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Abstract. We consider the problem of designing fair, efficient, and in-
terpretable policies for prioritizing heterogeneous homeless youth on a
waiting list for scarce housing resources of different types. We focus on
point-based policies that use features of the housing resources (e.g., per-
manent supportive housing, rapid rehousing) and the youth (e.g., age,
history of substance use) to maximize the probability that the youth will
have a safe and stable exit from the housing program. The policies can
be used to prioritize waitlisted youth each time a housing resource is
procured. Our framework provides the policy-maker the flexibility to se-
lect both their desired structure for the policy and their desired fairness
requirements. Our approach can thus explicitly trade-off interpretability
and efficiency while ensuring that fairness constraints are met. We pro-
pose a flexible data-driven mixed-integer optimization formulation for
designing the policy, along with an approximate formulation which can
be solved efficiently for broad classes of interpretable policies using Ben-
der’s decomposition. We evaluate our framework using real-world data
from the United States homeless youth housing system. We show that
our framework results in policies that are more fair than the current pol-
icy in place and than classical interpretable machine learning approaches
while achieving a similar (or higher) level of overall efficiency.

1 Introduction

This paper addresses the problem of designing policies for prioritizing heteroge-
neous allocatees on a waiting list for scarce resources of different types so as to
maximize overall efficiency. The allocatees differ in their intrinsic characteristics
which, combined with the characteristics of their assigned resource, impact the
efficiency of the policy. We consider a policy-maker who is able to enforce adop-
tion of the computed policy. However, since the allocated resources are viewed as
common property, i.e., as belonging to all members of the community, the pol-
icy should satisfy certain fairness requirements while also being interpretable,
making it easy to explain why a particular assignment was made.

We are particularly motivated by the problem of allocating housing to home-
less youth. In the U.S., hundreds of thousands of homeless youth are forced



to live in emergency shelters or on the streets, where they run a high risk of
violence, substance abuse, and sexual exploitation [27]. To help support this
vulnerable population, the U.S. government directs federal resources towards
programs that assist homeless youth [21]. The Homeless Management Informa-
tion System (HMIS) database collects information on these services. Analysis of
the HMIS database has shown that providing housing to homeless individuals
produces large gains in long-term health and stability [22, 5]. Unfortunately, the
number of homeless youth in the U.S. far exceeds the housing resources avail-
able [9]. Moreover, once a house is procured, there are potentially hundreds of
local homeless youth that are eligible for the resource.

Given the immense difference that housing programs can make for youth,
policy-makers and communities must allocate these precious resources efficiently.
Most communities employ a Coordinated Entry System (CES) in which organiza-
tions within the same community pool both their housing resources and youth.
When a housing resource becomes available, the waitlisted youth are ranked
based on a set of priority rules and the house is allocated to the highest ranking
individual [9].1 The current prioritization tool, the TAY Triage Tool,2 ranks the
youth based on a vulnerability score, the Next Step Tool (NST) score, that re-
lies on six key experiences that increase the risk of prolonged homelessness [23].
Thus, the current policy is not directly tied to outcomes (due mostly to lack
of outcome data at the time of design). Instead, it is purely based on factors
intrinsic to each youth that determine their ability to exit homelessness without
supportive housing. The increasing availability of outcome data, combined with
a strategic push to better coordinate housing resources [21], constitute a sig-
nificant opportunity to improve the current policy to better match supply and
demand for resources. We now summarize the main desiderata of such a policy:

(a) Maximize Efficiency. Given the scarcity of housing resources , it is critical
to design an efficient policy explicitly tied to outcomes for allocating houses
to the homeless youth. We thus seek to improve upon the efficiency of the
current policy (which is not tied to outcomes) as measured in terms of the
expected number of stably housed youth at the end of the intervention.

(b) Ensure Fairness. Housing resources constitute common property and can
prove invaluable for the homeless youth. It is thus natural to seek an alloca-
tion policy that is in some sense fair. Since there is no universally accepted
measure of fairness, the proposed framework should afford the policy-maker
the flexibility to select the fairness criteria that they wishes to enforce. For
example, one could require that the probability of a stable exit for a youth in
the system should be equal across different races, or independent of the vul-

1 To date there is no regulation in place that enforces the current policy. However,
previous analysis has shown that communities follow this policy in practice [20].

2 Transition Age Youth (TAY) is a Service Prioritization Decision Assistance Tool that
can be accessed at http://orgcode.nationbuilder.com/tools_you_can_use. It is
incorporated work from the TAY Triage Tool of Rice [23] which can be accessed at
http://www.csh.org/wp-content/uploads/2014/02/TAY_TriageTool_2014.pdf.



nerability score of the youth so that, independently of their backgrounds and
past experiences, youth are equally likely to transition into stable housing.

(c) Customize Interpretability. Currently, communities can decide to comply or
not with a recommended allocation. Hence, policies should be interpretable:
it should be easy to explain the structure of the policy and to justify a
particular matching. For example, a policy which assigns priority based on a
linear scoring rule may be viewed as interpretable. From our discussions with
communities across the country, it appears that much of the success of the
current policy can be attributed to its interpretability. Since interpretability
is subjective, we allow the policy-maker to customize the policy structure.

Given the above desiderata, a natural question is: how to design classes of
policies that conveniently trade-off between efficiency, fairness, and interpretabil-
ity? We note that this question arises in many other contexts, e.g., in the design
of policies for the U.S. Kidney Allocation System and the U.S. Public Housing
Program. In this paper, we propose a framework for designing such policies that
is applicable to all these contexts. We now summarize our main contributions:

(a) We introduce a data-driven framework for optimizing over interpretable poli-
cies, to which a policy-maker may add flexibly defined fairness constraints.
We give a mixed-integer program for computing optimal policies.

(b) To enhance scalability for complex policy classes, we give an approximate
solution approach which relaxes the problem to a form amenable to Bender’s
decomposition. This offers significant speedup and allows us to optimize over
much more sophisticated policies (e.g., multi-level decision trees, compared
to linear policies in previous work).

(c) We conduct an empirical evaluation using real-world data from homeless
youth across the U.S. We compare to both the status-quo TAY prioritization
as well an an array of approaches from the literature. Our exact approach
offers significant improvements in fairness compared to previous approaches
for optimizing the same class of models, while our approximate approach
allows us to improve fairness in a complementary way, by using a more
expressive class. In both cases, we obtain efficiency comparable to the best
(unfair) alternatives, and better than the status-quo TAY.

Literature Review. Allocation problems have been studied extensively in com-
puter science and operations research. Much of this work considers incentives
issues, where agents may misreport their true preferences to obtain a better
match [1, 26, 13, 8], and the focus is on satisfying axiomatic properties (e.g.
Pareto optimality or strategy-proofness). We do not consider strategic reporting
since information reported by the youth can generally be verified. Instead, we
focus on balancing efficiency, fairness, and interpretability. None of these goals
are considered in this previous work, and all are crucial features of our domain.
Another line of research considers nonstrategic online resource allocation, e.g.,
in the “Adwords” setting [7, 4, 19]. The focus here is on algorithms which prov-
ably approximate the optimal efficiency. By contrast, our goal is to find exactly



optimal policies out of a feasible set which is constrained by fairness and inter-
pretability. Lastly, much previous work considers organ (e.g., kidney) allocation
[25, 11, 24, 2]. Our paper is most closely related to that of Bertsimas et al. [2],
who optimize the U.S. Kidney Allocation System over a class of linear policies.
We improve upon their approach in several ways: (i) we propose an exact for-
mulation of the allocation problem that enables us to guarantee fairness, while
Bertsimas et al. use a heuristic method that cannot guarantee fairness; (ii) our
model is exact, incorporating the order in which youth and housing resources
arrive, to provide accurate prioritization; (iii) we consider larger classes of in-
terpretable policies (e.g., based on decision trees). These contributions translate
into substantial empirical improvement.

Our work is also related to recent applications of mixed-integer programming
to machine learning [3, 17, 18]. Our approach uses a mixed-integer program
(MIP) to optimize over classes of policies (linear models, decision trees) also
used in the machine learning literature. Previous work has shown the promise
of using MIPs in machine learning; however, we are not aware of any work using
such techniques to construct policies for resource allocation.

Lastly, our work is related to interpretable machine learning. Many inter-
pretable models have been proposed, including decision rules [29, 14], decision
sets [12] and generalized additive models [15, 16]. In this work, motivated by the
policies currently used in the homeless youth housing system and U.S. Kidney
Allocation System, we build on decision trees, which have been used to create
interpretable models in many contexts [28, 10, 6]. We make two contributions
compared to this previous work. First, we introduce two new model classes which
generalize decision trees to respectively allow more flexible branching structures
and the use of a linear scoring policy at each node of the tree (Examples 3 and
4 of Section 2.3). Second, we use these models to parameterize the allocation
policy itself rather than the learning system. Thus, the final policies produced
by our system are interpretable, not just the predicted success probabilities.

Notation. We denote sets (resp. random variables) using uppercase blackboard
bold (resp. uppercase script) font. We denote the indicator function with I(·).

2 Model, Problem Statement, and Interpretable Policies

2.1 System Model

We model the homeless youth housing allocation system as an infinite stream
of housing resources indexed by h ∈ {1, . . . ,∞} that must be allocated to an
infinite stream of youth indexed by y ∈ {1, . . . ,∞}. Associated with each housing
resource h is a random feature vector Fh ∈ Rnh which includes, without loss
of generality, the (random) arrival time Ah ∈ R of the house in the system and
may also include e.g., the type of house (rapid rehousing, permanent supportive
housing, etc.). Accordingly, associated with each youth y is a random feature
vector Gy ∈ Rny which includes the arrival time Ty ∈ R of the youth in the
system and may also include e.g., the intrinsic characteristics of the youth (age,



history of abuse, history of substance use, etc.). Not all youth are eligible for
all housing resources. Whether a youth is compatible with a particular house
can be determined based on the features of the house and the youth. We let
M(Fh) ∈ Rny denote the set of all youth feature vectors that are compatible with
house h. For example, we may wish to enforce that M(Fh) := {Gy : Ah ≥ Ty}
so that a house must be allocated immediately upon arrival in the system. Thus,
youth y is eligible for house h if and only if Gy ∈ M(Fh). The probability of a
successful outcome (a safe and stable exit) when youth y is placed in house h is
denoted by p(Gy,Fh). The probability of a successful outcome if youth y is not
offered a house is denoted by p(Gy). We assume that both these quantities are
perfectly known (can be estimated from data). In our numerical experiments, see
Section 5, we will estimate these quantities using data from the HMIS database.

Our aim is to design interpretable parametric point-based policies that pri-
oritize the youth for housing resources so as to maximize overall welfare. In
particular, we consider parametric policies with parameter vector β ∈ Rn that
map the features of the youth and the house to a score, see Section 2.3 for ex-
amples of such policies. We denote the score obtained for a youth y and house h
for a given parameter choice β by πβ(Gy,Fh). Then, youth y will have priority
over youth y′ if πβ(Gy,Fh) > πβ(Gy′ ,Fh). We assume that ties are broken using
a suitable tie-braking rule (e.g., at random). We thus let R be a permutation
of the set {1, . . . ,∞} where the quantity R(y) denotes the tie-breaking score
of youth y: when πβ(Gy,Fh) = πβ(Gy′ ,Fh), youth y will be given priority over
youth y′ if and only if R(y) > R(y′).

Given a parameter vector β we now formalize the allocation process. For
t ∈ [0,∞], we let Y(t) denote the set of youth that are available in the system at
time t. We omit the dependence of Y(t) on β to minimize notational overhead.
Thus, Y(0) denotes the initial state of the system. Suppose that a youth y arrives
in the system at time t. Then Y(t+) = Y(t) ∪ {y}. Suppose instead that house
h arrives in the system at time t. Then, the house will be allocated, among all
the compatible youth, to the one with the highest score (accounting for the tie
breaking rule). In particular, it will be assigned to the youth3

y? = argmax
y

{
R(y) : y ∈ argmax

y
{πβ(Gy,Fh) : Gy ∈M(Fh), y ∈ Y(t)}

}
.

Subsequently, youth y? leaves the system, i.e., Y(t+) = Y(t)\{y?}. Thus, given β,
the allocation system generates: (i) an infinite random sequence {(Yi(β),Hi)}∞i=1

of matches, where Hi ∈ {1, . . . ,∞} denotes the ith allocated house and Yi(β)
the youth to which the ith house is allocated under the policy with parameters β,
and (ii) a set limt→∞Y(t) of youth that will never receive a house.

2.2 Problem Statement

Given the model described in Section 2.1, the expected probability of a safe and
stable exit across all youth is a complicated function of the parameters β and is

3 By construction, there will be at most one youth in this set. Moreover, since there is
a severe shortage of houses, we can assume w.l.o.g. that this set will never be empty.



expressible as

P(β) := E

 lim
N→∞

1

N

N∑
i=1

p(GYi(β),FHi) + lim
t→∞

1

|Y(t)|
∑

Y ∈Y(t)

p(GY )

 ,
where the expectation is taken with respect to the distribution P of the random
features of the houses and the youth, which include their arrival times and de-
termine permissible matchings. The first (second) part in the expression above
corresponds to the probability that a randomly chosen youth that received (did
not receive) a house will have a safe and stable exit under the matching.

From the desiderata of the policy described in the Introduction, we wish to be
able to enforce flexible fairness requirements. These requirements take the form
of set-based constraints on the random sequence {(Yi(β),Hi)}∞i=1 of matches.
For example, we may require that, almost surely, the proportion of all houses
that provide permanent support that go to individuals with high vulnerability
scores is greater than 40%. We denote by F the set in which the sequence of
matchings is required to lie. Then, choices of β are restricted to lie in the set

S := {β ∈ B : {(Yi(β),Hi)}∞i=1 ∈ F, P-a.s.} ,

where B ⊆ Rn captures constraints that relate to interpretability of the policy
(e.g., constraints on the maximum number of features employed, see Section 3.2).

The problem faced by the policy-maker can then be expressed compactly as

maximize { P(β) : β ∈ S }. (1)

Unfortunately, Problem (1) is very challenging to solve since the relation be-
tween β and the random sequence {(Yi(β),Hi)}∞i=1 can be highly nonlinear,
while the distribution of the features of the youth and the houses is unknown.
In Section 3, we will propose a data-driven mixed-integer optimization approach
for learning the parameters β of the policy in Problem (1).

2.3 Interpretable Policies

In what follows, we describe several policies that can be employed in our frame-
work and that possess attractive interpretability properties.

Example 1 (Linear Scoring Policies). A natural choice of interpretable policy
are linear (or affine) in the features of the houses and the youth. These are ex-
pressible as πβ(G ,F ) := β>(G ,F ), where one uses one-hot encoding to encode
categorical features. The feature vector can naturally be augmented by nonlinear
functions of the features available in the dataset as one would do in standard
linear regression. To reinforce interpretability, one may wish to limit the number
of permitted non-zero coefficients of β.

Example 2 (Decision-Tree-Based Scoring Policies). We refer to those policies
that take the form of a tree-like structure (in the spirit of decision-trees in



machine learning, see Introduction) as decision-tree-based scoring policies. In
each internal node of the decision-tree, a “test” is performed on a specific feature
(e.g., if the age of the youth is smaller than 18). Each branch represents the
outcome of the test, and each leaf node represents the score assigned to all
the youth that reach that leaf. Thus, each path from root to leaf represents a
classification rule that assigns a unique score to each youth. All youth that reach
the same leaf will have the same score. In these policies, the policy-maker selects
the depth K of the tree. The vector β collects the set of features to branch on at
each node and either the set of feature values that will be assigned to each branch
(for categorical features) or the cut-off values (for quantitative features). Thus,
these policies partition the space of features into 2K disjoint subsets. Letting S`
denote the set of all feature values that belong to the `th subset and z` the score

assigned to that subset, we have πβ(G ,F ) :=
∑2K

`=1 z`I ((G ,F ) ∈ S`) . We note
that, while these policies are exponential in K, to maximize interpretability, K
should be kept as small as possible. To improve interpretability further, one may
require that each feature be branched on at most once.

Example 3 (Decision-Tree-Based Policies enhanced with Linear Branching). A
natural variant of the policies from Example 2 is one where policies take again
the form of a tree-like structure, but this time, each “test” involves a linear
function of several features (e.g., whether a vulnerability measure of the youth
is greater than 10). In this setting, the vector β collects the coefficients of the
linear function at each node and the cut-off values of the branching.

Example 4 (Decision-Tree-Based Policies enhanced with Linear Leafing). An-
other variant of the policies from Example 2 is one where rather than having
a common score for all youth that reach a leaf, instead, a linear scoring rule is

employed on each leaf. Thus, πβ(G ,F ) :=
∑2K

`=1[β>y,`G +β>h,`F ]I ((G ,F ) ∈ S`) ,
and the parameters to be optimized are augmented with βy,` and βh,` for each `.

In addition to the examples above, one may naturally also consider decision-
tree-based policies enhanced with both linear branching and linear leafing.

3 Data-Driven Framework for Policy Calibration

In Section 2.1, we proposed a model for the homeless youth housing allocation
system and a mathematical formulation (Problem (1)) of the problem of design-
ing fair, efficient, and interpretable policies for allocating these scarce resources.
This problem is challenging to solve as it requires knowledge of the distribution
of the uncertain parameters. In this section, we propose a data-driven mixed-
integer optimization formulation for learning the parameters β of the policy, thus
approximating Problem (1).

3.1 A Data-Driven Mixed Integer Optimization Problem

We assume that we have at our disposal a dataset that consists of: (i) a (finite)
stream H of housing resources that became available in the past and their as-
sociated feature vectors fh ∈ Rnh , h ∈ H; and (ii) a (finite) stream Y of youth



waitlisted for a house and their associated feature vectors gy ∈ Rny . We let αh
(resp. τy) denote the arrival time of house h (resp. youth y) in the system. For
convenience, we define

C := {(y, h) ∈ Y×H : gy ∈M(fh)} ,

and also let pyh := p(gy, fh), py := p(gy), and ρy := R(y). Using this data, the
problem of learning (estimating) the parameters β of the policy can be cast as a
mixed-integer optimization problem. The main decision variables of the problem
are the policy parameters β. Consider the MIP

maximize
∑
y∈Y

[∑
h∈H

pyhxyh + py

(
1−

∑
h∈H

xyh

)]
subject to πyh = πβ(gy, fh), ∀y ∈ Y, h ∈ H

∀y ∈ Y, h ∈ H,

xyh = 1⇔


(y, h) ∈ C,

∑
h′ 6=h:αh′≤αh

xyh′ = 0, and

∀y′ : (y′, h) ∈ C and
∑

h′:αh′≤αh

xy′h′ = 0,

(πyh > πy′h) or (πyh = πy′h and ρy > ρy′)


β ∈ B, x ∈ F, xyh ∈ {0, 1} ∀y ∈ Y, h ∈ H.

(2)

In addition to β, the decision variables of the problem are the assignment vari-
ables x and the scoring variables π. Thus, xyh indicates whether house h is
allocated to youth y under the policy with parameters β and πyh corresponds to
the score of youth y for house h under the policy. The first (second) part of the
objective function corresponds to the probability that youth y will be successful
if they do (do not) receive a house under the policy with parameters β. The first
constraint in the formulation defines the scoring variables in terms of the param-
eters β and the features of the youth and the house. The second constraint is
used to define the assignment variables in terms of the scores: it stipulates that
youth y will receive house h if and only if: (i) the two are compatible, (ii) youth
y is still on the waitlist, and (iii) youth y has higher priority over all youth that
have not yet been allocated a house in the sense that they score higher using the
scoring policy dictated by β (combined with the tie-breaking rule).

Next, we show that if F is polyhedral, Problem (2) can be solved as a mixed-
integer linear optimization problem provided one can define the scores π using
linear inequalities. The main decision variables of this problem are the policy
parameters β. Consider the MIP

maximize
∑
y∈Y

[∑
h∈H

pyhxyh + py

(
1−

∑
h∈H

xyh

)]
(3a)

subject to πyh = πβ(gy, fh) ∀y ∈ Y, h ∈ H (3b)∑
h∈H

xyh ≤ 1 ∀y ∈ Y,
∑
y∈Y

xyh ≤ 1 ∀h ∈ H (3c)



zyh =
∑

h′∈H\{h}

I (αh′ ≤ αh)xyh′ ∀y ∈ Y, h ∈ H (3d)

πyh − πy′h = v+yy′h − v
−
yy′h ∀y, y′ ∈ Y, h ∈ H (3e)

v+yy′h ≤Muyy′h ∀y, y′ ∈ Y, h ∈ H (3f)

v−yy′h ≤M(1− uyy′h) ∀y, y′ ∈ Y, h ∈ H (3g)

v+yy′h + v−yy′h ≥ ε(1− uyy′h) ∀y, y′ ∈ Y, h ∈ H : ρy > ρy′ (3h)

v+yy′h + v−yy′h ≥ εuyy′h ∀y, y′ ∈ Y, h ∈ H : ρy′ > ρy (3i)

xyh ≤ uyy′h + zy′h ∀y, y′ ∈ Y, h ∈ H (3j)

1− zyh ≤
∑

y′:(y′,h)∈C

xy′h ∀(y, h) ∈ C (3k)

xyh = 0 ∀y ∈ Y, h ∈ H : (y, h) /∈ C (3l)

x ∈ F (3m)

v+yy′h, v
−
yy′h ≥ 0, uyy′h ∈ {0, 1}, ∀y, y′ ∈ Y, h ∈ H (3n)

xyh, zyh ∈ {0, 1} ∀y ∈ Y, h ∈ H. (3o)

In addition to the policy parameters β, the score variables π and assignment
variables x, Problem (3) employs several auxiliary variables (z, v+, v−, and u)
that are used to uniquely define the assignment variables x based on the scores π.
The variables z indicate whether a youth is still waiting at the time a house
arrives: zyh = 1 if and only if youth y has been allocated a house on or before
time αh. The non-negative variables v+yy′h and v−yy′h denote the positive and
negative parts of πyh − πy′h. Finally, the variables u are prioritization variables:
uyy′h = 1 if and only if either youth y has a higher score than youth y′ for
house h (i.e., πyh > πy′h) or they have the same score but youth y has priority
due to tie-breaking (i.e., πyh = πy′h and ρy > ρy′).

Problems (2) and (3) share the same objective function. An interpretation
of the constraints in Problem (3) is as follows. Constraint (3b) is used to de-
fine the variables πyh. Constraints (3c) are classical matching constraints. Con-
straint (3d) is used to define the variables z. Constraints (3e)-(3i) are used to
define the prioritization variables u in term of the scores π: constraint (3e) de-
fines v+yh and v−yh as the positive and negative parts of πyh − πy′h, respectively.
Constraints (3f) and (3g) stipulate that uyy′h must be 1 if πyh > πy′h and must
be 0 if πyh < πy′h. Constraints (3h) and (3i) ensure that if πyh and πy′h are
equal then uyy′h = 1 if and only if ρy > ρy′ . Constraint (3j) stipulates that
youth y cannot receive house h if there is another youth y′ that is still waiting
for a house and that has priority for house h over y. Constraint (3k) ensures
that if a youth that is compatible with a house has not been served at the time
a house arrives, then the house must be assigned to a compatible youth. Finally,
constraint (3l) ensures that youth are only assigned houses they are eligible for.

If the scoring variables π can be defined in terms of the policy parameters β
(constraint (3b)) using integer linear constraints, then Problem (3) is an MILP.



3.2 Expressing the Policy Values using Integer Linear Constraints

We now show that for all the interpretable policies from Section 2.3, the scoring
variables π can be defined using finitely many integer linear constraints, implying
that Problem (3) reduces to a mixed-integer linear program if F is polyhedral.

Example 5 (Linear Scoring Policies). In the case of the linear policies (Exam-
ple 1), constraint (3b) is equivalent to

πyh = β>(gy, fh) ∀y ∈ Y, h ∈ H. (4)

To increase interpretability, one may impose a limit K on the number of features
employed in the policy by letting

B =

{
β ∈ Rn : ∃κ ∈ {0, 1}n with

n∑
i=1

κi ≤ K, |βi| ≤ κi, i = 1, . . . , n

}
,

where κi = 1 if and only if the ith feature is employed.

Example 6 (Decision-Tree-Based Scoring Policies). For decision-tree-based scor-
ing policies (Example 2), constraint (3b) is equivalent to

πyh =
∑
`∈L

z`xyh` ∀y ∈ Y, h ∈ H, (5)

where L denotes the set of all leafs in the tree, the variables x are leaf assignment
variables such that xyh` = 1 if and only if the feature vectors of youth y and
house h belong to leaf `, and z are score variables such that z` corresponds to the
score assigned to leaf `. The above constraint is bilinear but can be linearized
using standard techniques. Next, we illustrate that the leaf assignment variables
can be defined using a system of integer linear inequalities.

Let Ic and Iq denote the sets of all categorical and quantitative features (of
both the youth and the houses), respectively. Also, let I := Ic ∪ Iq. Denote with
dyhi the value attained by the ith feature of the pair (y, h) and for i ∈ Ic let Si
collect the possible levels attainable by feature i. Finally, let V denote the set of
all branching nodes in the tree and for ν ∈ V, let Lr(ν) (resp. Ll(ν)) denote all
the leaf nodes that lie to the right (resp. left) of node ν. Consider the system∑

i∈I
pνi = 1 ∀ν ∈ V (6a)

qν −
∑
i∈Iq

pνidyhi = g+yhν − g
−
yhν ∀ν ∈ V, y ∈ Y, h ∈ H (6b)

g+yhν ≤Mwq
yhν ∀ν ∈ V, y ∈ Y, h ∈ H (6c)

g−yhν ≤M(1− wq
yhν) ∀ν ∈ V, y ∈ Y, h ∈ H (6d)

g+yhν + g−yhν ≥ ε(1− w
q
yhν) ∀ν ∈ V, y ∈ Y, h ∈ H (6e)

xyh` ≤ 1− wq
yhν +

∑
i∈Ic

pνi ∀ν ∈ V, y ∈ Y, h ∈ H, ` ∈ Lr(ν) (6f)



xyh` ≤ wq
yhν +

∑
i∈Ic

pνi ∀ν ∈ V, y ∈ Y, h ∈ H, ` ∈ Ll(ν) (6g)

sνik ≤ pνi ∀ν ∈ V, i ∈ Ic, k ∈ Si (6h)

wc
yhν =

∑
i∈Ic

∑
k∈Si

sνikI (dyhi = k) ∀ν ∈ V, y ∈ Y, h ∈ H (6i)

xyh` ≤ wc
yhν +

∑
i∈Iq

pνi ∀ν ∈ V, y ∈ Y, h ∈ H, ` ∈ Lr(ν) (6j)

xyh` ≤ 1− wc
yhν +

∑
i∈Iq

pνi ∀ν ∈ V, y ∈ Y, h ∈ H, ` ∈ Ll(ν) (6k)

∑
`∈L

xyh` = 1 ∀y ∈ Y, h ∈ H (6l)

in variables qν ∈ R, g+yhν , g
−
yhν ∈ R+, and xyh`, pνi, w

q
yhν , w

c
yhν , sνik ∈ {0, 1}

for all y ∈ Y, h ∈ H, ` ∈ L, ν ∈ V, i ∈ I, k ∈ Si.
An interpretation of the variables is as follows. The variables p indicate the

feature that we branch on at each node. Thus, pνi = 1 if and only if we branch
on feature i at node ν. The variables qν , g+yhν , g−yhν , and wq

yhν are used to bound
xyh` based on the branching decisions at each node ν, whenever branching is
performed on a quantitative feature at that node. The variable qν corresponds
to the cut-off value at node ν. The variables g+yhν and g−yhν represent the positive
and negative parts of qν−

∑
i∈Iq pνidyhi, respectively. Whenever branching occurs

on a quantitative feature, the variable wq
yhν will equal 1 if and only if qν ≥∑

i∈Iq pνidyhi, in which case the data point (y, h) must go left in the branch. The
variables wc

yhν and sνik are used to bound xyh` based on the branching decisions
at each node ν, whenever branching is performed on a categorical feature at that
node. Whenever we branch on categorical feature i ∈ Ic at node ν, the variable
sνik equals 1 if and only if the points such that dyhi = k must go left in the
branch. If we do not branch on feature i, then the variable sνik will equal zero.
The variable wc

yhν will equal 1 if and only if we branch on a categorical feature
at node ν and data point (y, h) must go left at the node.

An interpretation of the constraints is as follows. Constraint (6a) ensures that
only one variable is branched on at each node. Constraints (6b)-(6g) are used to
bound xyh` based on the branching decisions at each node ν, whenever branching
is performed on a quantitative feature at that node. Constraints (6b)-(6e) are
used to define wq

yhν to equal 1 if and only if qν ≥
∑
i∈Iq pνidyhi. Constraint (6f)

stipulates that if we branch on a quantitative feature at node ν and data point
(y, h) goes left at the node (i.e., wq

yhν = 1), then the data point cannot reach any
leaf node that lies to the right of the node. Constraint (6g) is symmetric to (6f)
for the case when the data point goes right at the node. Constraints (6h)-(6k) are
used to bound xyh` based on the branching decisions at each node ν, whenever
branching is performed on a categorical feature at that node. Constraint (6h)
stipulates that if we do not branch on feature i at node ν, then sνik = 0.
Constraint (6i) is used to define wc

yhν such that it is equal to 1 if and only if
we branch on a particular feature i, the value attained for that feature by data



point (y, h) is k and data points with feature value k are assigned to the left
branch of the node. Constraints (6j) and (6k) mirror constraints (6f) and (6g),
respectively, for the case of categorical features.

Example 7 (Decision-Tree-Based Policies enhanced with Linear Branching). For
decision-tree-based policies enhanced with linear branching (Example 3), con-
straint (3b) can be expressed in terms of linear inequalities using a variant of
the formulation from Example 6. Specifically, one can convert the dataset to
have only quantitative features using one hot encoding and subsequently enforce
constraints (5) and (6b)-(6g) to achieve the desired model.

Example 8 (Decision-Tree-Based Policies enhanced with Linear Leafing). For
decision-tree-based policies enhanced with linear leafing (Example 4), constraint
(3b) can be expressed in terms of linear inequalities using a variant of the for-
mulation from Example 6 by replacing constraint (5) with

πyh =
∑
`∈L

[β>y,`gy + β>h,`fh]xyh` ∀y ∈ Y, h ∈ H. (7)

4 Approximate Solution Approach

Albeit exact, the data-driven MIP (3) scales with the number of youth and houses
in the system. In this section, we propose an approximate solution approach that
generalizes the one from [2] to decision-tree-based policies, see Examples 1-4.
Consider the following relaxation of Problem (3).

maximize
∑
y∈Y

[∑
h∈H

pyhxyh + py

(
1−

∑
h∈H

xyh

)]
subject to

∑
h∈H

xyh ≤ 1 ∀y ∈ Y,
∑
y∈Y

xyh ≤ 1 ∀h ∈ H

xyh = 0 ∀y ∈ Y, h ∈ H : (y, h) /∈ C
x ∈ F, xyh ≥ 0 ∀y ∈ Y, h ∈ H

(8)

Contrary to Problem (3) in which the matching is guided by the policy with
parameters β, this formulation allows for arbitrary matches and integrality con-
straints on x are relaxed so that xyh can be interpreted as the probability that
house h is offered to youth y. Thus, the optimal policy from (9) is anticipative and
not implementable in practice. Next, we propose a method that leverages formu-
lation (8) to design an implementable policy. For convenience, we assume that the
set of fair matchings is expressible as F := {x : Ax ≤ b} for some matrix A and
vector b. Moreover, we let λ denote the vector of optimal dual multipliers of the
fairness constraints in (8). We define the quantity Cyh := pyh − py − (λ>A)(y,h)
and propose to learn β to approximate Cyh using πyh, the score for this match.
This problem is expressible as

minimize

∑
y∈Y

∑
h∈H
|Cyh − πyh| : Constraint (3b)

 . (9)



Problem (9) admits an intuitive interpretation. In the absence of fairness con-
straints, the policy should rank youth according to their probabilities of success.
In the presence of fairness constraints, the policy should rank youth to maximize
the probability of success while penalizing violations of the fairness constraints.
An estimate of the cost at which violating the fairness constraints is not bene-
ficial can be obtained by using the optimal dual multipliers λ. As discussed in
Section 3.2, for all interpretable policies proposed in Section 2.3, constraint (3b)
is equivalent to a finite set of linear inequality constraints involving binary vari-
ables. Thus, Problem (9) is equivalent to an MILP (an LP for the case of lin-
ear policies). Problem (9) is significantly more tractable than (3). While it can
still be challenging to solve for large datasets, in the case of tree-based policies
(Examples 2–4), it presents an attractive decomposable structure amenable to
Bender’s decomposition. Thus, x, z, and π are variables of the subproblem and
all other variables are decided in the master. Note that integrality constraints in
the subproblem may be relaxed to yield an equivalent problem.

5 Numerical Study

We showcase the performance of our approach to design policies for the U.S.
homeless youth. We build interpretable policies that maximize efficiency while
ensuring fairness across NST scores (see Introduction) and across races, in turn.
We use real-world data (10,922 homeless youth and 3474 housing resources)
from the HMIS database obtained from Ian De Jong as part of a working group
called “Youth Homelessness Data, Policy, Research.” The dataset includes 54
features for the youth and each house is of one of two types (rapid rehousing
(RRH) or permanent supportive housing (PSH)), see [5]. A youth is considered
to have a successful outcome if they are housed one year later. We use 80%
(20%) of data for training (testing). We use the training set to learn (using
CART) the success probabilities that are fed in our models and to identify the
five most significant features. We compare our proposed approach to several
baselines: (i) the status-quo policy TAY; (ii) random allocation (Random); (iii)
the (interpretable) machine learning approaches without fairness from [5] (Linear
and Logistic Regression and CART); (iv) the linear scoring policies with relaxed
fairness constraints originally proposed in [2] (Linear RF). To these baselines, we
add: (i) Decision-tree-based policies with relaxed fairness constraints (Decision-
Tree RF); (ii) Decision-tree-based policies with linear leafing (depth 1 and 2)
with relaxed fairness constraints (Decision-Tree LL RF); (iii) Linear scoring
policies with (exact) fairness constraints computed using MILP (3) (Linear EF).

Fairness across NST Scores. Motivated by TAY which provides the most sup-
portive resources to the most vulnerable youth, we enforce fairness with respect
to NST score: independently of their score, youth should be equally likely to
transition to a fair and stable exit. We enforce fairness across two groups which
were found to have very different chances to remain homeless in the long run:



Fig. 1: Success probability across all youth (left) and by vulnerability level (right) when
fairness across vulnerability levels is desired.

youth with scores 4-7 and 8+, respectively. Youth with scores below 4 are ex-
cluded since they have a higher estimated success probability when not offered
housing. Figure 1 shows the success probability of youth under each policy. The
baselines TAY, Random, Logistic Regression, and CART are all very unfair: the
probability of success for youth with scores 8+ is uniformly below 30%, while
lower risk youth with scores 4-7 have success probability higher than 60%. Lin-
ear Regression performs considerably better and introducing relaxed fairness
constraints (Linear RF) does not yield any improvement. Our proposed policies
outperform all benchmarks in terms of fairness and do so at marginal cost to
overall efficiency. Figure 2 shows the percentage of each type of house allocated
to each group under each policy. The current policy allocates the most resource-
intensive resources (PSH) to the highly vulnerable individuals and the RRH
resources to individuals scoring 4-7. Our analysis however shows that some high
risk individuals can improve their chances of a successful outcome by receiving
an RRH resource. Thus, our policies allocate some RRH (resp. PSH) houses to
high (resp. low) risk individuals, resulting in policies that benefit the most vul-
nerable youth, see Figures 1 and 2. Lastly, Table 1 shows the runtime required to
solve each problem.4 Exact formulations require more runtime than approxima-
tions, and more sophisticated policies require greater runtime. Moreover, there
are significant benefits in employing our proposed decomposition approach.

Fairness across Races. Motivated by the desire to avoid racial discrimination,
we seek policies that are fair across races. The results are summarized in Figure 3
which shows that the current policy and classical machine learning approaches
are unfair, with “Whites” having higher success probability than “Blacks” and
“Hispanics.” In contrast, our proposed policies, in particular Linear EF outper-
form significantly the state of the art at marginal cost to overall efficiency.

4 These experiments were run on a 2.0GHz Intel Core i7 processor machine with 4GB
RAM and all optimization problems were solved with Gurobi v7.0.



Fig. 2: Housing resources allocated by vulnerability level when fairness across vulnera-
bility levels is desired.

Fairness Constraints Type of Policy Decomposition Used Solver Time (Seconds)

Relaxed Linear N/A 932.57
Relaxed Decision-Tree Yes (No) 3570.12 (7105.11)
Relaxed Decision-Tree LL Yes (No) 9031.32 (14045.45 )
Exact Linear N/A 36400.98

Table 1: Solver times for the proposed approaches for solving to optimality when fair-
ness across vulnerability levels is desired.

Fig. 3: Success probability across all youth (left) and by race (right) when fairness
across races is desired.
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