˜f . Hence, the alternate

representations are indeed equivalent. Then, constraints equivalent

to (1)∼(4) can be easily formulated for σ and x with an additional

constraint

∑
˜f ∈F̃ σk, ˜f = 1 ∀k ∈ K to ensure feasibility. More

importantly, equation (6b) can be reformulated as

u
∑
k ∈K

σk, ˜f ≥
∑
k ∈K

σk, ˜f Uxk ∀ ˜f ∈ F̃ (7)

The left hand side of (7) can be seen as the sum of a set of terms

uσk, ˜f , each of which is the product of binary variable σk, ˜f and

the continuous variable u. Such an expression can be linearized by

introducing variables zk, ˜f for each k ∈ K and
˜f ∈ F̃ , and enforcing

zk, ˜f = uσk, ˜f . Consequently, we can rewrite (7) as:∑
k ∈K

zk, ˜f ≥
∑
k ∈K

σk, ˜f Uxk (8)

To enforce zk, ˜f = uσk, ˜f , we consider u ∈ [U
min ,Umax ] where

Umin = minf ∈F Uf and Umax = maxf ∈F Uf . With these bounds

on u, we then include the constraints for each z variable in the

optimization problem as follows:

Uminσk, ˜f ≤ zk, ˜f ≤ Umaxσk, ˜f (9)

u − (1 − σk, ˜f )U
max ≤ zk, ˜f ≤ u − (1 − σk, ˜f )U

min
(10)

After this conversion the optimization problem becomes an MILP.

The complete formulation can be found in the online appendix.

4.3 Greedy-Minimax Algorithm
Despite the speedup via cut generation, solving the above MILP

can still be computationally expensive for large instances. Hence,

we seek heuristic algorithms which may be suboptimal but run fast

and perform well on average. In this section, we describe a simple

approach to sequentially assign OCs to the systems, by greedily

minimizing attacker’s maximum expected utility for the partially

built strategy at each stage. Algorithm 1 gives the pseudo-code.

Algorithm 1: Greedy-Minimax

1 minIndCost[] ← (min
˜f c(f , ˜f ))f ∈F

2 minTotCost ← ∑
f Nf ∗minIndCost[f ]

3 initializeminu∗, σbest
4 For iter = 1 . . .numIter

5 Kl ist [] ← shu f f le(K)
6 initialize remB ← B, reqB ←minTotCost

7 initialize σ [], N̄ [], Ū []
8 For i = 1 . . . |K |
9 k ← Kl ist [i], f ← x[k]

10 σ [k] ← GMMAssiдn(f ,σ [], N̄ , Ū [])
11 N̄ [σ [k]] ← N̄ [σ [k]] + 1

12 update(Ū [σ [k]])
13 remB ← remB − c(f ,σ [k])
14 reqB ← reqB −minIndCost[f ]
15 compute u∗ = max

˜f Ū [ ˜f ])
16 update(minu∗,u∗,σbest ,σ )
17 return σbest
18 Procedure GMMAssiдn(f ,σ [], N̄ , Ū [])
19 initialize newU ∗[]
20 For ˜f ∈ F̃f
21 If (reqB −minIndCost[f ] + c(f , ˜f ) > remB) Then
22 Continue
23 σ [k] ← ˜f

24 newU ∗[ ˜f ] ← U ∗(σ )
25 F̃best ← argmin

˜f newU
∗[ ˜f ]

26 generate ˜fbest ∼ uniRand(F̃best )
27 return ˜fbest

Greedy-Minimax starts by computing for each f ∈ F , the min-

imum cost of masking f with any feasible OC, and subsequently,

the minimum total cost of masking all the systems (Lines 1-2). Next,

σbest andminu∗ are initialized, which respectively denote the fi-

nal output strategy of the algorithm and the corresponding utility

(Line 3). Subsequently, the algorithm is conducted in a number of

iterations. In each iteration, a random shuffle of the set of systems

is obtained, referred to as Kl ist above. Subsequently, the strategy
σ which is a candidate solution corresponding to this shuffle, the

corresponding observed state of the network (N̄
˜f ) ˜f ∈F̃ , and the cor-

responding utilities (Ū
˜f ) ˜f ∈F̃ are all initialized. These are constantly

maintained as the algorithm loops through Kl ist , building the so-
lution by assigning an OC to a system one by one (Lines 8-10).

The OC to be assigned for a system is determined via the function

GMMAssiдn() which is the essence of this heuristic algorithm. The

input to this function is the TC f of the system in question, and

the currently built solution in terms of σ , N̄ , Ū . Given these, the

function considers the candidate OCs in F̃ one by one, refutes those

which lead to violation of the budget constraint (i.e., make the resul-

tant minimum required budget to exceed the resultant remaining
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budget). For every other
˜f , it computes resultant Ū

˜f if the system

is masked with
˜f , and stores it in the array newU ∗ (Lines 19, 23-

24). Finally, based on these, it uniformly randomly chooses an OC

from those which minimize the resultant utility newU ∗() (Lines
25,26). Once GMMAssiдn() returns an OC

˜f , it is assigned to the

system in question, N̄
˜f , Ū ˜f are updated accordingly, as well as the

remaining budget and the minimum required (Lines 11-14). Once

the loop through Kl ist is over and the full strategy σ is built, its

utility utility u∗ is computed, and compared withminu∗, to update

minu∗ and σbest appropriately (Lines 15-16).

It is possible to conceive examples where this heuristic approach

does not yield a good solution on an arbitrary shuffle, even for

problem instances with small parameters. Such an example with

4 systems, 4 TCs and 2 OCs is discussed in the online appendix.

Further, we also show an example (in the online appendix) where

the solution value is Θ(|K |) times as bad as the optimal, on expo-

nentially many shuffles. This motivates getting candidate solutions

for a high number of shuffles and choosing the best among them

as described above. Since the greedy choice does not guarantee op-

timality, we also propose Soft-GMM, a slight modification of GMM

which makes assignment probabilistically, and not deterministically.

It works exactly as GMM, except Lines 25,26 — it draws fbest from

a distribution P(F̃ ) where, P( ˜f ) ∝ exp(−newU ∗[ ˜f ]).

5 OPTIMAL DEFENDER STRATEGY AGAINST
NAIVE ADVERSARY

The robust approach to solving CDGs, i.e., assuming a powerful

adversary with knowledge of ϕ, can cause the defender to not fully

realize the benefit of her informational advantage when faced with

a less powerful attacker. In particular, the adversary may value

OCs in a fixed manner that is known to the defender.
3
In this case,

the values Ū
˜f are fixed and the defender’s strategy does not affect

the adversary’s expected utility for attacking some
˜f . Importantly,

if there is no budget constraint we can solve for the defender’s

optimal strategy ϕ in polynomial time using Algorithm 2. W.l.o.g.

we assume the adversary has a strict preference ordering over F̃ as

if Ū
˜f is equal for any two OCs, the sets could be merged from the

defender’s perspective, with feasibility constraint and cost adjusted

accordingly.

Algorithm 2 begins by initializing ϕ, Γ∗ (which stores the TCs

the adversary attacks) and
˜f ∗ (the OC the adversary attacks given

ϕ). In Line 3 we compute the matrix minUtil[] which stores the

lowest utility achievable for each TC which is min
˜f ∈F̃f Ū ˜f . The for

loop in Line 4 iterates over all
˜f ∈ F̃ which is sorted descending

by Ū
˜f (Line 2) and determines for each

˜f the best set of TCs to

mask if
˜f is attacked by the adversary in Lines 5 through 12. To

do this, F is split into 4 separate sets P1, P2, P3 and P4 and the set

of TCs to be masked with
˜fi is stored in Γ

′
. P1 contains all TCs

which cannot be masked with an
˜f that has Ū

˜f < Ū
˜fi
. Intuitively,

if this set is non-empty it means the defender is not able to devise

a strategy ϕ such that the adversary prefers to attack
˜fi , and hence,

3
As an example, the adversary could estimate his utility according to values derived

from the NIST National Vulnerability Database [21].

Algorithm 2: Compute defender’s optimal ϕ with fixed Ū
˜f .

1 initialize ϕ, Γ∗, ˜f ∗

2 sort(F̃ ) //descending by utility Ū
˜f

3 minUtil[] := (min
˜f Ū ˜f )f

4 For i = 1, . . . , |F̃ |
5 initialize Γ

′

6 P1:={ f |minUtil[f ] > Ū
˜fi
}

7 If P1 , ∅
8 break
9 P2:={ f |minUtil[f ] = Ū

˜fi
}

10 P3:={ f |minUtil[f ] < Ū
˜fi
and

˜fi ∈ F̃f }
11 P4:={ f |minUtil[f ] < Ū

˜fi
and

˜fi < F̃f }
12 Γ

′
:= P2

13 update(Γ
′
, P3)

14 update(Γ∗,Γ
′
,

˜f ∗, ˜fi )

15 update(ϕ,Γ∗, ˜f ∗)
16 return ϕ

all subsequent
˜fi will never be preferred by the adversary. P2 (P4)

contain TCs f whichmust bemasked (cannot bemasked) with
˜fi . P3

then contains all TCs f which can be masked with
˜fi but may also

be masked with another OC
˜fj , ˜fi . The function update(Γ′ , P3)

iterates over the TCs f ∈ P3 and masks all TC f with
˜fi ⇐⇒

Uf ≤ EU (Γ′). In Line 13 update(Γ∗, Γ′ , ˜f ∗, ˜fi ) sets Γ∗ = Γ
′
and

˜f ∗ = ˜fi if EU (Γ
′) < EU (Γ∗). Finally, the function update(ϕ, Γ∗, ˜f ∗)

in Line 14 determines the OCs
˜f
′
for all f < Γ∗ given Ū

˜f ′ < Ū
˜f ∗

and the strategy ϕ is returned.

Proposition 5.1. Given fixed utilities Ū
˜f and no budget constraint,

Algorithm 2 computes the optimal strategy ϕ in O(|F | |F̃ |). 4

It is possible to efficiently compute the defender’s optimal strat-

egy when there is no budget constraint. When the defender has

a budget constraint, however, the question arises if her optimal

strategy can be found efficiently as well. We call this problem

CDG-Fixed and show it to be NP-Hard.

Proposition 5.2. CDG-Fixed is NP-hard.

Proof. We prove the proposition via a reduction from the 0-1

Knapsack problem (0-1 KP), which is a classical NP-hard prob-

lem. Given a budget B and a set of m items each with a weight

wi and value vi , 0-1 KP is the optimization problem of finding the

subset of items Y which maximizes

∑
i ∈Y vi subject to the bud-

get constraint

∑
i ∈Y wi ≤ B. We now show that 0-1 KP can be

reduced to CDG-Fixed . For convenience, we use [m] to denote the

set {1, 2...,m} and S = ∑
i ∈[m]wi denote the sum of all weights.

Given a 0-1 KP instance as described above, we construct a CDG

instance as follows. Let the set of TCs be F = { f1, . . . , fm }∪{ fm+1},
with utilities Ufi = vi ,∀i ∈ [m] and Ufm+1

= −W for some fixed

constantW . Let the set of OCs be F̃ = { ˜f1, ˜f2}, with F̃fi = F̃ ∀i ∈ [m]
4
The proof can be found in the online appendix.
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and F̃fm+1
= { ˜f1}. Set the costs as c(fi , ˜f1) = 0, c(fi , ˜f2) = wi

for all i ∈ [m] and c(fm+1, ˜f1) = 0. Set Ū
˜f1
> Ū

˜f2
. Assuming a

naive adversary, these components completely define aCDG-Fixed

problem. Since fm+1 is bound to be masked by
˜f1, and Ū ˜f1

> Ū
˜f2
,

attacking
˜f1 is a dominant strategy for the adversary.

Observe that

∑
f ∈F Uf is

∑
i ∈[m]wi −W = S −W . We claim

that the optimal objective of the 0-1 KP instance is greater than

S −W if and only if the optimal defender utility in the constructed

CDG-Fixed problem, i.e.,U ∗(ϕ), is negative. We first prove the⇐
direction. Let ϕ∗ be the optimal solution to theCDG-Fixed problem.

By definition, the set Y = {i : ϕ∗
fi , ˜f2
= 1} is a feasible solution to

the 0-1 KP since the cost of mapping fi to ˜f2 iswi . The sum of total

weights is S −W whereas U ∗(ϕ∗) < 0 meaning the total weights

of configurations mapped to
˜f1 is less than 0, this implies that the

total weights of configurations mapped to
˜f2 is at least S −W . So

the optimal objective of the 0-1 KP is also at least S −W . The⇒
direction follows a similar argument.

The above claim shows that for any constantW , we can check

whether the optimal objective of the 0-1 KP is greater than S −W
by solving anCDG-Fixed instance. Using this procedure as a black-

box, we can perform a binary search to find the exact optimal

objective of the 0-1 KP with integer values within O(poly(log(S)))
steps (both S and weights are machine numbers with input size

O(log(S))). As a result, we have constructed a polynomial time

reduction from computing the optimal objective of any given 0-1 KP

to solving the CDG-Fixed problem. This implies the NP-hardness

of the CDG-Fixed problem. □

CDG-Fixed can be solved with Algorithm 2 via a modification

to the function update(Γ′ , P3) in Line 13. Given Γ
′
, we compute the

minimum budget B
′
required to mask all TCs f ∈ Γ

′
with

˜fi and

mask all TCs f ∈ P3 and f ∈ P4 with
˜fj such that Ū

˜fj
< Ū

˜fi
. If

Γ
′
= ∅, then for f ∈ P3 wemask f with ˜fi if c(f , ˜fi ) < B

′
. Assuming

P3 is sorted ascending, once the defender assigns
˜fi to a TC f she is

done. If Γ
′
, ∅, the defender must solve at n = nΓ′ , . . . , |K | (where

nΓ′ = |Γ
′ |) MILPs, given in Problem (11a), to find the best Γ

′
. Denote

uΓ′ = EU (Γ′).

min

ϕ
nΓ′uΓ′ +

∑
f

ϕf , ˜f Uf (11a)

s.t.

∑
f

ϕf , ˜fi
≤ n − nΓ′ (11b)

Constraints (1) ∼ (4)

6 EXPERIMENTS
We evaluate the CDG model and solution techniques using synthet-

ically generated game instances. The game payoffs are set to be

zero-sum, and for each TC, the payoffsUf are uniformly distributed

in [1, 10]. Each OC
˜f is randomly assigned a set of TCs it can mask,

while ensuring each TC can be masked with at least one OC. To

generate a network state x, each system is randomly assigned a TC

uniformly at random. The costs c(f , ˜f ) are uniformly distributed

in [1, 100] with the budget B uniformly distributed in-between the

minimum cost assignment and maximum cost assignment. All ex-

periments are averaged over 30 randomly generated game instances

and have 50 TCs.

6.1 Powerful Adversary - Scalability and
Solution Quality Loss
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Figure 2: Runtime Comparison and Solution Quality Com-
parison (15 Systems) - MILP and Greedy MaxiMin (GMM)
with 1000 random shuffles.

When solving for the defender’s optimal strategy ϕ strategy for

enterprise networks, it is important to have solution techniques

which can scale to large instances of CDGs. Our first experiment

compares the scalability of the MILP to the Hard Greedy Mini-

max (GMM) algorithm with 1000 random shuffles and the solution

quality of the two approaches. In Figure 2(a) we show the runtime

results with the runtime in seconds on the y-axis and the number

of OCs varied on the x-axis. The runtime for solving the MILP in-

creases exponentially as the number of OCs increases while GMM

finishes in under 1 seconds in all cases.

While GMM is much faster than the MILP, it is not guaranteed

to provide the optimal solution. However, our experimental results

show that empirically the solution quality loss is very small. In

Figure 2(b) we compare the solution quality of the MILP to GMM,

where the attacker’s utility is given on the y-axis and the number

of OCs are varied on the x-axis. Importantly, GMM shows a low

solution quality loss for the defender compared to the MILP with a

minimum loss of 1.76% for 12 OCs and a maximum loss of 3.40%

for 16 OCs. This experiment highlights the scalability of GMM and

show the loss in solution quality from GMM gives a reasonable

trade-off between computational efficiency and solution quality.

An interesting feature of GMM is how often it returns the optimal

solution for the defender as the CDG game size changes. Table 1

compares the solution quality of GMM (with 1000 random shuffles)

versus the MILP for several game sizes with 10 and 20 systems

where the number of OCs are varied from 2 to 10. Interestingly,

for CDGs with 10 systems, Hard-GMM is able to find the optimal

solution in a vast majority of instances (142 out of 150 instances).

However, for CDGs with 20 systems, GMM fails to recover the

optimal solution in about a third of the instances (96 out of 150).

Nevertheless, the loss of solution quality still remains low (3.18%)

even when GMM returns the optimal solution a third of the time.

We also tested the solution quality of a variation of GMM, called

GMM−λ. Instead of greedily choosing the OC with minimax ex-

pected utility at the stage, we apply a soft-min function [9] with
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Figure 3: Solution Quality Comparison (20 systems and 15
OCs) - MILP and GMM varying the number of shuffles used
for the GMM.

# OCs 2 4 6 8 10

10 systems 0 0.092% 0.015% 0.028% 0.512%

Optimal Instances 30 29 29 29 25

20 systems 0 0.028% 0.615% 1.91% 3.18%

Optimal Instances 30 28 17 12 9

Table 1: Solution Quality % loss and number of optimal in-
stances for GMM versus MILP.

parameter λ controlling the greediness of choice. Figure 3 shows

the solution quality of the MILP versus GMM (denoted as GMM-

Hard) and GMM−λ with varying λ value. GMM−.001 is very close

to randomly choosing OCs for the systems and it performs poorly

with the limited number of shuffles, indicating that the GMM is an

effective heuristic. While not clearly seen in this set of experiments,

the randomness in GMM−λ leads to a potential of finding better

strategies than GMM since GMM-Hard is restricted to a limited

strategy space and GMM−λ is not. We defer further investigation

to future work.

6.2 Comparing Solution for Different Types of
Adversaries

Our last experiment compares how the optimal strategies for the

two adversary models (powerful versus naive) perform in the oppo-

site case. Figure 4(a) compares the solution quality of the MILP in

Section 4 to Algorithm 2 when the adversary is assumed to know ϕ
with the attacker’s utility on the y-axis and the number of systems

varied on the x-axis. This figure highlights that for the powerful

adversary the MILP performs significantly better than Algorithm 2

(except for 5 systems) and shows the importance of considering

the adversary’s information when devising the defender’s strategy

ϕ. In Figure 4(b) we compare the solution quality of Algorithm 2

to the MILP when the adversary is assumed have fixed utilities.

As the figure shows, the improvement in utility is dramatically

higher for Algorithm 2 compared to the MILP. The reason for this

difference lies in Algorithm 2 leveraging the fact the adversary has

a fixed preference over OCs and minimizes the value of systems

masked with the OC the adversary will attack. The MILP, however,

minimizes the worst case utility given the adversary may attack

any OC and hence, fails to leverage the defender’s advantage to a

high benefit.
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Figure 4: Solution Quality Comparison (10 OCs) - In (a) we
show the solution quality of two strategies (one computed
byMILP in Section 4, one computed by Algorithm 2) against
a powerful adversary. In (b) we show the solution quality of
the strategies against a naive adversary.

7 CONCLUSION
In this paper, we study the problem of a network administrator

should respond to scan requests from an adversary attempting to in-

filtrate her network. We show that computing the optimal defender

strategy against a powerful adversary is NP-hard and provide an

MILP to solve for their optimal strategy. Additionally, we provide

a greedy algorithm which quickly finds good defender strategies

and performs well empirically. We then show that computing the

optimal strategy against a naive attacker is still NP-hard given a

budget constraint. Finally, we give extensive experimental analysis

demonstrating the effectiveness of our approaches.
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8 APPENDIX
8.1 Missing Proofs

Proof of Proposition 4.1.

Proof. Equivalently, we show that, Ũ ∗(ϕ) ≥
∑
f ∈F Nf Uf
|K | for all

ϕ. Fix any ϕ ∈ Φ. We have,

Ũ ∗(ϕ) ≥ Ũ
˜f (ϕ) ∀ ˜f (by definition of Ũ ∗(ϕ))

∴
∑
˜f ∈F̃

N
˜f Ũ
∗(ϕ) ≥

∑
˜f ∈F̃

N
˜f Ũ ˜f

∴ |K | · Ũ ∗(ϕ) ≥
∑
˜f ∈F̃

∑
f ∈F

ϕf , ˜f Uf (using (5))

=
∑
f ∈F

©«Uf
∑
˜f ∈F̃

ϕf , ˜f

ª®®¬ (re-ordering terms)

=
∑
f ∈F

Uf Nf (by definition of ϕ, Nf )

∴ Ũ ∗(ϕ) ≥
∑
f ∈F Nf Uf

|K |
Since the choice of ϕ was arbitrary, the claim follows. □

Proof of Proposition 6.1.

Proof. We first show that for each
˜f ∈ F̃ , Lines 5 through 13 in

Algorithm 2 computes the set Γ
′
with the minimum average value.

To see this, note that all TCs f ∈ P2 must be in Γ
′
while all TCs

f ∈ P4 cannot be included. In update(Γ′ , P3) (note P3 is given in

sorted order) the defender decides for each f ∈ P3 to include the

Nf TCs in Γ
′ ⇐⇒ Uf ≤ EU (Γ′). At the end of this update, tt

follows that Γ
′
must be the minimum average set for

˜fi . Given that

the for loop in Line 4 iterates through all
˜f ∈ F̃ , it must be the case

that the optimal Γ∗ is returned for some
˜f .

In Line 2, sorting F̃ takes O(|F̃ | log |F̃ |) time and calculating

minUtil[] takes O(|F | |F̃ |) time. For each iteration of the for loop

in Line 4, it takes O(|F |) time to split F into the sets the four sets

P1, P2, P3 and P4. It takes the function update(Γ′ , P3) at most |F |
operations to update Γ

′
while update(Γ∗, Γ′ , ˜f ∗, ˜fi ) takesO(1) time.

Hence, each iteration it takesO(|F |) time and hence,O(|F | |F̃ |) time

for the for loop. Lastly, update(ϕ, Γ∗, ˜f ∗) takes at O(|F | |F̃ |) time to

return the defender’s strategy ϕ as it must find an OC
˜fj for each

f < Γ∗ with Ū
˜fj
< Ū

˜fi
. □

8.2 Full Formulation of MILP for 6a

min

u,σ ,z
u (12a)

s.t.

∑
k ∈K

zk, ˜f ≥
∑
k ∈K

σk, ˜f Uxk ∀ ˜f ∈ ˜f (12b)∑
˜f ∈F̃

σk, ˜f = 1 ∀k ∈ K (12c)

σk, ˜f ≤ πxk , ˜f ∀k ∈ F ,∀ ˜f ∈ F̃ (12d)

∑
˜f ∈F̃

∑
k ∈K

σk, ˜f c(xk , ˜f ) ≤ B (12e)

Uminσk, ˜f ≤ zk, ˜f ≤ Umaxσk, ˜f ∀k ∈ F ,∀ ˜f ∈ F̃ (12f)

u − (1 − σk, ˜f )U
max ≤ zk, ˜f ∀k ∈ F ,∀ ˜f ∈ F̃ (12g)

zk, ˜f ≤ u − (1 − σk, ˜f )U
min ∀k ∈ F ,∀ ˜f ∈ F̃ (12h)

σk, ˜f ∈ {0, 1} ∀k ∈ F ,∀ ˜f ∈ F̃ (12i)

8.3 GMM Examples
Note that the adversary’s utility U ∗(ϕ) for any strategy ϕ can be

at most |K | times the optimal valueminϕU
∗(ϕ). This follows from

observing that for any strategy ϕ, we have Ũ
˜f ≤ max

f |Nf >0

Uf ∀ ˜f by

definition, and thus,U ∗(ϕ) ≤ max

f |Nf >0

Uf , whereasminϕU
∗(ϕ) is at

least the average of all the system utilities by Proposition 4.1. Since

any choice a greedy heuristic makes can be potentially suboptimal,

one may intuitively expect its performance to be worse for a higher

number of choices to be made, that is, for larger sized inputs, and

relatively better for smaller inputs. However, we show an example

instance of a CDG where despite the input size (|F |, |K |, |F̃ |) being
very small, the (hard-)GMM algorithm in a particular iteration (i.e.,

when conducted on a particular shuffle of the systems) gives a

highly suboptimal solution.

Consider the set of systems K = {k1,k2,k3,k4}, the set of TCs
F = { f1, f2, f3, f4} and the set of OCs F̃ = { ˜f1, ˜f2}. Let the fea-

sibility constraints be given via the sets F
˜f1
= { f1, f2, f3} and

F
˜f2
= { f2, f3, f4}. Let each system ki have the TC fi , so that the

TSN (Nf )f ∈F is (1, 1, 1, 1). For the TCs, let the utilities beUf1 = 1,

Uf2 = 2, Uf3 = 30, and Uf4 = 40. For simplicity, let all the costs

c(f , ˜f ) to be 0, so that there is essentially no budget constraint.

Consider the ordering of the systems on which GMM is per-

formed to be: {k1,k2,k3,k4}. Then, the strategy σ computed by the

GMM on this ordering is as follows:



˜f1 ˜f2
k1 1 0

k2 1 0

k3 1 0

k4 0 1


Accordingly, we have the expected utilities of OCs Ũ

˜f1
= (1 +

2 + 30)/3 = 11 and Ũ
˜f2
= 40/1 = 40, and thus, adversary’s utility

is 40 for this strategy. The optimal solution, however, masks k1, k3

with
˜f1 and k2, k4 with

˜f2 giving the expected utilities of the OCs:

Ũ
˜f1
= (40+ 2)/2 = 21 and Ũ

˜f2
= (30+ 1)/2 = 15.5, thus, the optimal

being just 21.

Further, the following is an example of a CDG which shows the

GMM algorithm can perform Θ(|K |) as bad as the optimal solution

on exponentially many shuffles.

Consider the CDG instancewith the set of systemsK = {k1, . . . ,km },
so that |K | =m. Let the set of TCs F = { f1, f2, f3} and the set of OCs
F̃ = { ˜f1, ˜f2}. Let the true state of the network be: x = (1, 2, 3, . . .)
Let the feasibility constraints be given by the sets F

˜f1
= { f1, f3}

and F
˜f2
= { f2, f3}. For the TCs, the utilities areUf1 = 1,Uf2 = 2000,
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andUf3 = ϵ . For simplicity, let all the costs c(f , ˜f ) to be 0, so that

there is essentially no budget constraint.

The optimal solution to this CDG is to assign systems k2, . . . ,km
to be masked by

˜f2 with k1 being masked with
˜f1. This gives the

following expected utilities: Ũ
˜f1
= 1/1 = 1 and Ũ

˜f2
=

2000+(m−2)ϵ
m−1

=

2000

m−1
+
(m−2)ϵ
m−1

. Consider any shuffle which orders the systems

such that k1 is first and k2 is last (of which there are (m − 2)!).
Given any ordering of this type, GMM assigns assigns systems

k3, . . . ,km to be masked with
˜f1 and would assign k2 to be masked

with
˜f2. The expected utilities given this assignment is the following:

Ũ
˜f1
=

1+(m−2)ϵ
m−1

= 1

m−1
+
(m−2)ϵ
m−1

and Ũ
˜f2
= 2000/1 = 2000. The

loss in this case is ≈ 2000

2000

m−1

= 1

m−1
which is a Θ(|K |) loss.
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