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Abstract

The potential of Artificial Intelligence (AI) to tackle challenging problems that afflict society is

enormous, particularly in the areas of healthcare, conservation and public safety and security.

Many problems in these domains involve harnessing social networks of under-served communi-

ties to enable positive change, e.g., using social networks of homeless youth to raise awareness

about Human Immunodeficiency Virus (HIV) and other STDs. Unfortunately, most of these real-

world problems are characterized by uncertainties about social network structure and influence

models, and previous research in AI fails to sufficiently address these uncertainties, as they make

several unrealistic simplifying assumptions for these domains.

This thesis addresses these shortcomings by advancing the state-of-the-art to a new gener-

ation of algorithms for interventions in social networks. In particular, this thesis describes the

design and development of new influence maximization algorithms which can handle various un-

certainties that commonly exist in real-world social networks (e.g., uncertainty in social network

structure, evolving network state, and availability of nodes to get influenced). These algorithms

utilize techniques from sequential planning problems and social network theory to develop new

kinds of AI algorithms. Further, this thesis also demonstrates the real-world impact of these al-

gorithms by describing their deployment in three pilot studies to spread awareness about HIV

among actual homeless youth in Los Angeles. This represents one of the first-ever deployments

of computer science based influence maximization algorithms in this domain. Our results show

that our AI algorithms improved upon the state-of-the-art by ∼ 160% in the real-world. We dis-

cuss research and implementation challenges faced in deploying these algorithms, and lessons

that can be gleaned for future deployment of such algorithms. The positive results from these

deployments illustrate the enormous potential of AI in addressing societally relevant problems.
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Chapter 1

Introduction

The field of Artificial Intelligence (AI) has pervaded into many aspects of urban human living,

and there are many AI based applications that we use on a daily basis. For example, we use AI

based navigation systems (e.g., Google Maps, Waze) to find the quickest way home; we use AI

based search engines (e.g., Google, Bing) to search for relevant information; and we use AI based

personal assistant systems (e.g., Siri, Alexa) to organize our daily schedules, among other things.

Unfortunately, a significant proportion of people all over the world have not benefited from

these AI technologies, primarily because they do not have access to these technologies. In partic-

ular, this lack of access to AI technologies is endemic to “low-resource communities", which are

communities suffering from financial and social impoverishment, among other ills. Moreover,

apart from lack of technology access, these communities suffer from completely different kinds

of problems, which have not been tackled by AI and computer science as much. For example, as

shown in Figure 1.1, homeless youth communities in North America do not have access to pub-

lic health services, drug addicted people in South America do not have access to rehabilitation

facilities, and low-literate farmers in India do not have access to good governance, etc. At a very

high level, this thesis attempts to answer whether Artificial Intelligence can be utilized to solve

the problems faced by these (and other) low-resource communities.

More specifically, this thesis focuses on how several challenges faced by these low-resource

communities can be tackled by harnessing the real-world social networks of these communities.

Since ancient times, humans have intertwined themselves into various social networks. These

networks can be of many different kinds, such as friendship based networks, professional net-

works, etc. Besides these networks being used for more direct reasons (e.g., friendship based

1



(a) Homeless Youth: Access to Public
Health Facilities

(b) Drug Addicts: Access to Re-
habilitation Facilities

(c) Low-Literate Farmers: Ac-
cess to Grievance Redressal

Figure 1.1: Low-Resource Communities and Their Problems

networks used for connecting with old and new friends, etc.), these networks also play a critical

role in the formulation and propagation of opinions, ideas and information among the people in

that network. In recent times, this property of social networks has been exploited by governments

and non-profit organizations to conduct social and behavioral interventions among low-resource

communities, in order to enable positive behavioral change among these communities. For ex-

ample, non-profit agencies called homeless youth service providers conduct intervention camps

periodically, where they train a small set of influential homeless youth as “peer leaders” to spread

awareness and information about HIV and STD prevention among their peers in their social cir-

cles. Unfortunately, such real-world interventions are almost always plagued by limited resources

and limited data, which creates a computational challenge. This thesis addresses these challenges

by providing algorithmic techniques to enhance the targeting and delivery of these social and

behavioral interventions.

From a computer science perspective, the question of finding out the most “influential" peo-

ple in a social network is well studied in the field of influence maximization, which looks at

the problem of selecting the K (an input parameter) most influential nodes in a social network

(represented as a graph), who will be able to influence the most number of people in the net-

work within a given time period. Influence in these networks is assumed to spread according to

a known influence model (popular ones are independent cascade (Leskovec, Krause, Guestrin,

Faloutsos, VanBriesen, & Glance, 2007) and linear threshold (Chen, Wang, & Wang, 2010)).

Since the field’s inception in 2003 by Kempe et. al. (Kempe, Kleinberg, & Tardos, 2003), influ-

ence maximization has seen a lot of progress over the years (Leskovec et al., 2007; Kimura &

Saito, 2006; Chen et al., 2010; Cohen, Delling, Pajor, & Werneck, 2014; Borgs, Brautbar, Chayes,

& Lucier, 2014; Tang, Xiao, & Shi, 2014; Bharathi, Kempe, & Salek, 2007; Kostka, Oswald, &

2



Wattenhofer, 2008; Borodin, Filmus, & Oren, 2010; Lerman, Yan, & Wu, 2016; Ghosh & Ler-

man, 2009, 2010; Ver Steeg & Galstyan, 2013; Galstyan, Musoyan, & Cohen, 2009; Galstyan &

Cohen, 2008).

1.1 Problem Addressed

Unfortunately, most models and algorithms from previous work suffer from serious limitations.

In particular, there are different kinds of uncertainties, constraints and challenges that need to

be addressed in real-world domains involving low-resource communities, and previous work has

failed to provide satisfactory solutions to address these limitations.

Specifically, most previous work suffers from five major limitations. First, almost every pre-

vious work focuses on single-shot decision problems, where only a single subset of graph nodes

is to be chosen and then evaluated for influence spread. Instead, most realistic applications of

influence maximization would require selection of nodes in multiple stages. For example, home-

less youth service providers conduct multiple intervention camps sequentially, until they run out

of their financial budget (instead of conducting just a single intervention camp).

Second, the state of the social network is not known at any point in time; thus, the selection

of nodes in multiple stages (which is un-handled in previous work) introduces additional uncer-

tainty about which network nodes are influenced at a given point in time, which complicates the

node selection procedure. Addressing this uncertainty is critical as otherwise, you can keep re-

influencing nodes which have been already influenced via diffusion of information in previous

interventions.

Third, network structure is assumed to be known with certainty in most previous work, which

is untrue in reality, considering that there is always noise in any network data collection proce-

dure. In particular, collecting network data from low-resource communities is cumbersome, as

it entails surveying members of the community (e.g., homeless youth) about their friend circles.

Invariably, the social networks that we get from homeless youth service providers have some

friendships which we know with certainty (i.e., certain friendships) , and some other friendships

which we are uncertain about (i.e., uncertain friendships).
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Fourth, previous work assumes that seed nodes of our choice can be influenced determinis-

tically, which is also an unrealistic assumption. In reality, some of our chosen seed nodes (e.g.,

homeless youth) may be unwilling to spread influence to their peers, so one needs to explicitly

consider a situation when the influencers cannot be influenced.

Finally, despite two decades of research in influence maximization algorithms, none of these

previous algorithms and models have ever been tested in the real world (atleast with low-resource

communities). This leads us to a natural question: Are these sophisticated AI algorithms actually

needed in the real-world? Can one get near-optimal empirical performance from simple heuristics

instead? Finally, the usability of these algorithms is also unknown in the real-world.

1.2 Motivating Domain

This thesis attempts to resolve these limitations by developing fundamental algorithms for influ-

ence maximization which can handle these uncertainties and constraints in a principled manner.

While these algorithms are not domain specific, and can easily be applied to other domains (e.g.,

preventing drug addiction, raising awareness about governance related grievances of low-literate

farmers, etc.), this thesis uses an important domain for motivation, where influence maximization

could be used for social good: raising awareness about Human Immunodeficiency Virus (HIV)

among homeless youth.

HIV-AIDS is a dangerous disease which claims 1.5 million lives annually (UNAIDS, 2012),

and homeless youth are particularly vulnerable to HIV due to their involvement in high risk be-

havior such as unprotected sex, sharing drug needles, etc. (Council, 2012). To prevent the spread

of HIV, many homeless shelters conduct intervention camps, where a select group of homeless

youth are trained as “peer leaders" to lead their peers towards safer practices and behaviors, by

giving them information about safe HIV prevention and treatment practices. These peer leaders

are then tasked with spreading this information among people in their social circle.

However, due to financial/manpower constraints, the shelters can only organize a limited

number of intervention camps. Moreover, in each camp, the shelters can only manage small

groups of youth (∼3-4) at a time (as emotional and behavioral problems of youth makes manage-

ment of bigger groups difficult). Thus, the shelters prefer a series of small sized camps organized
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(a) Homeless youth at My Friend’s Place (b) My Friend’s Place Team with a Co-Author

Figure 1.2: One of the Homeless Shelters Where We Conducted Deployments of our Algorithms

sequentially (Rice, Fulginiti, Winetrobe, Montoya, Plant, & Kordic, 2012b). As a result, the

shelter cannot intervene on the entire target (homeless youth) population. Instead, it tries to max-

imize the spread of awareness among the target population (via word-of-mouth influence) using

the limited resources at its disposal. To achieve this goal, the shelter uses the friendship based

social network of the target population to strategically choose the participants of their limited

intervention camps. Unfortunately, the shelters’ job is further complicated by a lack of complete

knowledge about the social network’s structure (Rice, 2010). Some friendships in the network

are known with certainty whereas there is uncertainty about other friendships.

Thus, the shelters face an important challenge: they need a sequential plan to choose the par-

ticipants of their sequentially organized interventions. This plan must address three key points:

(i) it must deal with network structure uncertainty; (ii) it needs to take into account new infor-

mation uncovered during the interventions, which reduces the uncertainty in our understanding

of the network; and (iv) the intervention approach should address the challenge of gathering in-

formation about social networks of homeless youth, which usually costs thousands of dollars and

many months of time (Rice et al., 2012b).

1.3 Main Contributions

This thesis focuses on providing innovative techniques and significant advances for addressing

the challenges of uncertainties in influence maximization problems, including 1) uncertainty in

the social network structure; 2) uncertainty about the state of the network; and 3) uncertainty

about willingness of nodes to be influenced. Some key research contributions include:
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• new influence maximization algorithms for homeless youth service providers based on

Partially Observable Markov Decision Process (or POMDP) planning.

• real-world evaluation of these algorithms with 173 actual homeless youth across two dif-

ferent homeless shelters in Los Angeles.

1.3.1 Influence Maximization Under Real-World Constraints

As the first contribution, we use the homeless youth domain to motivate the definition of the

Dynamic Influence Maximization Under Uncertainty (DIME) problem (Yadav, Chan, Xin Jiang,

Xu, Rice, & Tambe, 2016a), which models the aforementioned challenge faced by the homeless

youth service providers accurately. Infact, the sequential selection of network nodes in multiple

stages in DIME sets it apart from any other previous work in influence maximization (Leskovec

et al., 2007; Kimura & Saito, 2006; Chen et al., 2010; Cohen et al., 2014). As the second con-

tribution, we introduce a novel Partially Observable Markov Decision Process (POMDP) based

model for solving DIME, which takes into account uncertainties in network structure and evolv-

ing network state . As the third contribution, since conventional POMDP solvers fail to scale up

to sizes of interest (our POMDP had 2300 states and
(

150
6

)
actions), we design three scalable (and

more importantly, “deployable") algorithms, which use our POMDP model to solve the DIME

problem.

Our first algorithm PSINET (Yadav, Marcolino, Rice, Petering, Winetrobe, Rhoades, Tambe,

& Carmichael, 2015) relies on the following key ideas: (i) compact representation of transition

probabilities to manage the intractable state and action spaces; (ii) combination of the QMDP

heuristic with Monte-Carlo simulations to avoid exhaustive search of the entire belief space; and

(iii) voting on multiple POMDP solutions, each of which efficiently searches a portion of the

solution space to improve accuracy. Unfortunately, even though PSINET was able to scale up

to real-world sized networks, it completely failed at scaling up in the number of nodes that get

picked in every round (intervention). To address this challenge, we designed HEAL, our second

algorithm. HEAL (Yadav et al., 2016a) hierarchically subdivides our original POMDP at two lay-

ers: (i) In the top layer, graph partitioning techniques are used to divide the original POMDP into

intermediate POMDPs; (ii) In the second level, each of these intermediate POMDPs is further

simplified by sampling uncertainties in network structure repeatedly to get sampled POMDPs;
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(iii) Finally, we use aggregation techniques to combine the solutions to these simpler POMDPs,

in order to generate the overall solution for the original POMDP. Finally, unlike PSINET and

HEALER, our third algorithm CAIMS (Yadav, Noothigattu, Rice, Onasch-Vera, Soriano Mar-

colino, & Tambe, 2018) explicitly models uncertainty in availability (or willingness) of network

nodes to get influenced, and relies on the following key ideas: (i) action factorization in POMDPs

to scale up to real-world network sizes; and (ii) utilization of Markov nets to represent the expo-

nentially sized belief state in a compact and lossless manner.

1.3.2 Real World Evaluation of Influence Maximization Algorithms

For real-world evaluation, we deployed our influence maximization algorithms in the field (with

homeless youth) to provide a head-to-head comparison of different influence maximization al-

gorithms (Yadav, Wilder, Rice, Petering, Craddock, Yoshioka-Maxwell, Hemler, Onasch-Vera,

Tambe, & Woo, 2017c). Incidentally, these turned out to be the first such deployments in the

real-world. We collaborated with Safe Place for Youth1 and My Friends Place 2(two homeless

youth service providers in Los Angeles) to conduct three different pilot studies with 173 home-

less youth in these centers. These deployments helped in establishing the superiority of my AI

based algorithms (HEALER and DOSIM), which significantly outperformed Degree Centrality

(the current modus operandi at drop-in centers for selecting influential seed nodes) in terms of

both spread of awareness and adoption of safer behaviors. Specifically, HEALER and DOSIM

outperformed Degree Centrality (the current modus operandi) by∼160% in terms of information

spread among homeless youth in the real-world. These highly encouraging results are starting to

lead to a change in standard operating practices at drop-in centers as they have begun to discard

their previous approaches of spreading awareness in favor of our AI based algorithms. More im-

portantly, it illustrates one way (among many others) in which Artificial Intelligence techniques

can be harnessed for benefiting low-resource communities such as the homeless youth.
1http://safeplaceforyouth.nationbuilder.com/
2http://myfriendsplace.org/
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1.4 Overview of Thesis

This thesis is organized as follows. Chapter 2 provides an overview of the related work in this

area. Chapter 3 introduces fundamental background material necessary to understand the re-

search presented in the thesis. Next, in Chapter 4, we present a mathematical formulation of

the Dynamic Influence Maximization under Uncertainty (DIME) problem (which is the problem

faced by homeless youth service providers) and provides a characterization of its theoretical com-

plexity. Chapter 5 then introduces the Partially Observable Markov Decision Process (POMDP)

model for DIME. Chapter 6 explains the first PSINET algorithm which utilizes the QMDP heuris-

tic to solve the DIME problem. Next, Chapter 7 introduces the HEALER algorithm which relies

on a hierarchical ensembling heuristic approach to scale up to larger instances of the DIME prob-

lem. For real-world evaluation of the algorithms, Chapter 8 presents results from the real-world

pilot studies that we conducted. Chapter 9 introduces the CAIMS algorithm which handles un-

certainty in availability of nodes to get influenced. Finally, chapter 10 concludes the thesis and

presents possible future directions.
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Chapter 2

Related Work

2.1 Social Work Research in Peer-Led Interventions

Given the important role that peers play in the HIV risk behaviors of homeless youth (Rice,

Barman-Adhikari, Milburn, & Monro, 2012a; Green, Haye, Tucker, & Golinelli, 2013), it has

been suggested in social work research that peer leader based interventions for HIV prevention

be developed for these youth (Arnold & Rotheram-Borus, 2009; Rice et al., 2012a; Green et al.,

2013). These interventions are desirable for homeless youth (who have minimal health care

access, and are distrustful of adults), as they take advantage of existing relationships (Rice &

Rhoades, 2013). These interventions are also successful in focusing limited resources to select

influential homeless youth in different portions of large social networks (Arnold & Rotheram-

Borus, 2009; Medley, Kennedy, O’Reilly, & Sweat, 2009). However, there are still open questions

about “correct" ways to select peer leaders in these interventions, who would maximize awareness

spread in these networks.

Unfortunately, very little previous work in the area of real-world implementation of influence

maximization has used AI or algorithmic approaches for peer leader selection, despite the scale

and uncertainty in these networks; instead relying on convenience selection or simple centrality

measures. Kelly et. al. (Kelly, Murphy, Sikkema, McAuliffe, Roffman, Solomon, Winett, &

Kalichman, 1997) identify peer leaders based on personal traits of individuals, irrespective of

their structural position in the social network. Moreover, selection of the most popular youth

(i.e., Degree Centrality based selection) is the most popular heuristic for selecting peer leaders

(Valente, 2012). However, as we show later, Degree Centrality is ineffective for peer-leader
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based interventions, as it only selects peer leaders from a particular area of the network, while

ignoring other areas.

2.2 Influence Maximization

On the other hand, a significant amount of research has occured in Computer Science in the field

of computational influence maximization, which has led to the development of several algorithms

for selecting “seed nodes" in social networks. The influence maximization problem, as stated by

Kempe et. al. (Kempe et al., 2003), takes in a social network as input (in the form of a graph),

and outputs a set of K ‘seed nodes’ which maximize the expected influence spread in the social

network within T time steps. Note that the expectation of influence spread is taken with respect

to a probabilistic influence model, which is also provided as input to the problem.

2.2.1 Standard Influence Maximization

There are many algorithms for finding ‘seed sets’ of nodes to maximize influence spread in net-

works (Kempe et al., 2003; Leskovec et al., 2007; Borgs et al., 2014; Tang et al., 2014; Lerman

et al., 2016; Ghosh & Lerman, 2009, 2010; Ver Steeg & Galstyan, 2013; Galstyan et al., 2009;

Galstyan & Cohen, 2008). However, all these algorithms assume no uncertainty in the network

structure and select a single seed set. In contrast, we select several seed sets sequentially in our

work to select intervention participants, as that is a natural requirement arising from our home-

less youth domain. Also, our work takes into account uncertainty about the network structure and

influence status of network nodes (i.e., whether a node is influenced or not). Finally, unlike most

previous work (Kempe et al., 2003; Leskovec et al., 2007; Borgs et al., 2014; Tang et al., 2014;

Lerman et al., 2016; Ghosh & Lerman, 2009, 2010; Ver Steeg & Galstyan, 2013; Galstyan et al.,

2009; Galstyan & Cohen, 2008), we use a different influence model as we explain later.

There is another line of work by Golovin et. al. (Golovin & Krause, 2011), which introduces

adaptive submodularity and discusses adaptive sequential selection (similar to our problem).

They prove that a Greedy algorithm provides a (1 − 1/e) approximation guarantee. However,

unlike our work, they assume no uncertainty in network structure. Also, while our problem can

be cast into the adaptive stochastic optimization framework of (Golovin & Krause, 2011), our
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influence function is not adaptive submodular (as shown later), because of which their Greedy

algorithm loses its approximation guarantees.

Recently, after the development of the algorithms in this thesis, some other algorithms have

also been proposed in the literature to solve similar influence maximization problems in the home-

less youth domain. For example, (Wilder12, Immorlica, Rice24, & Tambe12, 2018) proposes the

ARISEN algorithm which deals with situations where you do not know anything about the social

network of homeless youth at all, and it proposes a policy which trades off network mapping with

actual influence spread in the social network. However, ARISEN was found to be difficult to im-

plement in practice, and as a result, (Wilder, Onasch-Vera, Hudson, Luna, Wilson, Petering, Woo,

Tambe, & Rice, 2018) proposes the CHANGE agent which utilizes insights from the friendship

paradox (Feld, 1991) to learn about the most promising parts of the social network as quickly as

possible. Moreover, based on results from the real-world pilot studies detailed in this thesis, (Hu,

Wilder, Yadav, Rice, & Tambe, 2018) proposes new diffusion models for real-world networks

which fit empirical diffusion patterns observed in the pilot studies much more convincingly.

An orthogonal line of work is (Singer, 2012) which solves the following problem: how to

incentivize people in order to be influencers? Unlike us, they solve a mechanism-design problem

where nodes have private costs, which need to be paid for them to be influencers. However, in our

domains of interest, while there is a lot of uncertainty about which nodes can be influenced in the

network, monetary gains/losses are not the reason behind nodes getting influenced or not. Instead,

nodes do not get influenced because they are either not available or willing to get influenced.

In another orthogonal line of work, (Yadav, Rahmattalabi, Kamar, Vayanos, Tambe, &

Noronha, 2017a) proposed XplainIM, a machine learning based explanation system to explain

the solutions of HEALER (Yadav et al., 2016a) to human subjects. The problem of explain-

ing solutions of influence maximization algorithms was first posed in(Yadav, Chan, Jiang, Rice,

Kamar, Grosz, & Tambe, 2016), but their main focus was on justifying the need for such explana-

tions, as opposed to providing any practical solutions to this problem. Thus, XplainIM represents

the first step taken towards solving this problem (of explaining influence maximization solutions).

Essentially, they propose using a Pareto frontier of decision trees as their interpretable classifier

in order to explain the solutions of HEALER.
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2.2.2 Competitive Influence Maximization

Yet another field of related work involves two (or more) players trying to spread their own ‘com-

peting’ influence in the network (broadly called influence blocking maximization, or IBM). Some

research exists on IBM where all players try to maximize their own influence spread in the net-

work, instead of limiting others (Bharathi et al., 2007; Kostka et al., 2008; Borodin et al., 2010).

(Tsai, Nguyen, & Tambe, 2012) try to model IBM as a game theoretic problem and provide scale

up techniques to solve large games. Just like our work, (Tsai, Qian, Vorobeychik, Kiekintveld,

& Tambe, 2013) consider uncertainty in network structure. However, (Tsai et al., 2013) do not

consider sequential planning (which is essential in our domain) and thus, their methods are not

reusable in our domain.

2.3 POMDP Planning

The final field of related work is planning for reward/cost optimization. In POMDP literature, a

lot of work has happened along two different paradigms: offline and online POMDP planning.

2.3.1 Offline POMDP Planning

In the paradigm of offline POMDP planning, algorithms are desired which precompute the entire

POMDP policy (i.e., a mapping from every possible belief state to the optimal action for that

belief) ahead of time, i.e., before execution of the policy begins. In 1973, (Smallwood & Sondik,

1973) proposed a dynamic programming based algorithm for optimally solving a POMDP. Im-

proving upon this, a number of exact algorithms leveraging the piecewise-linear and convex as-

pects of the POMDP value function have been proposed in the POMDP literature (Monahan,

1982; Littman, 1996; Cassandra, Littman, & Zhang, 1997; Zhang & Zhang, 2001). Recently,

several approximate offline POMDP algorithms have also been proposed (Hauskrecht, 2000;

Pineau, Gordon, & Thrun, 2006). Some notable offline planners include GAPMIN (Poupart,

Kim, & Kim, 2011) and Symbolic Perseus (Spaan & Vlassis, 2005). Currently, the leading of-

fline POMDP solver is SARSOP (Kurniawati, Hsu, & Lee, 2008). Unfortunately, all of these

offline POMDP methods fail to scale up to any realistic problem sizes, which makes them diffi-

cult to use for real-world problems.
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2.3.2 Online POMDP Planning

In the paradigm of online POMDP planning, instead of computing the entire POMDP policy,

only the best action for the current belief state is found. Upon reaching a new belief state, online

planning again plans for this new belief. Thus, online planning interleaves planning and exe-

cution at every time step. Recently, it has been suggested that online planners are able to scale

up better (Paquet, Tobin, & Chaib-Draa, 2005), and therefore we focus on online POMDP plan-

ners in this thesis. For online planning, we mainly focus on the literature on Monte-Carlo (MC)

sampling based online POMDP solvers since this approach allows significant scale-ups. (Silver

& Veness, 2010) proposed the Partially Observable Monte Carlo Planning (POMCP) algorithm

that uses Monte-Carlo tree search in online planning. Also, (Somani, Ye, Hsu, & Lee, 2013)

present the DESPOT algorithm, that improves the worst case performance of POMCP. (Bai, Wu,

Zhang, & Chen, 2014) used Thompson sampling to intelligently trade-off between exploration

and exploitation in their D2NG-POMCP algorithm. These algorithms maintain a search tree for

all sampled histories to find the best actions, which may lead to better solution qualities, but

it makes these techniques less scalable (as we show in our experiments). Therefore, our algo-

rithm does not maintain a search tree and uses ideas from QMDP heuristic (Littman, Cassandra, &

Kaelbling, 1995) and hierarchical ensembling to find best actions. Yet another related work is FV-

POMCP (Amato & Oliehoek, 2015; Sammie, Oliehoek, & Amato, 2017), which was proposed to

handle issues with POMCP’s (Silver & Veness, 2010) scalability. Essentially, FV-POMCP relies

on a factorized action space to scale up to larger problems. In our work, we complement their

advances to build CAIMS, which leverages insights from social network theory to factorize ac-

tion spaces in a provably “lossless" manner, and to represent beliefs in an accurate manner using

Markov networks.
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Chapter 3

Background

In this chapter, we provide general background information about influence maximization prob-

lems and how we represent social networks inside our influence maximization algorithms. Next,

we discuss well-known diffusion spread models (along with the model that we use) used in-

side influence maximization. We also describe the well-known Greedy algorithm for influence

maximization. Finally, we describe background information about the POMDP model and a

well-known algorithm for solving POMDPs.

3.1 Influence Maximization Problem

Given a social network G and a parameter K, the influence maximization problem asks to find

an optimal K sized set of nodes of maximum influence in the social network. In other words,

given a social network G and an influence model M of a diffusion process that take place on

network G, the goal is to find K initial seeders in the network who will lead to most number of

people receiving the message. More formally, for anyK sized subset of nodesA, let δ(A) denote

the expected number of individuals in the network who will receive the message, given that A is

the initial set of seeders. Then, the influence maximization problem takes as input (i) the social

network G, (ii) the influence model M , and (iii) the number of nodes to choose K, and produces

as output an optimal subset of nodes S = argmaxA δ(A).
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3.2 Network Representation

In influence maximization problems, we represent social networksG = (V,E) as directed graphs

(consisting of nodes and directed edges) where each node represents a person in the social net-

work and a directed edge between two nodesA andB (say) represents that nodeA considers node

B as his/her friend. We assume directed-ness of edges as sometimes homeless shelters assess that

the influence in a friendship is very much uni-directional; and to account for uni-directional

follower links on Facebook. Otherwise friendships are encoded as two uni-directional links.

3.2.1 Uncertain Network

The uncertain network is a directed graph G = (V,E) with |V | = N nodes and |E| = M

edges. The edge set E consists of two disjoint subsets of edges: Ec (the set of certain edges,

i.e., friendships which we are certain about) and Eu (the set of uncertain edges, i.e., friendships

which we are uncertain about). Note that uncertainties about friendships exist because HEALER’s

Facebook application misses out on some links between people who are friends in real life, but

not on Facebook.

Figure 3.1: Uncertain Network

To model the uncertainty about missing edges, every uncertain edge e ∈ Eu has an existence

probability u(e) associated with it, which represents the likelihood of “existence" of that uncer-

tain edge. For example, if there is an uncertain edge (A,B) (i.e., we are unsure whether node

B is node A’s friend), then u(A,B) = 0.75 implies that B is A’s friend with a 0.75 chance.

In addition, each edge e ∈ E (both certain and uncertain) has a propagation probability p(e)

associated with it. A propagation probability of 0.5 on directed edge (A,B) denotes that if node
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A is influenced (i.e., has information about HIV prevention), it influences node B (i.e., gives in-

formation to node B) with a 0.5 probability in each subsequent time step. This graph G with all

relevant p(e) and u(e) values represents an uncertain network and serves as an input to the DIME

problem. Figure 3.1 shows an uncertain network on 6 nodes (A to F) and 7 edges. The dashed

and solid edges represent uncertain (edge numbers 1, 4, 5 and 7) and certain (edge numbers 2, 3

and 6) edges, respectively.

3.3 Influence Model

In previous work, different kinds of influence spread models have been proposed and used. We

now discuss some of the well-known models and then describe the influence model that is used

in this thesis.

3.3.1 Independent Cascade Model

The independent cascade model (Kempe et al., 2003) associates a propagation probability p(e) to

each edge e ∈ E of the social network. This propagation probability p(e) denotes the likelihood

with which influence spreads along edge e in the network. The influence spread process begins

with an initial set of activated (or influenced) nodes called “seed nodes" A0 and then proceeds in

a series of discrete time-steps t ∈ [1, T ]. At each time step t, every node that was influenced at

time step t − 1 tries to influence their un-influenced neighbors (and they do so according to the

propagation probabilities on the respective edges). This process keeps on repeating until either T

time steps are reached or the entire network is influenced.

3.3.2 Linear Threshold Model

The linear threshold model (Kempe et al., 2003) associates a weight we on each edge e ∈ E

of the social network. Further, each node v ∈ V has a threshold εv ∈ [0, 1]. This threshold

represents the fraction of neighbors of v that must become influenced in order for node v to

become influenced. Again, the influence spread process begins with an initial set of “seed nodes"

A0 and then proceeds in a series of discrete time-steps t ∈ [1, T ]. At each time step t, each

un-influenced node which satisfies the following condition becomes influenced:
∑
e∼v

we > εv.

16



This process keeps on repeating until either T time steps are reached or the entire network is

influenced.

3.3.3 Our Influence Model

We use a variant of the independent cascade model (Yan, Guo, & Yang, 2011). In the standard

independent cascade model, all nodes that get influenced at round t get a single chance to influ-

ence their un-influenced neighbors at time t + 1. If they fail to spread influence in this single

chance, they don’t spread influence to their neighbors in future rounds. Our model is different

in that we assume that nodes get multiple chances to influence their un-influenced neighbors. If

they succeed in influencing a neighbor at a given time step t′, they stop influencing that neigh-

bor for all future time steps. Otherwise, if they fail in step t′, they try to influence again in the

next round. This variant of independent cascade has been shown to empirically provide a better

approximation to real influence spread than the standard independent cascade model (Cointet &

Roth, 2007; Yan et al., 2011). Further, we assume that nodes that get influenced at a certain time

step remain influenced for all future time steps.

Algorithm 1: Greedy Algorithm
Input: Graph G, Influence Model M , Number of Nodes K
Output: Best Action A

1 A← φ ;
2 for i ∈ [1,K] do
3 Pick v : δ(A ∪ {v})− δ(A) is maximized;
4 A← A ∪ {v};
5 end
6 return A;

3.4 Greedy Algorithm for Influence Maximization

In order to solve influence maximization problems, there exists a well-known approximation

algorithm (called the Greedy algorithm), which was first proposed by (Kempe et al., 2003) in

the context of influence maximization. Algorithm 1 shows the overall flow of this algorithm,

which iteratively builds the set of K nodes that should be output for the influence maximization

problem. In each iteration, the node which increases the marginal gain (in the expected solution
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value) by the maximum amount is added (Steps 3 and 4) to the output set. Finally, after K

iterations, the set of nodes is returned. It is well known that if the function δ(A) can be shown to

be submodular, then this Greedy algorithm outputs a (1− 1/e) approximation guarantee (Kempe

et al., 2003). Unfortunately, we later show that for our problem, this Greedy algorithm does not

have any guarantees due to submodularity. As a result, we use POMDPs to solve our problem.

Here, we provide a high-level overview of the POMDP model, and in later sections, we will

describe how our POMDP algorithms work.

3.5 Partially Observable Markov Decision Processes

Partially Observable Markov Decision Processes (POMDPs) are a well studied model for sequen-

tial decision making under uncertainty (Puterman, 2009). Intuitively, POMDPs model situations

wherein an agent tries to maximize its expected long term rewards by taking various actions,

while operating in an environment (which could exist in one of several states at any given point

in time) which reveals itself in the form of various observations. The key point is that the exact

state of the world is not known to the agent and thus, these actions have to be chosen by reasoning

about the agent’s probabilistic beliefs (belief state). The agent, thus, takes an action (based on its

current belief), and the environment transitions to a new world state. However, information about

this new world state is only partially revealed to the agent through observations that it gets upon

reaching the new world state. Hence, based on the agent’s current belief state, the action that it

took in that belief state, and the observation that it received, the agent updates its belief state. The

entire process repeats several times until the environment reaches a terminal state (according to

the agent’s belief).

More formally, a full description of the POMDP includes the sets of possible environment

states, the set of actions that the agent can take, and the set of possible observations that the agent

can observe. In addition, the full POMDP description includes a transition matrix, for storing

transition probabilities, which specify the probability with which the environment transitions

from one state to another, conditioned on the immediate action taken. Another component of

the POMDP description is the observation matrix, for storing observation probabilities, which

specify the probability of getting different observations in different states, conditioned on the
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action taken to reach that state. Finally, the POMDP description includes a reward matrix, which

specifies the agent’s reward of taking actions in different states.

A POMDP policy Π provides a mapping from every possible belief state (which is a proba-

bility distribution over world states) to an action a = Π(β). Our aim is to find an optimal policy

Π∗ which, given an initial belief β0, maximizes the expected cumulative long term reward over H

horizons (where the agent takes an action and gets a reward in each time step until the horizon H is

reached). Computing optimal policies offline for finite horizon POMDPs is PSPACE-Complete.

Thus, focus has recently turned towards online algorithms, which only find the best action for the

current belief state (Paquet et al., 2005; Silver & Veness, 2010). In order to illustrate some solu-

tion methods for POMDPs, we now provide a high-level overview of POMCP (Silver & Veness,

2010), a highly popular online POMDP algorithm.

Figure 3.2: UCT Tree Generation In POMCP (Browne et al., 2012)

3.6 POMCP: An Online POMDP Planner

POMCP (Silver & Veness, 2010) uses UCT based Monte-Carlo tree search (MCTS) (Browne

et al., 2012) to solve POMDPs. At every stage, given the current belief state b, POMCP

incrementally builds a UCT tree (as in Figure 3.2) that contains statistics that serve as em-

pirical estimators (via MC samples) for the POMDP Q-value function Q(b, a) = R(b, a) +

19



∑
z
P (z|b, a)maxa′Q(b′, a′). The algorithm avoids expensive belief updates by maintaining the

belief at each UCT tree node as an unweighted particle filter (i.e., a collection of all states

that were reached at that UCT tree node via MC samples). In each MC simulation, POMCP

samples a start state from the belief at the root node of the UCT tree, and then samples a

trajectory that first traverses the partially built UCT tree, adds a node to this tree if the end

of the tree is reached before the desired horizon, and then performs a random rollout to get

one MC sample estimate of Q(b, a). Finally, this MC sample estimate of Q(b, a) is propa-

gated up the UCT tree to update Q-value statistics at nodes that were visited during this tra-

jectory. Note that the UCT tree grows exponentially large with increasing state and action spaces.

Thus, the search is directed to more promising areas of the search space by selecting actions at

each tree node h according to the UCB1 rule (Kocsis & Szepesvári, 2006), which is given by:

a = argmaxaQ̂(bh, a) + c
√
log(Nh + 1)/nha. Here, Q̂(bh, a) represents the Q-value statistic

(estimate) that is maintained at node h in the UCT tree. Also, Nh is the number of times node h

is visited, and nha is the number of times action a has been chosen at tree node h (POMCP main-

tains statistics for Nh and nha∀a ∈ A at each tree node h). While POMCP handles large state

spaces (using MC belief updates), it is unable to scale up to large action sizes (as the branching

factor of the UCT tree blows up).
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Chapter 4

Dynamic Influence Maximization Under Uncertainty

In this chapter, we formally define the Dynamic Influence Maximization Under Uncertainty (or

DIME) problem, which models the problems faced by homeless youth service providers, and is

the primary focus of attention in this thesis. We also characterize the theoretical complexity of

the DIME problem in this chapter.

4.1 Problem Definition

Given the uncertain network as input, we plan to run for T rounds (corresponding to the num-

ber of interventions organized by the homeless shelter). In each round, we will choose K

nodes (youth) as intervention participants. These participants are assumed to be influenced post-

intervention with certainty. Upon influencing the chosen nodes, we will ‘observe’ the true state

of the uncertain edges (friendships) out-going from the selected nodes. This translates to asking

intervention participants about their 1-hop social circles, which is within the homeless shelter’s

capabilities (Rice et al., 2012a).

After each round, influence spreads in the network according to our influence model for L

time steps, before we begin the next round. This L represents the time duration in between two

successive intervention camps. In between rounds, we do not observe the nodes that get influenced

during L time steps. We only know that explicitly chosen nodes (our intervention participants

in all past rounds) are influenced. Informally then, given an uncertain network G0 = (V,E)

and integers T , K, and L (as defined above), our goal is to find an online policy for choosing
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exactly K nodes for T successive rounds (interventions) which maximizes influence spread in

the network at the end of T rounds.

We now provide notation for defining an online policy formally. Let A = {A ⊂ V s.t. |A| =

K} denote the set of K sized subsets of V , which represents the set of possible choices that

we can make at every time step t ∈ [1, T ]. Let Ai ∈ A ∀i ∈ [1, T ] denote our choice in

the ith time step. Upon making choice Ai, we ‘observe’ uncertain edges adjacent to nodes in

Ai, which updates its understanding of the network. Let Gi ∀ i ∈ [1, T ] denote the uncertain

network resulting from Gi−1 with observed (additional edge) information from Ai. Formally,

we define a history Hi ∀ i ∈ [1, T ] of length i as a tuple of past choices and observations Hi =

〈G0, A1, G1, A2, .., Ai−1, Gi〉. Denote by Hi = {Hk s.t. k 6 i} the set of all possible histories

of length less than or equal to i. Finally, we define an i-step policy Πi : Hi → A as a function

that takes in histories of length less than or equal to i and outputs a K node choice for the current

time step. We now provide an explicit problem statement for DIME.

Problem 1. DIME Problem Given as input an uncertain network G0 = (V,E) and integers T ,

K, and L (as defined above). Denote by R(HT , AT ) the expected total number of influenced

nodes at the end of round T , given the T -length history of previous observations and actions HT ,

along withAT , the action chosen at time T . Let EHT ,AT∼ΠT
[R(HT , AT )] denote the expectation

over the random variablesHT = 〈G0, A1, .., AT−1, GT 〉 andAT , whereAi are chosen according

to ΠT (Hi) ∀ i ∈ [1, T ], and Gi are drawn according to the distribution over uncertain edges

of Gi−1 that are revealed by Ai. The objective of DIME is to find an optimal T -step policy

Π∗
T = argmaxΠT

EHT ,AT∼ΠT
[R(HT , AT )].

4.2 Characterization of Theoretical Complexity

Next, we show hardness results about the DIME problem. First, we analyze the value of having

complete information in DIME. Then, we characterize the computational hardness of DIME.

4.2.1 The Value of Information

We characterize the impact of insufficient information (about the uncertain edges) on the achieved

solution value. We show that no algorithm for DIME is able to provide a good approximation to
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the full-information solution value (i.e., the best solution achieved w.r.t. the underlying ground-

truth network), even with infinite computational power.

Figure 4.1: Counter-example for Theorem 1

Theorem 1. Given an uncertain network with n nodes, for any ε > 0, there is no algorithm for

the DIME problem which can guarantee a n−1+ε approximation toOPTfull, the full-information

solution value.

Sketch. We prove this statement by providing a counter-example in the form of a specific (ground

truth) network for which there can exist no algorithm which can guarantee a n−1+ε approximation

to OPTfull. Consider an input to the DIME problem, an uncertain network with n nodes with

2 ∗
(
n
2

)
uncertain edges between the n nodes, i.e., it’s a completely connected uncertain network

consisting of only uncertain edges (an example with n = 3 is shown in Figure 4.1). Let p(e) = 1

and u(e) = 0.5 on all edges in the uncertain network, i.e., all edges have the same propagation

and existence probability. Let K = 1, L = 1 and T = 1, i.e., we just select a single node in one

shot (in a single round).

Further, consider a star graph (as the ground truth network) with n nodes such that propaga-

tion probability p(e) = 1 on all edges of the star graph (shown in Figure 1). Now, any algorithm

for the DIME problem would select a single node in the uncertain network uniformly at random

with equal probability of 1/n (as information about all nodes is symmetrical). In expectation,

the algorithm will achieve an expected reward {1/n× (n)}+ {1/n× (1) + ...+ 1/n× (1)} =

1/n × (n) + (n − 1)/n × 1 = 2 − 1/n. However, given the ground truth network, we get

OPTfull = n, because we always select the star node. As n goes to infinity, we can at best
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achieve a n−1 approximation to OPTfull. Thus, no algorithm can achieve a n−1+ε approxima-

tion to OPTfull for any ε > 0.

4.2.2 Computational Hardness

We now analyze the hardness of computation in the DIME problem in the next two theorems.

Theorem 2. The DIME problem is NP-Hard.

Sketch. Consider the case where Eu = Φ, L = 1, T = 1 and p(e) = 1∀e ∈ E. This degenerates

to the classical influence maximization problem which is known to be NP-hard. Thus, the DIME

problem is also NP-hard.

Some NP-Hard problems exhibit nice properties that enable approximation guarantees for

them. Golovin et. al. (Golovin & Krause, 2011) introduced adaptive submodularity, an analog

of submodularity for adaptive settings. Presence of adaptive submodularity ensures that a sim-

ply greedy algorithm provides a (1 − 1/e) approximation guarantee w.r.t. the optimal solution

defined on the uncertain network. However, as we show next, while DIME can be cast into the

adaptive stochastic optimization framework of (Golovin & Krause, 2011), our influence function

is not adaptive submodular, because of which their Greedy algorithm does not have a (1 − 1/e)

approximation guarantee.

Figure 4.2: Failure of Adaptive Submodularity

Theorem 3. The influence function of DIME is not adaptive submodular.

Proof. The definition of adaptive submodularity requires that the expected marginal increase of

influence by picking an additional node v is more when we have less observation. Here the

expectation is taken over the random states that are consistent with current observation. We show

that this is not the case in DIME problem. Consider a path with 4 nodes a, b, c, d and three
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directed edges e1 = (a, b) and e2 = (b, c) and e3 = (c, d) (see Figure 4.2). Let p(e1) = p(e2) =

p(e3) = 1, i.e., propagation probability is 1; L = 2, i.e., influence stops after two round; and

u(e1) = 1− ε u(e2) = u(e3) = ε for some small enough ε to be set. That is the only uncertainty

comes from incomplete knowledge of the existence of edges.

Let Ψ1 = {e1 exists} and Ψ2 = {e1, e3 exists}. Then EΦ [f(a, b, c)|Φ ∼ Ψ2] = 4 since all

nodes will be influenced. EΦ [f(a, c)|Φ ∼ Ψ2] = 4− ε since the only uncertain node is b which

will be influenced with probability 1− ε. Therefore,

EΦ [f(a, b, c)|Φ ∼ Ψ2]− EΦ [f(a, c)|Φ ∼ Ψ2] = ε. (4.1)

Now EΦ [f(a, b)|Φ ∼ Ψ1] = 2 + ε + ε2 since a, b will be surely influenced, c and d will be

influenced with probability ε and ε2 respectively. On the other hand, EΦ [f(a)|Φ ∼ Ψ1] = 2 + ε

since b will be surely influenced (since e1 exists) and c will be influenced with probability ε.

Since L = 2, d cannot be influenced. As a result,

EΦ [f(a, b)|Φ ∼ Ψ2]− EΦ [f(a)|Φ ∼ Ψ2] = ε2. (4.2)

Combining Equation (4.1) and (4.2), we know that DIME is not adaptive submodular.
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Chapter 5

POMDP Model for DIME Problem

The above theorems show that DIME is a hard problem as it is difficult to even obtain any reason-

able approximations. We model DIME as a POMDP (Puterman, 2009) because of two reasons.

First, POMDPs are a good fit for DIME as (i) we conduct several interventions sequentially, simi-

lar to sequential POMDP actions; and (ii) we have partial observability (similar to POMDPs) due

to uncertainties in network structure and influence status of nodes. Second, POMDP solvers have

recently shown great promise in generating near-optimal policies efficiently (Silver & Veness,

2010). We now explain how we map DIME onto a POMDP.

5.1 POMDP States

A POMDP state in our problem is a pair of binary tuples s = 〈W,F 〉 where W denotes the

influence status of network nodes, i.e., Wi = 1 denotes that node i is influenced and Wi = 0

denotes that node i is not influenced. Similarly, F denotes the existence of uncertain edges,

where Fi = 1 denotes that the ith uncertain edge exists in reality, and Fi = 0 denotes that the

ith uncertain edge does not exist in reality. We have an exponential state space, as in a social

network withN nodes andM uncertain edges, the total number of possible states in our POMDP

is 2N+M .

5.2 POMDP Actions

Every choice of a subset of K nodes in the social network is a possible POMDP action. More

formally, A = {a ⊂ V s.t.|a| = K} represents the set of all valid actions in our POMDP. For
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example, in Figure 3.1, one possible action is {A,B} (when K = 2). We have a combinatorial

action space, as in a social network with N nodes and the size of selected subset is K, the total

number of possible actions in our POMDP is
(
N
K

)
.

5.3 POMDP Observations

Upon taking a POMDP action, we “observe" the ground reality of the uncertain edges outgoing

from the nodes chosen in that action. Consider Θ(a) = {e | e = (x,y) s.t. x ∈ a ∧ e ∈ Eu} ∀a ∈

A, which represents the (ordered) set of uncertain edges that are observed when we take POMDP

action a. Then, our POMDP observation upon taking action a is defined as o(a) = {Fe|e ∈

Θ(a)}, i.e., the F-values (described in the POMDP state description) of the observed uncertain

edges. For example, by taking action {B,C} in Figure 3.1, the values of F4 and F5 (i.e., the

F-values of uncertain edges in the 1-hop social circle of nodes B and C) would be observed. We

have an exponential observation space, as the number of possible observations is exponential in

the number of edges that are outgoing from the nodes selected in the action.

5.4 POMDP Rewards

The reward R(s, a, s′) of taking action a in state s and reaching state s′ is the number of newly

influenced nodes in s′. More formally, R(s, a, s′) = (‖s′‖ − ‖s‖), where ‖s′‖ is the number of

influenced nodes in s′. Over a time horizon, the long term reward of the POMDP equals the total

number of nodes that are influenced in the social network (because of telescoping sum rule).

5.5 POMDP Initial Belief State

The initial belief state is a distribution β0 over all states s ∈ S. The support of β0 consists of

all states s = 〈W,F 〉 s.t. Wi = 0 ∀ i ∈ [1, |V |], i.e., all states in which all network nodes are

un-influenced (as we assume that all nodes are un-influenced to begin with). Inside its support,

each Fi is distributed independently according to P (Fi = 1) = u(e) (where u(e) is the existence

probability on edge e).
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5.6 POMDP Transition And Observation Probabilities

Computation of exact transition probabilities T (s′|s, a) requires considering all possible paths in

a graph through which influence could spread, which is O(N !) (N is number of nodes in the

network) in the worst case. Moreover, for large social networks, the size of the transition and

observation probability matrix is prohibitively large (due to exponential sizes of state and action

space). Therefore, instead of storing huge transition/observation matrices in memory, we follow

the paradigm of large-scale online POMDP solvers (Silver & Veness, 2010; Eck & Soh, 2015) by

using a generative model Λ(s, a) ∼ (s′, o, r) of the transition and observation probabilities. This

generative model allows us to generate on-the-fly samples from the exact distributions T (s′|s, a)

and Ω(o|a, s′) at very low computational costs. Given an initial state s and an action a to be taken,

our generative model Λ simulates the random process of influence spread to generate a random

new state s′, an observation o and the obtained reward r. Simulation of the random process of

influence spread is done by “playing" out propagation probabilities (i.e., flipping weighted coins

with probability p(e)) according to our influence model to generate sample s′. The observation

sample o is then determined from s′ and a. Finally, the reward sample r = (‖s′‖ − ‖s‖) (as

defined above). This simple design of the generative model allows significant scale and speed up

(as seen in previous work (Silver & Veness, 2010) and also in our experiments).

This completes the discussion of our POMDP model for the DIME problem. Unfortunately,

for real-world networks of homeless youth (which had ∼300 nodes), our POMDP model had

∼ 2450 states and
(

300
5

)
actions. Due to this huge explosion in the state and action spaces, current

state-of-the-art offline and online POMDP solvers were unable to scale up to this problem. Initial

experiments with the ZMDP solver (Smith, 2013) showed that state-of-the-art offline POMDP

planners ran out of memory on networks having a mere 10 nodes. Thus, we focused on online

planning algorithms and tried using POMCP (Silver & Veness, 2010). Unfortunately, our experi-

ments showed that even POMCP runs out of memory on networks having 30 nodes. This happens

because POMCP (Silver & Veness, 2010) keeps the entire search tree over sampled histories in

memory, disabling scale-up to the problems of interest in this paper. Hence, in the next couple of

chapters, we will discuss two novel POMDP algorithms, i.e., PSINET (Yadav et al., 2015) and

HEALER (Yadav et al., 2016a), that exploit problem structure to scale up to real-world nework

sizes.
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Chapter 6

PSINET

This chapter presents PSINET (or POMDP based Social Interventions in Networks for Enhanced

HIV Treatment), a novel Monte Carlo (MC) sampling online POMDP algorithm which ad-

dresses the shortcomings in POMCP (Silver & Veness, 2010). At a high level, PSINET (Ya-

dav et al., 2015; Yadav, Marcolino, Rice, Petering, Winetrobe, Rhoades, Tambe, & Carmichael,

2016b) makes two significant advances over POMCP. First, it introduces a novel transition prob-

ability heuristic (by leveraging ideas from social network analysis) that allows storing the en-

tire transition probability matrix in an extremely compact manner (for the real-world homeless

youth network, the size of the transition probability matrix is reduced from a matrix containing

2300×
(

450
5

)
× 2300 numbers to just 300 numbers). Second, PSINET utilizes the QMDP heuristic

(Littman et al., 1995) to enable scale-up and eliminates the search tree of POMCP.

6.1 1st Key Idea: Transition Probability Heuristic

In this section, we explain our transition probability heuristic that we use for estimating our

POMDP’s transition probability matrix. Essentially, we need to come up with a way of finding

out the final state of the network (probabilistically) prior to the beginning of the next intervention

round. Prior to achieving the final state, the network evolves in a pre-decided number of time-

steps. Each time step corresponds to a period in which friends can talk to their friends. Therefore,

a time step value of 3 implies allowing for friends at 3 hops distance to be influenced.

However, we make an important assumption that we describe next. Consider two different

chains of length four (nodes) as shown in Figure 6.1. In Chain 1, only the node at the head of
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the chain is influenced (shown in black) and the remaining three nodes are not influenced (shown

in white). The probability of the tail node of this chain getting influenced is (0.5)3 (assuming no

edge is uncertain and probability of propagation is 0.5 on all edges). In Chain 2, all nodes except

the tail node is already influenced. In this case, the tail node gets influenced with a probability

0.5 + (0.5)2 + (0.5)3. Thus, it is highly unlikely that influence will spread to the end node of the

first chain as opposed to the second chain. For this reason, we only keep chains of the form of

Chain 2 and accordingly prune our graph (explained next).

Figure 6.1: Chains in social networks

Given action α, we construct a weighted adjacency matrix for graph Gσ (created from graph

G) s.t.

Gσ(i, j) =


1 if (i, j) ∈ Ec ∧ (W [i] = 1 ∨ α[i] = 1)

u(i, j) if (i, j) ∈ Eu ∧ (W [i] = 1 ∨ α[i] = 1)

0 if otherwise.

(6.1)

Gσ is a pruned graph which contains only edges outgoing from influenced nodes. We prune

the graph because influence can only spread through edges which are outgoing from influenced

nodes. Note that Gσ does not consider influence spreading along a path consisting of more than

one uninfluenced node, as this event is highly unlikely in the limited time in between successive

interventions. However, nodes connected to a chain (of arbitrary length) of influenced nodes get

influenced more easily due to reinforced efforts of all influenced nodes in the chain. Note that

with respect to the chains in Figure 6.1, Gσ only considers chains of type 2 and prunes away

chains of type 1.
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Using these assumptions, we use Gσ to construct a diffusion vector D, the ith element of

which gives us a measure of the probability of the ith node to get influenced. This diffusion

vector D is then used to estimate T (s, α, s′).

Figure 6.2: X is any uninfluenced node. S (the big oval) denotes the set of all influenced nodes.
All these nodes have been categorized according to their path length from node X. For e.g., all
nodes having a path of length 1 (i.e., Y, D, S, K) are distinguished from all nodes having path of
length T (i.e., R, W, L, C). Note that node Y has paths of length 1 and 2 to node X.

Figure 6.2 illustrates the intuition behind our transition probability heuristic. For each un-

influenced node X in the graph, we calculate the total number of paths (like Chain 2 in Figure

6.1) of different lengths L=1, 2,...,T from influenced nodes to node X. Since influence spreads on

chains of different lengths according to different probabilities, the probabilities along all paths of

different lengths are combined together to determine an approximate probability of node X to get

influenced before the next intervention round. Since we consider all these paths independently

(instead of calculating joint probabilities), our approach produces an approximation. Next, we

formalize this intuition of the transition probability heuristic.

A known result states that ifG is a graph’s adjacency matrix, thenGr(i, j) (Gr =Gmultiplied

r times) gives the number of paths of length r between nodes i and j (Diestel, 2005). Additionally,

note that if all edges ei in a path of length r have different propagation probabilities p(ei) ∀ i ∈

[1, r], the probability of influence spreading between two nodes connected through this path of

31



length r is Πr
i=1p(ei). For simplicity, we assume the same p(e) ∀e ∈ E; hence, the probability

of influence spreading becomes pr. Using these results, we construct diffusion vector D:

D(p,T)nx1 =
∑

t∈[1,T]

( (
pGσ

)t ∗ 1nx1

)
(6.2)

Here, D(p,T) is a column vector of size nx1, p is the constant propagation probability

on the edges, T is a variable parameter that measures number of hops considered for influence

spread (higher values of T yields more accurate D(p,T) but increases the runtime), 1nx1 is a

nx1 column vector of 1’s and Gσ is the transpose of Gσ. This formulation is similar to diffusion

centrality (Banerjee, Chandrasekhar, Duflo, & Jackson, 2013) where they calculate influencing

power of nodes. However, we calculate power of nodes to get influenced (by using Gσ).

Proposition 1. Di, the ith element of D(p,T)nx1, upon normalization, gives an approximate

probability of the ith graph node to get influenced in the next round.

Consider the set 4 = {i |W ′[i] = 1 ∧ W [i] = 0 ∧ α[i] = 0}, which represents nodes

which were uninfluenced in the initial state s (W [i] = 0) and which were not selected in the

action (α[i] = 0), but got influenced by other nodes in the final state s′ (W ′[i] = 1). Similarly,

consider the set Φ = {j |W ′[j] = 0 ∧W [j] = 0 ∧ α[j] = 0}, which represents nodes which

were not influenced even in the final state s′ (W ′[j] = 0). Using Di values, we can now calcu-

late T (s, α, s′) = Πi∈4DiΠj∈Φ(1−Dj), i.e., we multiply influence probabilities Di for nodes

which are influenced in state s′, along with probabilities of not getting influenced (1 −Dj) for

nodes which are not influenced in state s′. This heuristic allows storing transition probability

matrices in a compact manner, as only a single number for each network node (specifying the

probability that the node will be influenced) needs to be maintained. Next, we discuss the QMDP

heuristic used inside PSINET and the overall flow of the algorithm.

6.2 2nd Key Idea: Leveraging the QMDP Heuristic

6.2.1 QMDP

It is a well known approximate offline planner, and it relies on Q(s, a) values, which repre-

sents the value of taking action a in state s. It precomputes these Q(s, a) values for every

(s, a) pair by approximating them by the future expected reward obtainable if the environment
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Algorithm 2: PSINET
Input: Belief state β, Uncertain graph G
Output: Best Action κ

1 Sample graph to get ∆ different instances;
2 for δ ∈ ∆ do
3 FindBestAction(δ, αδ, β);
4 end
5 κ = V oteForBestAction(∆, α)
6 UpdateBeliefState(κ, β);
7 return κ;

is fully observable (Littman et al., 1995). Finally, QMDP’s approximate policy Π is given by

Π(b) = argmaxa
∑

sQ(s, a)b(s) for belief b. Our intractable POMDP state/action spaces makes

it infeasible to calculate Q(s, a) ∀ (s, a). Thus, we propose to use a MC sampling based online

variant of QMDP in PSINET.

6.2.2 PSINET Algorithm Flow

Algorithm 2 shows the flow of PSINET. In Step 1, we randomly sample all e ∈ Eu in G

(according to u(e)) to get ∆ different graph instances. Each of these instances is a different

POMDP as the h-values of nodes are still partially observable. Since each of these instances fixes

f(e) ∀e ∈ Eu, the belief β is represented as an un-weighted particle filter where each particle is

a tuple of h-values of all nodes. This belief is shared across all instantiated POMDPs. For every

graph instance δ ∈ ∆, we find the best action αδ in graph δ, for the current belief β in step 3. In

step 5, we find the best action κ for belief β, over all δ ∈ ∆ by voting amongst all the actions

chosen by δ ∈ ∆. Then, in step 6, we update the belief state based on the chosen action κ and the

current belief β. PSINET can again be used to find the best action for this or any future updated

belief states. We now detail the steps in Algorithm 2.

Sampling Graphs In Step 1, we randomly keep or remove uncertain edges to create one

graph instance. As a single instance might not represent the real network well, we instantiate the

graph ∆ times and use each of these instances to vote for the best action to be taken.

FindBestAction Step 3 uses Algorithm 3, which finds the best action for a single network

instance, and works similarly for all instances. For each instance, we find the action which

maximizes long term rewards averaged across n (we use n = 28) MC simulations starting from

states (particles) sampled from the current belief β. Each MC simulation samples a particle from
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Algorithm 3: FindBestAction
Input: Graph instance δ, belief β, N simulations
Output: Best Action αδ

1 Initialize counter = 0;
2 while counter + + < N do
3 s = SampleStartStateFromBelief(β);
4 a = UCT_MultiArmedBandit(s);
5 {s′, r} = SimulateRolloutPolicy(s, a);
6 end
7 αδ = action with max average reward;
8 return αδ;

β and chooses an action to take (choice of action is explained later). Then, upon taking this action,

we follow a uniform random rollout policy (until either termination, i.e., all nodes get influenced,

or the horizon is breached) to find the long term reward, which we get by taking the “selected"

action. This reward from each MC simulation is analogous to a Q(s, a) estimate. Finally, we

pick the action with the maximum average reward.

Multi-Armed Bandit We can only calculate Q(s, a) for a select set of actions (due to our

intractable action space). To choose these actions, we use a UCT implementation of a multi-

armed bandit to select actions, with each bandit arm being one possible action. Every time we

sample a new state from the belief, we run UCT, which returns the action which maximizes this

quantity: Υ(s, a) = QMC(s, a) + c0

√
logN(s)
N(s,a) . Here, QMC(s, a) is the running average of

Q(s,a) values across all MC simulations run so far. N(s) is number of times state s has been

sampled from the belief. N(s, a) is number of times action a has been chosen in state s and c0 is

a constant which determines the exploration-exploitation tradeoff for UCT. High c0 values make

UCT choose rarely tried actions more frequently, and low c0 values make UCT select actions

having high QMC(s, a) to get an even better Q(s, a) estimate. Thus, in every MC simulation,

UCT strategically chooses which action to take, after which we run the rollout policy to get the

long term reward.

Voting Mechanisms In Step 5, each network instance votes for the best action (found using

Step 3) for the uncertain graph and the action with the highest votes is chosen. We propose three

different voting schemes:

• PSINET-S Each instance’s vote gets equal weight.
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• PSINET-W Every instance’s vote gets weighted differently. The instance which removes x

uncertain edges has a vote weight ofW (x) = x ∀x ≤ m/2 andW (x) = m−x ∀x > m/2.

This weighting scheme approximates the probabilities of occurrences of real world events

by giving low weights to instances which removes either too few or too many uncertain

edges, since those events are less likely to occur. Instances which remove m/2 uncertain

edges get the highest weight, since that event is most likely.

• PSINET-C Given a ranking over actions from each instance, the Copeland rule makes pair-

wise comparisons among all actions, and picks the one preferred by a majority of instances

over the highest number of other actions (Pomerol & Barba-Romero, 2000). Algorithm 3

is run D times for each instance to generate a partial ranking.

Belief State Update Recall that every MC simulation samples a particle from the belief, after

which UCT chooses an action. Upon taking this action, some random state (particle) is reached

using the transition probability heuristic. This particle is stored, indexed by the action taken to

reach it. Finally, when all simulations are done, corresponding to every action α that was tried

during the simulations, there will be a set of particles that were encountered when we took action

α in that belief. The particle set corresponding to the action that we finally choose, forms our

next belief state.

6.3 Experimental Evaluation

We provide two sets of results. First, we show results on artificial networks to understand our

algorithms’ properties on abstract settings, and to gain insights on a range of networks. Next,

we show results on the two real world homeless youth networks that we had access to. In all

experiments, we select 2 nodes per round and average over 20 runs, unless otherwise stated.

PSINET-(S and W) use 20 network instances and PSINET-C uses 5 network instances (each

instance finds its best action 5 times) in all experiments, unless otherwise stated. The propagation

and existence probability values were set to 0.5 in all experiments (based on findings by (Kelly

et al., 1997)), although we relax this assumption later in the section. In this section, a 〈X,Y, Z〉

network refers to a network with X nodes, Y certain and Z uncertain edges. We use a metric of

“indirect influence spread" (IIS) throughout this section, which is number of nodes “indirectly"
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influenced by intervention participants. For example, on a 30 node network, by selecting 2 nodes

each for 10 interventions (horizon), 20 nodes (a lower bound for any strategy) are influenced with

certainty. However, the total number of influenced nodes might be 26 (say) and thus, the IIS is 6.

All comparison results are statistically significant under bootstrap-t (α = 0.05).

0	
  
5	
  
10	
  
15	
  
20	
  
25	
  

10	
   30	
   50	
   70	
   90	
  

In
flu

en
ce
	
  S
pr
ea
d	
  

Number	
  of	
  Network	
  Nodes	
  

DC	
   PSINET-­‐S	
  
PSINET-­‐W	
   PSINET-­‐C	
  
POMCP	
  

(a) Solution Quality

-­‐15	
  
-­‐10	
  
-­‐5	
  
0	
  
5	
  
10	
  
15	
  
20	
  

10	
   30	
   50	
   70	
   90	
  

Lo
g	
  
ru
n(

m
e	
  
(s
ec
s)
	
  

Number	
  of	
  Network	
  Nodes	
  

DC	
   POMCP	
  
PSINET-­‐S	
   PSINET-­‐W	
  
PSINET-­‐C	
  

(b) Runtime

Figure 6.3: Comparison on BTER graphs

Artificial networks First, we compare all algorithms on Block Two-Level Erdos-Renyi

(BTER) networks (having degree distribution Xd ∝ d−1.2, where Xd is number of nodes of

degree d) of several sizes, as they accurately capture observable properties of real-world social

networks (Seshadhri, Kolda, & Pinar, 2012). Figures 6.3a and 6.3b show solution quality and run-

times (respectively) of Degree Centrality (DC) (which selects nodes based on their out-degrees,

and e ∈ Eu add u(e) to node degrees), POMCP and PSINET-(S,W and C). We choose DC as our

baseline as it is the current modus operandi of agencies working with homeless youth. X-axis is

number of network nodes and Y-axis shows IIS across varying horizons (number of interventions)

in Figure 6.3a and log of runtime (in seconds) (Figure 6.3b).

Figure 6.3a shows that all POMDP based algorithms beat DC by ∼60%, which shows the

value of our POMDP model. Further, it shows that PSINET-W beats PSINET-(S and C). Also,

POMCP runs out of memory on 30 node graphs. Figure 6.3b shows that DC runs quickest (as

expected) and all PSINET variants run in almost the same time. Thus, Figures 6.3a and 6.3b

tell us that while DC runs quickest, it provides the worst solutions. Amongst the POMDP based

algorithms, PSINET-W is the best algorithm that can provide good solutions and can scale up

as well. Surprisingly, PSINET-C performs worse than PSINET-(W and S) in terms of solution

quality. Thus, we now focus on PSINET-W.
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Figure 6.4: Increasing number of graph instances

Having shown the impact of POMDPs, we analyze the impact of increasing network instances

(which implies increasing number of votes in our algorithm) on PSINET-W. Figures 6.4a and 6.4b

show solution quality and runtime respectively of PSINET-W with increasing network instances,

for a 〈40, 71, 41〉 BTER network with a horizon of 10. X-axis is number of network instances

and Y-axis shows IIS (Figure 6.4a) and runtime (in seconds) (Figure 6.4b). These figures show

that increasing the number of instances increases IIS as well as runtime. Thus, a solution quality-

runtime tradeoff exists, which depends on the number of network instances. Greater number of

instances results in better solutions and slower runtimes and vice versa. However, for 30 vs 70

instances, the gain in solution quality is <5% whereas the runtime is ∼2X, which shows that

increasing instances beyond 30 yields marginal returns.
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Figure 6.5: Comparison of DC with PSINET-W

Next, we relax our assumptions about propagation (p(e)) probabilities, which were set to 0.5

so far. Figure 6.5a shows the solution quality, when PSINET-W and DC are solved with different

p(e) values respectively, for a 〈40, 71, 41〉 BTER network with a horizon of 10. X-axis shows

p(e) and Y-axis shows IIS. This figure shows that varying p(e) minimally impacts PSINET-W’s
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improvement over DC, which shows our algorithms’ robustness to these probability values (We

get similar results upon changing u(e)). In Figure 6.5b, we show solution qualities of PSINET-

W and DC on a 〈30, 31, 27〉 BTER network (horizon=3) and vary number of nodes selected per

round (K). X-axis shows increasing K, and Y-axis shows IIS. This figure shows that even for a

small horizon of length 3, which does not give many chances for influence to spread, PSINET-W

significantly beats DC with increasing K.

Figure 6.6: A friendship based social network of homeless people visiting My Friend’s Place
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Figure 6.7: Real world networks

Real World Networks Figure 6.6 shows one of the two real-world friendship based social

networks of homeless youth (created by our collaborators through surveys and interviews of

homeless youth attending My Friend’s Place), where each numbered node represents a homeless
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youth. Figure 6.7a compares PSINET variants and DC (horizon = 30) on these two real-world

social networks (each of size around 〈155, 120, 190〉). The x-axis shows the two networks and

the y-axis shows IIS. This figure clearly shows that all PSINET variants beat DC on both real

world networks by around 60%, which shows that PSINET works equally well on real-world

networks. Also, PSINET-W beats PSINET-S, in accordance with previous results. Above all, this

signifies that we could improve the quality and efficiency of HIV based interventions over the

current modus operandi of agencies by around 60%.

We now differentiate between the kinds of nodes selected by DC and PSINET-W for the

sample BTER network in Figure 6.7b, which contains nodes segregated into four clusters (C1

to C4), and node degrees in a cluster are almost equal. C1 is biggest, with slightly higher node

degrees than other clusters, followed by C2, C3 and C4. DC would first select all nodes in cluster

C1, then all nodes in C2 and so on. Selecting all nodes in a cluster is not “smart", since selecting

just a few cluster nodes influences all other nodes. PSINET-W realizes this by looking ahead and

spreads more influence by picking nodes in different clusters each time. For example, assuming

k=2, PSINET-W picks one node in both C1 and C2, then one node in both C1 and C4, etc.

6.4 Implementation Challenges

Looking towards the future of testing the deployment of this procedure in agencies, there are a few

implementation challenges that will need to be faced. First, collecting accurate social network

data on homeless youth is a technical and financial burden beyond the capacity of most agencies

working with these youth. Members of this team had a large three year grant from the National

Institute of Mental Health to conduct such work in only two agencies. Our solution, moving

forward (with other agencies) would be to use staff at agencies to delineate a first approximation

of their homeless youth social network, based on their ongoing relationships with the youth.

The POMDP procedure would subsequently be able to correct the network graph iteratively (by

resolving uncertain edges via POMDP observations in each step). This is feasible because, as

mentioned, homeless youth are more willing to discuss their social ties in an intervention (Rice,

Tulbert, Cederbaum, Adhikari, & Milburn, 2012). We see this as one of the major strengths of

this approach.
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Second, our prior research on homeless youth (Rice & Rhoades, 2013) suggests that some

structurally important youth may be highly anti-social and hence a poor choice for change agents

in an intervention. We suggest that if such a youth is selected by the POMDP program, we then

choose the next best action (subset of nodes) which does not include that “anti-social" youth.

Thus, the solution may require some ongoing management as certain individuals either refuse to

participate as peer leaders or based on their anti-social behaviors are determined by staff to be

inappropriate.

Third, because of the history of neglect and abuse suffered by most of these youth, many are

highly suspicious of adults. Including a computer-based selection procedure into the recruitment

of peer leaders may raise suspicions about invasion of privacy for these youth. We suggest an

ongoing public awareness campaign in the agencies working with this program to help overcome

such fears and to encourage participation. Along with this issue, there is a secondary issue about

protection of privacy for the individuals involved. Agencies collect information on their youth,

but most of this information is not to be shared with researchers. We suggest working with agen-

cies to create procedures which allow them to implement the POMDP program without having to

provide identifying information to our team.

6.5 Conclusion

This paper presents PSINET, a POMDP based decision support system to select homeless youth

for HIV based interventions. Previous work in strategic selection of intervention participants does

not handle uncertainties in the social network’s structure and evolving network state, potentially

causing significant shortcomings in spread of information. PSINET has the following key novel-

ties: (i) it handles uncertainties in network structure and evolving network state; (ii) it addresses

these uncertainties by using POMDPs in influence maximization; and (iii) it provides algorith-

mic advances to allow high quality approximate solutions for such POMDPs. Simulations show

that PSINET achieves around 60% improvement over the current state-of-the-art. PSINET was

developed in collaboration with My Friend’s Place and has been reviewed by their officials.
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Unfortunately, even though PSINET was able to scale up to real-world sized networks, it

completely failed at scaling up in the number of nodes that get picked in every round (interven-

tion). Thus, while PSINET was successful in scaling up to the required POMDP state space, it

failed to deal with the explosion in action space that occurred with scale up in the number of

nodes picked per round. To address this challenge, we designed HEALER, which we present

next.
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Chapter 7

HEALER

This chapter presents HEALER (or Hierarchical Ensembling based Agent which pLans for

Effective Reduction in HIV Spread), an online POMDP algorithm which has a better scale-up

performance than PSINET (Yadav et al., 2015). Internally, HEALER (Yadav et al., 2016a; Ya-

dav, Chan, Jiang, Xu, Rice, & Tambe, 2017) is comprised of two different algorithms: HEAL and

TASP. We now discuss these algorithms in detail.

7.1 HEAL

HEAL solves the original POMDP using a novel hierarchical ensembling heuristic: it creates

ensembles of imperfect (and smaller) POMDPs at two different layers, in a hierarchical manner

(see Figure 7.1). HEAL’s top layer creates an ensemble of smaller sized intermediate POMDPs

by subdividing the original uncertain network into several smaller sized partitioned networks

by using graph partitioning techniques (LaSalle & Karypis, 2013). Each of these partitioned

networks is then mapped onto a POMDP, and these intermediate POMDPs form our top layer

ensemble of POMDP solvers.

In the bottom layer, each intermediate POMDP is solved using TASP (Tree Aggregation

for Sequential Planning), our novel POMDP planner, which subdivides the POMDP into another

ensemble of smaller sized sampled POMDPs. Each member of this bottom layer ensemble is cre-

ated by randomly sampling uncertain edges of the partitioned network to get a sampled network

having no uncertain edges, and this sampled network is then mapped onto a sampled POMDP.
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Figure 7.1: Hierarchical decomposition in HEAL

Finally, the solutions of POMDPs in both the bottom and top layer ensembles are aggregated

using novel techniques to get the solution for HEAL’s original POMDP.

HEAL uses several novel heuristics. First, it uses a novel two-layered hierarchical ensem-

bling heuristic. Second, it uses graph partitioning techniques to partition the uncertain network,

which generates partitions that minimize the edges going across partitions (while ensuring that

partitions have similar sizes). Since these partitions are “almost" disconnected, we solve each

partition separately. Third, it solves the intermediate POMDP for each partition by creating

smaller-sized sampled POMDPs (via sampling uncertain edges), each of which is solved using

a novel tree search algorithm, which avoids the exponential branching factor seen in PSINET

(Yadav et al., 2015). Fourth, it uses novel aggregation techniques to combine solutions to these

smaller POMDPs rather than simple plurality voting techniques seen in previous ensemble tech-

niques (Yadav et al., 2015).

These heuristics enable scale up to real-world sizes (at the expense of sacrificing perfor-

mance guarantees), as instead of solving one huge problem, we now solve several smaller prob-

lems. However, these heuristics perform very well in practice. Our simulations show that even

on smaller settings, HEAL achieves a 100X speed up over PSINET, while providing a 70% im-

provement in solution quality; and on larger problems, where PSINET is unable to run at all,
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HEAL continues to provide high solution quality. Now, we elaborate on these heuristics by first

explaining the TASP solver.

Algorithm 4: TASP Solver
Input: Uncertain network G, Parameters K, T , L
Output: Best K node action κ

1 Create ensemble of ∆ different POMDPs;
2 for δ ∈ ∆ do
3 αδ = Evaluate(δ);
4 end
5 r = Expectation(α);
6 κ = argmaxj rj ;
7 return κ;

7.2 Bottom layer: TASP

We now explain TASP, our new POMDP solver that solves each intermediate POMDP in HEAL’s

bottom layer. Given an intermediate POMDP and the uncertain network it is defined on, as input,

TASP goes through four steps (see Algorithm 4).

First, Step 1 makes our intermediate POMDP more tractable by creating an ensemble of

smaller sized sampled POMDPs. Each member of this ensemble is created by sampling uncertain

edges of the input network to get an instantiated network. Each uncertain edge in the input

network is randomly kept with probability u(e), or removed with probability 1 − u(e), to get

an instantiated network with no uncertain edges. We repeat this sampling process to get ∆ (a

variable parameter) different instantiated networks. These ∆ different instantiated networks are

then mapped onto to ∆ different POMDPs, which form our ensemble of sampled POMDPs. Each

sampled POMDP shares the same action space (defined on the input partitioned network) as the

different POMDPs only differ in the sampling of uncertain edges. Note that each member of our

ensemble is a POMDP as even though sampling uncertain edges removes uncertainty in the F

portion of POMDP states, there is still partial observability in the W portion of POMDP state.

In Step 3 (called the Evaluate Step), for each instantiated network δ ∈ [1,∆], we generate an

αδ list of rewards. The ith element of αδ gives the long term reward achieved by taking the ith

action in instantiated network δ. In Step 5, we find the expected reward ri of taking the ith action,
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Algorithm 5: Evaluate Step
Input: Instantiated network δ, Number of simulations NSim
Output: Ranked Ordering of actions αδ

1 tree = Initialize_K_Level_Tree();
2 counter = 0;
3 while counter + + < NSim do
4 K_Node_Act = FindStep(tree);
5 LT_Reward = SimulateStep(K_Node_Act);
6 UpdateStep(tree, LT_Reward,K_Node_Act);
7 end
8 αδ = Get_All_Leaf_V alues(tree);
9 return αδ;

by taking a reward expectation across the αδ lists (for each δ ∈ [1,∆]) generated in the previous

step. For e.g., if αδ11 = 10 and αδ21 = 20, i.e., the rewards of taking the 1st action in instantiated

networks δ1 and δ2 (which occurs with probabilities P (δ1) and P (δ2)) are 10 and 20 respectively,

then the expected reward r1 = P (δ1)× 10 + P (δ2)× 20. Note that P (δ1) and P (δ2) are found

by multiplying existence probabilities u(e) (or 1 − u(e)) for uncertain edges that were kept (or

removed) in δ1 and δ2. Finally, in Step 6, the action κ = argmaxj rj is returned by TASP. Next,

we discuss the Evaluate Step in detail (Step 3).

7.2.1 Evaluate Step

Algorithm 5 generates the αδ list for a single instantiated network δ ∈ [1,∆]. This algorithm

works similarly for all instantiated networks. For each instantiated network, the Evaluate Step

uses NSim (we use 210) number of MC simulations to evaluate the long term reward achieved

by taking actions in that network. Due to the combinatorial action space, the Evaluate Step uses a

UCT (Kocsis & Szepesvári, 2006) driven approach to strategically choose the actions whose long

term rewards should be calculated. UCT has been used to solve POMDPs in (Silver & Veness,

2010; Yadav et al., 2015), but these algorithms suffer from a
(
N
K

)
branching factor (where K is

number of nodes picked per round, N is number of network nodes). We exploit the structure of

our domain by creating a K-level UCT tree which has a branching factor of just N (explained

below). This K-level tree allows storing reward values for smaller sized node subsets as well

(instead of just K sized subsets), which helps in guiding the UCT search better.
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Algorithm 5 takes an instantiated network and creates the aforementioned K-level tree for

that network. The first level of the tree has N branches (one for each network node). For each

branch i in the first level, there are N − 1 branches in the second tree level (one for each network

node, except for node i, which was covered in the first level). Similarly, for every branch j in the

mth level (m ∈ [2,K − 1]), there are N −m branches in the (m+ 1)th level. Theoretically, this

tree grows exponentially with K, however, the values of K are usually small in practice (e.g., 4).

In this K level tree, each leaf node represents a particular POMDP action of K network

nodes. Similarly, every non-leaf tree node v represents a subset Sv of network nodes. Each tree

node v maintains a value Rv, which represents the average long term reward achieved by taking

our POMDP’s actions (of size K) which contain Sv as a subset. For example, in Figure 3.1, if

K = 5, and for tree node v, Sv = {A,B,C,D}, thenRv represents the average long term reward

achieved by taking POMDP actions A1 = {A,B,C,D,E} and A2 = {A,B,C,D, F}, since

both A1 and A2 contain Sv = {A,B,C,D} as a subset. To begin with, all nodes v in the tree

are initialized with Rv = 0 (Step 1). By running NSim number of MC simulations, we generate

good estimates of Rv values for each tree node v.

Each node in this K-level tree runs a UCB1 (Kocsis & Szepesvári, 2006) implementation of

a multi-armed bandit. The arms of the multi-armed bandit running at tree node v correspond to

the child branches of node v in the K-level tree. Recall that each child branch corresponds to a

network node. The overall goal of all the multi-armed bandits running in the tree is to construct

a POMDP action of size K (by traversing a path from the root to a leaf), whose reward is then

calculated in that MC simulation. Every MC simulation consists of three steps: Find Step (Step

4), Simulate Step (Step 5) and Update Step (Step 6).

7.2.2 Find Step

The Find Step takes a K-level tree for an instantiated network and finds a K node action, which

is used in the Simulate Step. Algorithm 6 details the process of finding this K node action, which

is found by traversing a path from the root node to a leaf node, one edge/arm at a time. Initially,

we begin at the root node with an empty action set of size 0 (Steps 1 and 2). For each node that

we visit on our way from the root to a leaf, we use its multi-armed bandit (denoted by MABnode
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Algorithm 6: FindStep
Input: K level deep tree - tree
Output: Action set of size K nodes - Act

1 Act = Φ;
2 tree_node = tree.Root;
3 while is_Leaf(tree_node) == false do
4 MABnode = Get_UCB_at_Node(node);
5 next_node = Ask_UCB(MABnode);
6 Act = Act ∪ next_node;
7 tree_node = tree_node.branch(next_node);
8 end
9 return Act;

in Step 4) to choose which tree node do we visit next (or, which network node do we add to our

action set). We get a K node action upon reaching a leaf.

7.2.3 Simulate Step

The Simulate Step takes a K node action from the Find Step, to evaluate the long term reward

of taking that action (called Act) in the instantiated network. Assuming that T0 interventions

remain (i.e., we have already conducted T −T0 interventions), the Simulate Step first uses action

Act in the generative model Λ to generate a reward r0. For all remaining (T0 − 1) interventions,

Simulate Step uses a rollout policy to randomly select K node actions, which are then used in the

generative model Λ to generate future rewards ri ∀ i ∈ [1, T0 − 1] . Finally, the long term reward

returned by Simulate Step is r0 + r1 + ...+ rT0−1.

7.2.4 Update Step

The Update Step uses the long term reward returned by Simulate Step to update relevant Rv

values in the K-level tree. It updates the Rv values of all nodes v that were traversed in order

to find the K node action in the Find Step. First, we get the tree’s leaf node corresponding to

the K node action that was returned by the Find Step. Then, we go and update Rv values for all

ancestors (including the root) of that leaf node.

After running the Find, Simulate and Evaluate for NSim simulations, we return the Rv

values of all leaf nodes as the αδ list. Recall that we then find the expected reward ri of taking
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the ith action, by taking an expectation of rewards across the αδ lists. Finally, TASP returns the

action κ = argmaxj rj .

7.3 Top layer: Using Graph Partitioning

We now explain HEAL’s top layer, in which we use METIS (LaSalle & Karypis, 2013), a state-

of-the-art graph partitioning technique, to subdivide our original uncertain network into different

partitioned networks. These partitioned networks form the ensemble of intermediate POMDPs

(in Figure 7.1) in HEAL. Then, TASP is invoked on each intermediate POMDP independently,

and their solutions are aggregated to get the final DIME solution. We try two different partition-

ing/aggregation techniques, which leads to two variants of HEAL:

K Partition Variant (HEAL): Given the uncertain network G and the parameters K, L

and T as input, we first partition the uncertain network into K partitions. In each round from 1

to T , we invoke the bottom layer TASP algorithm to select 1 node from each of the K clusters.

These singly selected nodes from the K clusters give us an action of K nodes, which is given

to shelter officials to execute. Based on the observation (about uncertain edges) that officials get

while executing the action, we update the partition networks (which are input to the intermediate

POMDPs) by either replacing the observed uncertain edges with certain edges (if the edge was

observed to exist in reality) or removing the uncertain edge altogether (if the edge was observed

to not exist in reality). The list of K node actions that Algorithm 4 generates serves as an online

policy for use by the homeless shelter.

T Partition Variant (HEAL-T): Given the uncertain network G and the parameters K, L

and T as input, we first partition the uncertain network into T partitions and TASP picksK nodes

from the ith partition (i ∈ [1, T ]) in the ith round.

7.4 Experimental Results

In this section, we analyze HEAL and HEAL-T’s performance in a variety of settings. All our

experiments are run on a 2.33 GHz 12-core Intel machine having 48 GB of RAM. All experiments

are averaged over 100 runs. We use a metric of “Indirect Influence" throughout this section,

which is number of nodes “indirectly" influenced by intervention participants. For example, on
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a 30 node network, by selecting 2 nodes each for 10 interventions (horizon), 20 nodes (a lower

bound for any strategy) are influenced with certainty. However, the total number of influenced

nodes might be 26 (say) and thus, the Indirect Influence is 26 − 20 = 6. In all experiments, the

propagation and existence probability values on all network edges were uniformly set to 0.1 and

0.6, respectively. This was done based on findings in Kelly et. al.(Kelly et al., 1997). However,

we relax these parameter settings later in the section. All experiments are statistically significant

under bootstrap-t (α = 0.05).

Baselines: We use two algorithms as baselines. We use PSINET-W as a benchmark as it

is the most relevant previous algorithm, which was shown to outperform heuristics used in prac-

tice; however, we also need a point of comparison when PSINET-W does not scale. No previous

algorithm in the influence maximization literature accounts for uncertain edges and uncertain net-

work state in solving the problem of sequential selection of nodes; in-fact we show that even the

standard Greedy algorithm (Kempe et al., 2003; Golovin & Krause, 2011) has no approximation

guarantees as our problem is not adaptive submodular. Thus, we modify Greedy by replacing

our uncertain network with a certain network (in which each uncertain edge e is replaced with a

certain edge e0 having propagation probability p(e0) = p(e) × u(e)), and then run the Greedy

algorithm on this certain network. We use the Greedy algorithm as a baseline as it is the best

known algorithm known for influence maximization and has been analyzed in many previous

papers (Cohen et al., 2014; Borgs et al., 2014; Tang et al., 2014; Kempe et al., 2003; Leskovec

et al., 2007; Golovin & Krause, 2011).

Datasets: We use four real world social networks of homeless youth, provided to us by our

collaborators. All four networks are friendship based social networks of homeless youth living

in Los Angeles. The first and second networks are of homeless youth living in Venice Beach

(VE) and Hollywood (HD), two large areas in Los Angeles, respectively. These two networks

(each having ∼150-170 nodes, 400-450 edges) were created through surveys and interviews of

homeless youth (conducted by our collaborators) living in these areas. The third and fourth

networks are relatively small-sized online social networks of these youth created from their Face-

book (34 nodes, 120 edges) and MySpace (107 nodes, 803 edges) contact lists, respectively.

When HEALER is deployed, we anticipate even larger networks, (e.g., 250-300 nodes) than the

ones we have in hand and we also show run-time results on artificial networks of these sizes.

49



(a) Solution Quality (b) Runtime

Figure 7.2: Solution Quality and Runtime on Real World Networks

Solution Quality/Runtime Comparison. We compare Indirect Influence and run-times of

HEAL, HEAL-T and PSINET-W on all four real-world networks. We set T = 5 and K = 2

(since PSINET-W fails to scale up beyond K = 2 as shown later). Figure 7.2a shows the Indirect

Influence of the different algorithms on the four networks. The X-axis shows the four networks

and the Y-axis shows the Indirect Influence achieved by the different algorithms. This figure

shows that (i) HEAL outperforms all other algorithms on every network; (ii) it achieves ∼70%

improvement over PSINET-W in VE and HD networks; (iii) it achieves ∼25% improvement over

HEAL-T. The difference between HEAL and other algorithms is not significant in the Facebook

(FB) and MySpace (MYS) networks, as HEAL is already influencing almost all nodes in these

two relatively small networks. Thus, in experiments to come, we focus more on the VE and HD

networks.

Figure 7.2b shows the run-time of all algorithms on the four networks. The X-axis shows the

four networks and the Y-axis (in log scale) shows the run-time (in seconds). This figure shows

that (i) HEAL achieves a 100X speed-up over PSINET-W; (ii) PSINET-W’s run-time increases ex-

ponentially with increasing network sizes; (iii) HEAL runs 3X slower than HEAL-T but achieves

25% more Indirect Influence. Hence, HEAL is our algorithm of choice.

Next, we check if PSINET-W’s run-times become worse on larger networks. Because of lack

of larger real-world datasets, we create relatively large artificial Watts-Strogatz networks (model

parameters p = 0.1, k = 7). Figure 7.6b shows the run-time of all algorithms on Watts-Strogatz

networks. The X-axis shows the size of networks and the Y-axis (in log scale) shows the run-time

(in seconds). This figure shows that PSINET-W fails to scale beyond 180 nodes, whereas HEAL
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runs within 5 minutes. Thus, PSINET-W fails to scale-up to network sizes that are of importance

to us.

(a) VE Network (b) HD Network

Figure 7.3: Scale up in number of nodes picked per round

Scale Up Results. Not only does PSINET-W fail in scaling up to larger network sizes, it

even fails to scale-up with increasing number of nodes picked per round (or K), on our real-

world networks. Figures 7.3a and 7.3b show the Indirect Influence achieved by HEAL, HEAL-T,

Greedy and PSINET-W on the VE and HD networks respectively (T = 5), as we scale up K

values. The X-axis shows increasing K values, and the Y-axis shows the Indirect Influence.

These figures show that (i) PSINET-W and HEAL-T fail to scale up – they cannot handle more

than K = 2 and K = 3 respectively (thereby not fulfilling real world demands); (ii) HEAL

outperforms all other algorithms, and the difference between HEAL and Greedy increases linearly

with increasing K values. Also, in the case of K = 6, HEAL runs in less than 40.12 seconds on

the HD network and 34.4 seconds on the VE network.

Thus, Figures 7.2a, 7.2b, 7.3a and 7.3b show that PSINET-W (the best performing algorithm

from previous work) fails to scale up with increasing network nodes, and with increasing K

values. Even for K = 2 and moderate sized networks, it runs very slowly. Moreover, HEAL is

the best performing algorithm that runs quickly, provides high-quality solutions, and can scale-up

to real-world demands. Since only HEAL and Greedy scale up to K = 6, we now analyze their

performance in detail.

Scaling up Horizon. Figure 7.4a shows HEAL and Greedy’s Indirect Influence in the HD

network, with varying horizons (see appendix for VE network results). The X-axis shows in-

creasing horizon values and the Y-axis shows the Indirect Influence (K = 2). This figure shows
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(a) Solution Quality (b) Maximum Relative Gain

Figure 7.4: Horizon Scale up & Maximum Gain on HD Network

p(e)
u(e)

0.1 0.2 0.3

0.7 45.62 44.37 30.85

0.6 48.95 24.56 30

0.5 29.5 55.18 28.21

Figure 7.5: Percentage Increase in HEALER Solution over Greedy

that the relative difference between HEAL and Greedy increases significantly with increasing T

values.

Next, we scale up K values with increased horizon settings to find the maximum attainable

solution quality difference between HEAL and Greedy. Figure 7.4b shows the Indirect Influence

achieved by HEAL and Greedy (with K = 4 and T = 10) on the VE and HD networks. The

X-axis shows the two networks and the Y-axis shows the Indirect Influence. This figure shows

that with these settings, HEAL achieves ∼110% more Indirect Influence than Greedy (i.e., more

than a 2-fold improvement) in the two real-world networks.

HEAL vs Greedy. Figure 7.5 shows the percentage increase (in Indirect Influence) achieved

by HEAL over Greedy with varying u(e)/p(e) values. The columns and rows of Figure 7.5 show

varying u(e) and p(e) values respectively. The values inside the table cells show the percentage

increase (in Indirect Influence) achieved by HEAL over Greedy when both algorithms plan us-

ing the same u(e)/p(e) values. For example, with p(e) = 0.7 and u(e) = 0.1, HEAL achieves

45.62% more Indirect Influence than Greedy. This figure shows that HEAL continues to outper-

form Greedy across varying u(e)/p(e) values. Thus, on a variety of settings, HEAL dominates

Greedy in terms of both Indirect Influence and run-time.
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(a) Deviation Tolerance (b) Artificial Networks

Figure 7.6: Deviation Tolerance & Results on Artificially Generated Networks

p(e)
u(e)

0.1 0.2 0.3

0.7 24.42 21.02 16.85

0.6 0.0 18.26 12.46

0.5 11.58 10.53 8.11

Figure 7.7: Percentage Loss in HEAL Solution on HD Network

Deviation Tolerance. We show HEAL’s tolerance to deviation by replacing a fixed num-

ber of actions recommended by HEAL with randomly selected actions. Figure 7.6a shows the

variation in Indirect Influence achieved by HEAL (K = 4,T = 10) with increasing number of

random deviations from the recommended actions. The X-axis shows increasing number of de-

viations and the Y-axis shows the Indirect Influence. For example, when there were 2 random

deviations (i.e., two recommended actions were replaced with random actions), HEAL achieves

100.23 Indirect Influence. This figure shows that HEAL is highly deviation-tolerant.

Sensitivity Analysis. Finally, we test the robustness of HEAL’s solutions in the HD network,

by allowing for error in HEAL’s understanding of u(e)/p(e) values. We consider the case that

u(e) = 0.1 and p(e) = 0.6 values that HEAL plans on, are wrong. Thus, HEAL plans its

solutions using u(e) = 0.1 and p(e) = 0.6, but those solutions are evaluated on different (correct)

u(e)/p(e) values to get estimated solutions. These estimated solutions are compared to true

solutions achieved by HEAL if it planned on the correct u(e)/p(e) values. Figure 7.7 shows

the percentage difference (in Indirect Influence) between the true and estimated solutions, with

varying u(e) and p(e) values. For example, when HEAL plans its solutions with wrong u(e) =

0.1/p(e) = 0.6 values (instead of correct u(e) = 0.3/p(e) = 0.5 values), it suffers a 8.11%
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loss. This figure shows that HEAL is relatively robust to errors in its understanding of u(e)/p(e)

values, as it only suffers an average-case loss of ∼ 15%.

7.5 Conclusion

This chapter presents HEALER, a software agent that recommends sequential intervention plans

for use by homeless shelters, who organize these interventions to raise awareness about HIV

among homeless youth. HEALER’s sequential plans (built using knowledge of social networks

of homeless youth) choose intervention participants strategically to maximize influence spread,

while reasoning about uncertainties in the network. While previous work presents influence max-

imizing techniques to choose intervention participants, they do not address three real-world is-

sues: (i) they completely fail to scale up to real-world sizes; (ii) they do not handle deviations

in execution of intervention plans; (iii) constructing real-world social networks is an expensive

process. HEALER handles these issues via four major contributions: (i) HEALER casts this in-

fluence maximization problem as a POMDP and solves it using a novel planner which scales up to

previously unsolvable real-world sizes; (ii) HEALER allows shelter officials to modify its recom-

mendations, and updates its future plans in a deviation-tolerant manner; (iii) HEALER constructs

social networks of homeless youth at low cost, using a Facebook application.
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Chapter 8

Real World Deployment of Influence Maximization Algorithms

This chapter focuses on a topic that is insufficiently addressed in the literature, i.e., challenges

faced in transitioning agents from an emerging phase in the lab, to a deployed application in

the field. Specifically, we focus on challenges faced in transitioning HEALER and DOSIM

(Wilder, Yadav, Immorlica, Rice, & Tambe, 2017), two agents for social influence maximiza-

tion, which assist service providers in maximizing HIV awareness in real-world homeless-youth

social networks. While prior chapters have shown that these agents/algorithms have promising

performance in simulation, this chapter illustrates that transitioning these algorithms from the

lab into the real-world is not straightforward, and outlines three major lessons. First, it is im-

portant to conduct real-world pilot tests; indeed, due to the health-critical nature of the domain

and complex influence spread models used by these algorithms, it is important to conduct field

tests to ensure the real-world usability and effectiveness of these algorithms. We present results

from three real-world pilot studies, involving 173 homeless youth in Los Angeles. These are

the first such pilot studies which provide head-to-head comparison of different algorithms for

social influence maximization, including a comparison with a baseline approach. Second, we

present analyses of these real-world results, illustrating the strengths and weaknesses of differ-

ent influence maximization approaches we compare. Third, we present research and deployment

challenges revealed in conducting these pilot tests, and propose solutions to address them.
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8.1 Pilot Study Pipeline

Starting in Spring 2016, we conducted three different pilot studies (Yadav, Wilder, Rice, Peter-

ing, Craddock, Yoshioka-Maxwell, Hemler, Onasch-Vera, Tambe, & Woo, 2017b; Yadav et al.,

2017c) at two service providers (see Figures 8.1a and 8.1b) in Los Angeles, over a seven month

period. Each pilot study recruited a unique network of youth. Recall that these pilot studies serve

three purposes. First, they help in justifying our assumptions about whether peer leaders actually

spread HIV information in their social network, and whether they provide meaningful information

about the social network structure (i.e., observations) during the intervention training. Second,

these pilots help in exposing unforeseen challenges, which need to be solved convincingly before

these agents can be deployed in the field. Third, they provide a head-to-head comparison of two

different software agent approaches for social influence maximization, including a comparison

with a baseline approach.

(a) Safe Place for Youth (b) Emergency Resource Shelf

(c) Desks for Intervention Training (d) Computer Kiosks at Homeless Shelter

Figure 8.1: Facilities at our Collaborating Service Providers

Each of these pilot studies had a different intervention mechanism, i.e., a different way of

selecting actions (or a set of K peer leaders). The first and second studies used HEALER and
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Figure 8.2: Real World Pilot Study Pipeline

DOSIM (respectively) to select actions, whereas the third study served as the control group,

where actions were selected using Degree Centrality (i.e., pickingK nodes in order of decreasing

degrees). We chose Degree Centrality (DC) as the control group mechanism, because this is the

current modus operandi of service providers in conducting these network based interventions

(Valente, 2012).

8.1.1 Pilot Study Process

The pilot study process consists of five sequential steps. Figure 8.2 illustrates these five steps.

1. Recruitment: First, we recruit homeless youth from a service provider into our study. We

provide youth with general information about our study, and our expectations from them

(i.e., if selected as a peer leader, they will be expected to spread information among their

peers). The youth take a 20 minute baseline survey, which enables us to determine their

current risk-taking behaviors (e.g., they are asked about the last time they got an HIV test,

etc.). Every youth is given a 20 USD gift card as compensation for being a part of the pilot

study. All study procedures were approved by our Institutional Review Board.

2. Network Generation: After recruitment, the friendship based social network that connects

these homeless youth is generated. We rely on two information sources to generate this
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network: (i) online contacts of homeless youth; and (ii) field observations made by the

authors and service providers. To expedite the network generation phase, online contacts

of homeless youth are used (via a software application that the youth are asked to use) to

build a first approximation of the real-world social network of homeless youth. Then, this

network is refined using field observations (about additional real-world friendships) made

by the authors and the service providers. All edges inferred in this manner are assumed to

be certain edges. More information on uncertain edges is provided later.

3. Interventions: Next, the generated network is used by the software agents to select actions

(i.e., K peer leaders) for T stages. In each stage, an action is selected using the pilot’s

intervention strategy. The K peer leaders of this chosen action are then trained as peer

leaders (i.e., informed about HIV) by pilot study staff during the intervention. These peer

leaders also reveal more information (i.e., provide observation) about newer friendships

which we did not know about. These friendships are incorporated into the network, so that

the agents can select better actions in the next stage of interventions. Every peer leader is

given a 60 USD gift card.

4. Follow Up: The follow up phase consists of meetings, where the peer leaders are asked

about any difficulties they faced in talking to their friends about HIV. They are given fur-

ther encouragement to keep spreading HIV awareness among their peers. These follow-up

meeting occur on a weekly basis, for a period of one month after Step 3 ends.

5. Analysis: For analysis, we conduct in-person surveys, one month after all interventions

have ended. Every youth in our study is given a 25 USD gift card to show up for these

surveys. During the surveys, they are asked if some youth from within the pilot study

talked to them about HIV prevention methods, after the pilot study began. Their answer

helps determine if information about HIV reached them in the social network or not. Thus,

these surveys are used to find out the number of youth who got informed about HIV as a

result of our interventions. Moreover, they are asked to take the same survey about HIV risk

that they took during recruitment. These post-intervention surveys enable us to compare

HEALER, DOSIM and DC in terms of information spread (i.e., how successful were the

agents in spreading HIV information through the social network) and behavior change (i.e.,
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how successful were the agents in causing homeless youth to test for HIV), the two major

metrics that we use in our evaluation section.

We provide these behavior change results in order to quantify the true impact of these so-

cial influence maximization agents in the homeless youth domain. In these results, we measure

behavior change by asking youth if they have taken an HIV test at baseline and repeating this

question during the follow up surveys. If the youth reported taking an HIV test at one month

(after interventions) but not at baseline and that youth also reported getting informed about HIV,

we attribute this behavior change to our intervention. This allows us to measure whether our

interventions led to a reduction in risk attitudes.

Uncertain network parameters While there exist many link prediction techniques (Kim &

Leskovec, 2011) to infer uncertain edges in social networks, the efficacy of these techniques is

untested on homeless youth social networks. Therefore, we took a simpler, less "risky" approach

– each edge not created during the network generation phase (i.e., Step 2 above) was added to

the network as an uncertain edge. Thus, after adding these uncertain edges, the social network in

each pilot study became a completely connected network, consisting of certain edges (inferred

from Step 2), and uncertain edges. The existence probability on each uncertain edge was set to

u = 0.01. Our approach to adding uncertain edges ensures that no potential friendship is missed

in the social network because of our lack of accurate knowledge.

Getting propagation probabilities (pe) values was also challenging. In HEALER’s pilot, ser-

vice providers estimated that the true pe value would be somewhere around 0.5. Since the exact

value was unknown, we assumed an interval of [0.4, 0.8] and simulated HEALER’s performance

with pe values in this range. Figure 8.3 shows how information spread achieved by HEALER

on its pilot study network is relatively stable in simulation for pe values around 0.5. The Y-axis

shows the information spread in simulation and the X-axis shows increasing pe values. This fig-

ure shows that information spread achieved by HEALER varied by ∼11.6% with pe in the range

[0.4, 0.8]. Since influence spread is relatively stable in this range, we selected pe = 0.6 (the mid

point of [0.4, 0.8]) on all network edges. Later, we provide ex-post justification for why pe = 0.6

was a good choice, atleast for this pilot study.

In DOSIM’s pilot, we did not have to deal with the issue of assigning accurate pe values to

edges in the network. This is because DOSIM can work with intervals in which the exact pe is
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Figure 8.3: Information Spread with pe on HEALER’s Pilot Network

assumed to lie. For the pilot study, we used the same interval of [0.4, 0.8] to run DOSIM. Finally,

the control group pilot study did not require finding pe values, as peer leaders were selected using

Degree Centrality, which does not require knowledge of pe.

8.2 Results from the Field

We now provide results from all three pilot studies. In each study, three interventions were

conducted (or, T = 3), i.e., Step 3 of the pilot study process (Figure 8.2) was repeated three

times. The actions (i.e., set ofK peer leaders) were chosen using intervention strategies (policies)

provided by HEALER (Yadav et al., 2016a), DOSIM (Wilder et al., 2017), and Degree Centrality

(DC) in the first, second and third pilot studies, respectively. Recall that we provide comparison

results on two different metrics. First, we provide results on information spread, i.e., how well

different software agents were able to spread information about HIV through the social network.

Second, even though HEALER and DOSIM do not explicitly model behavior change in their

objective function (both maximize the information spread in the network), we provide results on

behavior change among homeless youth, i.e., how successful were the agents in inducing behavior

change among homeless youth.
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Figure 8.4: Set of Surveyed Non Peer-Leaders

Figure 8.4 shows a Venn diagram that explains the results that we collect from the pilot

studies. To begin with, we exclude peer leaders from all our results, and focus only on non peer-

leaders. This is done because peer leaders cannot be used to differentiate the information spread

(and behavior change) achieved by HEALER, DOSIM and DC. In terms of information spread,

all peer leaders are informed about HIV directly by study staff in the intervention trainings. In

terms of behavior change, the proportion of peer leaders who change their behavior does not

depend on the strategies recommended by HEALER, DOSIM and DC. Thus, Figure 8.4 shows

a Venn diagram of the set of all non peer-leaders (who were surveyed at the end of one month).

This set of non peer-leaders can be divided into four quadrants based on (i) whether they were

informed about HIV or not (by the end of one-month surveys in Step 5 of Figure 8.2); and (ii)

whether they were already tested for HIV at baseline (i.e., during recruitment, they reported that

they had got tested for HIV in the last six months) or not.

For information spread results, we report on the percentage of youth in this big rectangle,

who were informed about HIV by the end of one month (i.e., boxes A+B as a fraction of the big

box). For behavior change results, we exclude youth who were already tested at baseline (as they

do not need to undergo “behavior change", because they are already exhibiting desired behavior

of testing). Thus, we only report on the percentage of untested informed youth, (i.e., box B),

who now tested for HIV (i.e., changed behavior) by the end of one month (which is a fraction of

youth in box B). We do this because we can only attribute conversions (to testers) among youth

in box B (Figure 8.4) to strategies recommended by HEALER and DOSIM (or the DC baseline).

For example, non peer-leaders in box D who convert to testers (due to some exogenous reasons)
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HEALER DOSIM DC
Youth Recruited 62 56 55
PL Trained 17.7% 17.85% 20%
Retention % 73% 73% 65%
Avg. Observation Size 16 8 15

Figure 8.5: Logistic Details of Different Pilot Studies

cannot be attributed to HEALER or DOSIM’s strategies (as they converted to testers without

getting HIV information).

Study Details Figure 8.5 shows details of the pilot studies. This figure shows that the three

pilots had fairly similar conditions as (i) all three pilots recruited ∼60 homeless youth; (ii) peer

leader training was done on 15-20% of these youth, which is recommended in social sciences

literature (Rice, 2010); and (iii) retention rates of youth (i.e., percentage of youth showing up for

post-intervention surveys) were fairly similar (∼70%) in all three pilots. This figure also shows

that peer leaders provided information about 13 uncertain friendships on average in every inter-

vention stage (across all three pilot studies), which validates HEALER and DOSIM’s assumption

that peer leaders provide observations about friendships (Wilder et al., 2017; Yadav et al., 2016a).
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Figure 8.6: Information Spread Comparison & Analysis

Information Spread Figure 8.6a compares the information spread achieved by HEALER,

DOSIM and DC in the pilot studies. The X-axis shows the three different intervention strate-

gies and the Y-axis shows the percentage of non-peer-leaders to whom information spread (box

A+B as a percentage of total number of non-peer leaders in Figure 8.4). This figure shows that
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Figure 8.7: Exploiting community structure of real-world networks

PL chosen by HEALER (and DOSIM) are able to spread information among ∼70% of the non

peer-leaders in the social network by the end of one month. Surprisingly, PL chosen by DC

were only able to inform ∼27% of the non peer-leaders. This result is surprising, as it means

that HEALER and DOSIM’s strategies were able to improve over DC’s information spread by

over 160%. We now explain reasons behind this significant improvement in information spread

achieved by HEALER and DOSIM (over DC).

Figure 8.6b illustrates a big reason behind DC’s poor performance. The X-axis shows dif-

ferent pilots and the Y-axis shows what percentage of network edges were redundant, i.e., they

connected two peer leaders. Such edges are redundant, as both its nodes (peer leaders) already

have the information. This figure shows that redundant edges accounted for only 8% (and 4%)

of the total edges in HEALER (and DOSIM’s) pilot study. On the other hand, 21% of the edges

in DC’s pilot study were redundant. Thus, DC’s strategies picks PL in a way which creates a lot

of redundant edges, whereas HEALER picks PL which create only 1/3 times the number of re-

dundant edges. DOSIM performs best in this regard, by selecting nodes which creates the fewest

redundant edges (∼ 5X less than DC, and even 2X less than HEALER), and is the key reason

behind its good performance in Figure 8.6a. Concomitantly to the presence of redundant edges,

HEALER also spreads out its PL selection across different communities within the homeless

youth network, that also aids in information spreading, as discussed below.

Figure 8.7a shows the community structure of the three pilot study social networks. To gen-

erate this figure, the three networks were partitioned into communities using METIS (LaSalle &

Karypis, 2013), an off-the-shelf graph partitioning tool. We partitioned each network into four

different communities (as shown in Figure 8.8) to match the number of PL (i.e., K = 4) chosen
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Figure 8.8: Four Partitions of DC’s Pilot Network

in every stage. The X-axis shows the three pilot study networks and the Y-axis shows the percent-

age of edges that go across these four communities. This figure shows that all three networks can

be fairly well represented as a set of reasonably disjointed communities, as only 15% of edges

(averaged across all three networks) went across the communities. Next, we show how HEALER

and DOSIM exploit this community structure by balancing their efforts across these communities

simultaneously to achieve greater information spread as compared to DC.

Figure 8.7b illustrates patterns of PL selection (for each stage of intervention) by HEALER,

DOSIM and DC across the four different communities uncovered in Figure 8.7a. Recall that

each pilot study comprised of three stages of intervention (each with four selected PL). The X-

axis shows the three different pilots. The Y-axis shows what percentage of communities had

a PL chosen from within them. For example, in DC’s pilot, the chosen PL covered 50% (i.e.,

two out of four) communities in the 1st stage, 75% (i.e., three out of four) communities in the

2nd stage, and so on. This figure shows that HEALER’s chosen peer leaders cover all possible

communities (i.e., 100% communities touched) in the social network in all three stages. On

the other hand, DC concentrates its efforts on just a few clusters in the network, leaving ∼50%

communities untouched (on average). Therefore, while HEALER ensures that its chosen PL

covered most real-world communities in every intervention, the PL chosen by DC focused on a

single (or a few) communities in each intervention. This further explains why HEALER is able to

achieve greater information spread, as it spreads its efforts across communities unlike DC. While
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Figure 8.9: Behavior Change & Information Spread in Simulation

DOSIM’s coverage of communities is similar to DC, it outperforms DC because of ∼5X less

redundant edges than DC (Figure 8.6b).

Behavior Change Figure 8.9a compares behavior change observed in homeless youth in the

three pilot studies. The X-axis shows different intervention strategies, and the Y-axis shows the

percentage of non peer-leaders who were untested for HIV at baseline and were informed about

HIV during the pilots (i.e. youth in box B in Figure 8.4). This figure shows that PL chosen

by HEALER (and DOSIM) converted 37% (and 25%) of the youth in box B to HIV testers. In

contrast, PL chosen by DC did not convert any youth in box B to testers. DC’s information spread

reached a far smaller fraction of youth (Figure 8.6a), and therefore it is unsurprising that DC did

not get adequate opportunity to convert anyone of them to testing. This shows that even though

HEALER and DOSIM do not explicitly model behavior change in their objective function, the

agents strategies still end up outperforming DC significantly in terms of behavior change.

8.3 Challenges Uncovered

This section highlights research and methodological challenges that we uncovered while deploy-

ing these agent based interventions in the field. While handling these challenges in a principled

manner is a subject for future research, we explain some heuristic solutions used to tackle these

challenges in the three pilot studies (which may help in addressing the longer term research chal-

lenges).

Research Challenges While conducting interventions, we often encounter an inability to ex-

ecute actions (i.e., conduct intervention with chosen peer leaders), because a subset of the chosen
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peer leaders may fail to show up for the intervention (because they may get incarcerated, or find

temporary accommodation). Handling this inability to execute actions in a principled manner is

a research challenge. Therefore, it is necessary that algorithms and techniques developed for this

problem are robust to these errors in execution of intervention strategy. Specifically, we require

our algorithms to be able to come up with alternate recommendations for peer leaders, when some

homeless youth in their original recommendation are not found. We now explain how HEALER,

DOSIM and DC handle this challenge by using heuristic solutions.

Recall that for the first pilot, HEALER’s intervention strategies were found by using online

planning techniques for POMDPs (Yadav et al., 2016a). Instead of offline computation of the

entire policy (strategy), online planning only finds the best POMDP action (i.e., selection of K

network nodes) for the current belief state (i.e., probability distribution over state of influence of

nodes). Upon reaching a new belief state, online planning again plans for this new belief. This

interleaving of planning and execution works to our advantage in this domain, as every time we

have a failure which was not anticipated in the POMDP model (i.e., a peer leader which was

chosen in the current POMDP action did not show up), we can recompute a policy quickly by

marking these unavailable nodes, so that they are ineligible for future peer leader selection. After

recomputing the plan, the new peer leader recommendation is again given to the service providers

to conduct the intervention.

For the second pilot study, we augmented DOSIM to account for unavailable nodes by using

its computed policy to produce a list of alternates for each peer leader. This alternate list ensures

that unlike HEALER, DOSIM does not require rerunning in the event of a failure. Thus, if a

given peer leader does not show up, then study staff work down the list of alternates to find a

replacement. DOSIM computes these alternates by maintaining a parameter qv (for each node

v), which gives the probability that node v will show up for the intervention. This qv parameter

enables DOSIM to reason about the inability to execute actions, thereby making DOSIM’s poli-

cies robust to such failures. To compute the alternate for v, we condition on the following event

σv: node v fails to show up (i.e., set qv = 0), while every other peer leader u shows up with

probability qu. Conditioned on this event σv, we find the node which maximizes the conditional

marginal gain in influence spread, and use it as the alternate for node v. Hence, each alternate is

selected in a manner which is robust with respect to possible failures on other peer leader nodes.
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HEALER DOSIM DC
Network Diameter 8 8 7
Network Density 0.079 0.059 0.062
Avg. Clustering Coefficient 0.397 0.195 0.229
Avg. Path Length 3.38 3.15 3.03
Modularity 0.568 0.568 0.602

Figure 8.10: Similarity of social networks in different pilot studies

Finally, in the DC pilot, in case of a failure, the node with the next highest degree is chosen as a

peer leader.

Methodological Challenges A methodological challenge was to ensure a fair comparison of

the performance of different agents in the field. In the real-world, HEALER, DOSIM and DC

could not be tested on the same network, as once we spread HIV messages in one network as

part of one pilot study, fewer youth are unaware about HIV (or uninfluenced) for the remaining

pilots. Therefore, each agent (HEALER, DOSIM or DC) is tested in a different pilot study with

a different social network (with possibly different structure). Since HEALER, DOSIM and DC’s

performance is not compared on the same network, it is important to ensure that HEALER and

DOSIM’s superior performance (observed in Figure 8.6a) is not due to differences in network

structure or any extraneous factors.

First, we compare several well-known graph metrics for the three distinct pilot study social

networks. Figure 8.10 shows that most metrics are similar on all three networks, which establishes

that the social networks generated in the three pilot studies were structurally similar. This suggests

that comparison results would not have been very different, had all three algorithms been tested on

the same network. Next, we attempt to show that HEALER and DOSIM’s superior performance

(Figure 8.6a) was not due to extraneous factors.

Figure 8.9b compares information spread achieved by peer leaders in the actual pilot studies

with that achieved by the same peer leaders in simulation. The simulation (averaged over 50 runs)

was done with propagation probability set to pe = 0.6 in our influence model. The X-axis shows

the different pilots and the Y-axis shows the percentage of non peer-leaders informed in the pilot

study networks. First, this figure shows that information spread in simulation closely mirrors

pilot study results in HEALER and DC’s pilot (∼10% difference), whereas it differs greatly in
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Figure 8.11: Investigation of peculiarities in network structure

DOSIM’s pilot. This shows that using pe = 0.6 as the propagation probability modeled the real-

world process of influence spread in HEALER and DC’s pilot study network fairly well, whereas

it was not a good model for DOSIM’s pilot network. This further suggests that information spread

achieved in the real world (atleast in HEALER and DC’s pilot) was indeed due to the respective

strategies used, and not some extraneous factors. In other words, DC’s poor performance may not

be attributed to some real-world external factors at play, since its poor performance is mimicked

in simulation results (which are insulated from real-world external factors) as well. Similarly,

HEALER’s superior performance may not be attributed to external factors working in its favor,

for the same reason.

On the other hand, since DOSIM’s performance in the pilot study does not mirror simulation

results in Figure 8.9b, it suggests the role of some external factors, which were not considered in

our models. However, the comparison of simulation results in this figure is statistically significant

(p − value = 9.43E − 12), which shows that even if DOSIM’s performance in the pilot study

matched its simulation results, i.e., even if DOSIM achieved only ∼40% information spread in

its pilot study (as opposed to the 70% spread that it actually achieved), it would still outperform

DC by ∼33%.

Having established that DC’s poor performance was not due to any external factors, we now

show that DC’s poor performance in the field was also not tied to some peculiar property/structure

of the network used in its pilot study. Figure 8.11a compares information spread achieved by dif-

ferent agents (in simulation over 50 runs), when each agent was run on DC’s pilot study network.

Again, the simulation was done using pe = 0.6 as propagation probability, which was found to

be a reasonable model for real-world influence spread in DC’s network (see Figure 8.9b). The
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X-axis in Figure 8.11a shows different algorithms being run on DC’s pilot study network (in

simulation). The Y-axis shows the percentage of non peer-leaders informed. This figure shows

that even on DC’s pilot study network, HEALER (and DOSIM) outperform DC in simulation by

∼53% (and 76%) (p− value = 9.842E− 31), thereby establishing that HEALER and DOSIM’s

improvement over DC was not due to specific properties of the networks in their pilot studies,

i.e., HEALER and DOSIM’s superior performance may not be attributed to specific properties

of networks (in their pilot studies) working in their favor. In other words, this shows that DC’s

poor performance may not be attributed to peculiarities in its network structure working against

it, as otherwise, this peculiarity should have affected HEALER and DOSIM’s performance as

well, when they are run on DC’s pilot study network (which does not happen as shown in Figure

8.11a).

Figure 8.11b shows information spread achieved by peer leaders (chosen in the pilot studies)

in simulation (50 runs), averaged across 30 different networks which were generated by pertur-

bation of the three pilot study networks. The X-axis shows the networks which were perturbed.

The Y-axis shows the percentage difference in information spread achieved on the perturbed net-

works, in comparison with the unperturbed network. For example, adding 5% edges randomly

to HEALER’s pilot study network results in only ∼2% difference (p− value = 1.16E − 08) in

information spread (averaged across 30 perturbed networks). These results support the view that

HEALER, DOSIM and DC’s performance are not due to their pilot study networks being on the

knife’s edge in terms of specific peculiarities. Thus, HEALER and DOSIM outperform DC on a

variety of slightly perturbed networks as well.

8.4 Conclusion & Lessons Learned

This paper illustrates challenges faced in transitioning agents from an emerging phase in the

lab, to a deployed application in the field. It presents first-of-its-kind results from three real-

world pilot studies, involving 173 homeless youth in Los Angeles. Conducting these pilot studies

underlined their importance in this transition process – they are crucial milestones in the arduous

journey of an agent from an emerging phase in the lab, to a deployed application in the field.

The pilot studies helped in answering several questions that were raised in Section 1. First, we
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learnt that peer-leader based interventions are indeed successful in spreading information about

HIV through a homeless youth social network (as seen in Figures 8.6a). Moreover, we learnt that

peer leaders are very adept at providing lots of information about newer friendships in the social

network (Figure 8.5), which helps software agents to refine its future strategies.

These pilot studies also helped to establish the superiority (and hence, their need) of HEALER

and DOSIM – we are using complex agents (involving POMDPs and robust optimization), and

they outperform DC (the modus operandi of conducting peer-led interventions) by 160% (Fig-

ures 8.6a, 8.9a). The pilot studies also helped us gain a deeper understanding of how HEALER

and DOSIM beat DC (shown in Figures 8.6b, 8.7b, 8.7a) – by minimizing redundant edges and

exploiting community structure of real-world networks. Out of HEALER and DOSIM, the pilot

tests do not reveal a significant difference in terms of either information spread or behavior change

(Figures 8.6a, 8.9a). Thus, carrying either of them forward would lead to significant improve-

ment over the current state-of-the-art techniques for conducting peer-leader based interventions.

However, DOSIM runs significantly faster than HEALER (∼ 40×), thus, it is more beneficial in

time-constrained settings (Wilder et al., 2017).

These pilot studies also helped uncover several key challenges (e.g., inability to execute ac-

tions, estimating propagation probabilities, etc.), which were tackled in the pilot studies using

heuristic solutions. However, handling these challenges in a principled manner is a subject for

future research. Thus, while these pilot studies open the door to future deployment of these agents

in the field (by providing positive results about the performance of HEALER and DOSIM), they

also revealed some challenges which need to be resolved convincingly before these agents can be

deployed.

To the best of our knowledge, this is the first deployment of an influence maximization algo-

rithm in the real world. Further, it is the first time that influence maximization has been applied

for social good. The success of this pilot study illustrates one way (among many others) in which

AI and influence maximization can be harnessed for benefiting low-resource communities.
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Chapter 9

CAIMS

Both PSINET, HEALER and DOSIM (Wilder et al., 2017) rely on the following key assumption:

seed nodes can be influenced with certainty. Unfortunately, in most public health domains, this

assumption does not hold as “influencing" seed nodes entails training them to be “peer leaders"

(Valente & Pumpuang, 2007). For example, seed nodes promoting HIV awareness among home-

less youth need to be trained so that they can communicate information about supposedly private

issues in a safe manner (Schneider, Zhou, & Laumann, 2015). This issue of training seed nodes

leads to two practical challenges. First, it may be difficult to contact seed nodes in a timely man-

ner (e.g., contacting homeless youth is challenging since they rarely have fixed phone numbers,

etc). Second, these seed nodes may decline to be influencers (e.g., they may decline to show

up for training sessions). In this chapter, we refer to these two events as contingencies in the

influence maximization process.

Unsurprisingly, these contingencies result in a wastage of valuable time/money spent in un-

successfully contacting/convincing the seed nodes to attend the training. Moreover, the resulting

influence spread achieved is highly sub-optimal, as very few seed nodes actually attend the train-

ing session, which defeats the purpose of conducting these interventions. Clearly, contingencies

in the influence maximization process need to be considered very carefully.

This chapter discusses a principled approach to handle these inevitable contingencies via the

following contributions. First, we introduce the Contingency Aware Influence Maximization (or

CAIM) problem to handle cases when seed nodes may be unavailable, and analyze it theoretically.

The principled selection of alternate seed nodes in CAIM (when the most preferred seed nodes are

not available) sets it apart from any other previous work in influence maximization, which mostly
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assumes that seed nodes are always available for activation. Second, we cast the CAIM problem

as a Partially Observable Markov Decision Process (POMDP) and solve it using CAIMS (CAIM

Solver), a novel POMDP planner which provides an adaptive policy which explicitly accounts for

contingency occurrences. CAIMS is able to scale up to real-world network sizes by leveraging

the community structure (present in most real-world networks) to factorize the action space of our

original POMDP into several smaller community-sized action spaces. Further, it utilizes insights

from social network literature to represent belief states in our POMDP in a compact, yet accurate

manner using Markov networks. Our simulations show that CAIMS outperforms state-of-the-art

influence maximization algorithms by∼60%. Finally, we evaluate CAIMS’s usability in the real-

world by using it to train a small set of homeless youth (the seed nodes) to spread awareness about

HIV among their peers. This domain is an excellent testbed for CAIMS, as the transient nature

of homeless youth increases the likelihood of the occurrence of contingencies (Rice & Rhoades,

2013).

9.1 CAIM Model & Problem

In practice, the officials from the homeless youth service providers typically only have 4-5 days

to locate/invite the desired youth to be trained as peer leaders. However, the transient nature of

homeless youth (i.e., no fixed postal address, phone number, etc) makes contacting the chosen

peer leaders difficult for homeless shelters. Further, most youth are distrustful of adults, and

thus, they may decline to be trained as peer leaders (Milburn, Rice, Rotheram-Borus, Mallett,

Rosenthal, Batterham, May, Witkin, & Duan, 2009). As a result of these “contingencies", the

shelter officials are often forced to conduct their intervention with very few peer leaders in atten-

dance, despite each official spending 4-5 days worth of man hours in trying to find the chosen

peer leaders (Yadav et al., 2017c). Moreover, the peer leaders who finally attend the intervention

are usually not influential seed nodes. This has been the state of operations even though peer-led

interventions have been conducted by social workers for almost a decade now.

To avoid this outcome, ad-hoc measures have been proposed (Yadav et al., 2017c), e.g., con-

tacting many more homeless youth than they can safely manage in an intervention. However, one

then runs the risk that lots of youth may agree to be peer leaders, and shelter officials would have
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(a) Social Network 1 (b) Social Network 2

Figure 9.1: Examples illustrating harm in overprovisioning

to conduct the intervention with all these youth (since it’s unethical to invite a youth first and then

ask him/her not to come to the intervention), even if the total number of such participants exceeds

their maximum capacity (Rice et al., 2012). This results in interventions where the peer leaders

may not be well trained, as insufficient attention is given to any one youth in the training. Note

that if contingencies occurred infrequently, then inviting a few extra nodes (over the maximum

capacity) may be a reasonable solution. However, as we show in the real-world feasibility trial

conducted by us, contingencies are very common (∼80%, or 14 out of 18 invitations in the real-

world study resulted in contingencies), and thus, overprovisioning by a small number of nodes

is not an option. An ad-hoc fix for this over-attendance, is to first select (say) twice the desired

number of homeless youth, invite them one at a time, and stop as soon as the desired number of

homeless youth have accepted the invitation. However, we will show that this intuitive ad-hoc

overprovisioning based solution performs poorly.

9.1.1 Overprovisioning May Backfire

Let K denote the number of nodes (or homeless youth) we want at the intervention. Now, sup-

pose we overprovision by a factor of 2 and use the algorithm mentioned before. This means that

instead of searching for the optimal set of K seed nodes, the algorithm finds the optimal set of

2K seed nodes and then influences the first K of these nodes that accept the invitation. Naturally,

this algorithm should perform better (under contingencies) than the algorithm without overpro-

visioning. Surprisingly, we show that overprovisioning may make things worse. This happens

because of two key ideas: (i) No K-sized subset of the optimal set of 2K nodes may be as good

as the optimal set of K nodes (this indicates that we may not be looking for the right nodes when
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we search for the optimal set of 2K nodes), and (ii) An arbitrary K-sized subset of the optimal

set of 2K nodes (obtained because we stick to the first K nodes that accept the invitation) may

perform arbitrarily bad.

We now provide two examples that concretize these facts. For simplicity of the examples, we

assume that influence spreads only for one round, number of nodes required for the intervention

is K = 1 and the propagation probability p(e) is 0.5 for every edge. We use I(S) to denote

the expected influence in the network when nodes of set S are influenced. Firstly, consider the

example social network graph in Figure 9.1a. Suppose C and C1 are nodes that are regularly

available, and are likely to accept the invitation. Now, let’s find the best single node to influence

for maximum influence spread. We don’t need to consider nodes other than {C1, C, C2} since

they’re obviously suboptimal. For the remaining nodes, we have I(C1) = 5∗0.5 = 2.5, I(C) =

6 ∗ 0.5 = 3 and I(C2) = 5 ∗ 0.5 = 2.5, and so the best single node to influence is C. Now,

suppose we overprovision by a factor of 2, and try to find the optimal set of 2 nodes for maximum

influence spread. The influence values are I({C1, C}) = I({C2, C}) = 5∗0.5+3∗0.75 = 4.75

and I({C1, C2}) = 10 ∗ 0.5 = 5. So, the optimal set of 2 nodes to influence is {C1, C2}. But,

since we need only one node, we would eventually be influencing either C1 or C2, giving us

an expected influence of 2.5. On the other hand, if we did not overprovision, we would go for

node C (the best single node to influence) and have an expected influence of 3. This example

demonstrates that no K-sized subset of the optimal set of 2K nodes may be as good as the

optimal set of K nodes. Note that, for clarity, the example considered here was small and made

simple, and hence the difference between 3 and 2.5 may seem small. But, the example can be

extended such that the difference is arbitrarily larger.

On a different note, suppose in this second example, node C1 is unavailable (because say it

declines the invitation). In this case, the overprovisioning algorithm would have to go for C3 (the

only other node in the optimal set of 2 nodes), leading to an expected influence of 1.5. However,

an adaptive solution, would look for node C1 and after finding that its unavailable, would go for

the next best node which is node C2. This gives an adaptive solution an expected influence of

2.5.

Having provided examples which provide intuition as to why simple ad-hoc overprovisioning

based algorithms may backfire, we now provide empirical support for this intuition by measuring
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(a) SBM Networks (b) PA Networks

Figure 9.2: The Harm in Overprovisioning

the performance of the Greedy algorithm (Kempe et al., 2003) (the gold standard in influence

maximization) under varying levels of overprovisioning. Figures 9.2a and 9.2b compare influ-

ence spread achieved by Greedy on stochastic block model (SBM) and preferential attachment

(PA) networks (Seshadhri et al., 2012), respectively, as it finds the optimal set of m ∗ K nodes

(K = 2) to invite (i.e., overprovision by factor m) and influence the first K nodes that accept

the invitation (the order in which nodes are invited is picked uniformly at random). The x-axis

shows increasing m values and the y-axis shows influence spread. This figure shows that in both

SBM and PA networks of different sizes, overprovisioning hurts, i.e., optimizing for larger seed

sets in anticipation of contingencies actually hurts influence spread, which confirms our intuition

outlined above. Overprovisioning’s poor performance reveals that simple solutions do not work,

thereby necessitating careful modeling of contingencies, as we do in CAIM.

9.1.2 Problem Setup

Given a friendship based social network, the goal in CAIM is to invite several network nodes for

the intervention until we getK nodes who agree to attend the intervention. The problem proceeds

in T sequential sessions, where T represents the number of days that are spent in trying to invite

network nodes for the intervention. In each session, we assume that nodes are either available

or unavailable for invitation. This is because on any given day (session), homeless youth may

either be present at the shelter (i.e., available) or not (i.e., unavailable). We assume that only

nodes which are available in a given session can accept invitations in that session. This is because
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homeless youth frequently visit shelters, hence we utilize this opportunity to issue invitations to

them if we see them at the shelter.

Let φt ∈ {0, 1}N (called a realization) be a binary vector which denotes the availability or

unavailability (for invitation) of each network node in session t ∈ [1, T ]. We take a Bayesian

approach and assume that there is a known prior probability distribution Φ over realizations φt

such that p(φt) := P[Φ = φt]. In our domain, this prior distribution is represented using a

Markov Network. We assume that the realization φt for each session t ∈ [1, T ] is drawn i.i.d.

from the prior distribution Φ, i.e., the presence/absence of homeless youth at the shelter in every

session t ∈ [1, T ] is assumed to be an i.i.d. sample from Φ. We further assume that while the

prior distribution Φ is provided to the CAIM problem as input, the complete i.i.d. draws from

this distribution (i.e., the realizations φt ∀t ∈ [1, T ]) are not observable. This is because while

querying the availability of a small number of nodes (∼3-4) is feasible, querying each node in the

social network (which can have 150-160 nodes) for each session/day (to completely observe φt)

requires a lot of work which is not possible with the shelters limited resources (Rice, 2010).

In each session t ∈ [1, T ], a maximum of L actions can be taken, each of which can be

of three possible types: queries, invites and end-session actions. Query action qa in session

t ∈ [1, T ] ascertains the availability/unavailability of a subset of nodes a (‖a‖ 6 Qmax, the

maximum query size) in session t with certainty. Thus, query actions in session t provide partial

observations about the realization of nodes φt in session t. On the other hand, invite action ma

invites a subset of nodes a ⊂ V (‖a‖ 6 K) to the intervention. Upon taking an invite action,

we observe which invited nodes are present (according to φt) in the session and which of them

accepted our invitation. Each invited node that is present accepts the invitation with a probability

ε. We refer to the nodes that accept our invitation as “locked nodes" (since they are guaranteed

to attend the intervention). Finally, we can also take an end-session action, if we choose not to

invite/query any more nodes in that session.

The observations received from query and invite actions (end-session action provides no ob-

servation) taken in a session allows us to update the original prior distribution Φ to generate a

posterior distribution Φpos
t (i) ∀i ∈ [0, L] for session t (where i actions have been taken in session

t so far). These posteriors can then be used to decide future actions that need to be taken in a

session. Note that for every session t, Φpos
t (0) = Φ, i.e., at the beginning of each session, we
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start from the original prior distribution Φ and then get new posteriors every time we take an

action in the session.

Note that even though query actions provide strictly lesser information than invite actions

(for the same subset of nodes), their importance in CAIM is highlighted as follows: recall that

the optimal set of 2 nodes in Figure 9.1b is {C1, C3}. If we remove the ability to query, we

would invite nodes C1 and C3. In case C1 is not present and C3 accepts our invitation, we

would be stuck with conducting intervention with only node C3 (since invited nodes who accept

the invitation cannot be un-invited). Thus, we realize that inviting C3 is desirable only if C1 is

present and accepts our invitation. Query actions allow us to query the presence or absence of

both nodes C1 and C3 (so that we don’t waste an invite action in case node C1 is found to be not

present according to the query action’s observation).

Informally then, given a friendship based social network G = (V ,E), the integers T , K,

L, Qmax and ε, and prior distribution Φ, the goal of CAIM is to find a policy for choosing L

sequential actions for T sessions s.t. the expected influence spread (according to our influence

model) achieved by the set of locked nodes (i.e., nodes which finally attend the intervention) is

maximized.

Let Q = {qa s.t. 1 6 ‖a‖ 6 Qmax} denote the set of all possible query actions that can

be taken in any given session t ∈ [1, T ]. Similarly, let M = {ma s.t. 1 6 ‖a‖ 6 K} denote

the set of all possible invite actions that can be taken in any given session t ∈ [1, T ]. Also, let E

denote the end-session action. Let Ati ∈Q∪M∪ E denote the ith action (i ∈ [1, L]) chosen by

CAIM’s policy in session t ∈ [1, T ].

Upon taking action Ati (i ∈ [1, L], t ∈ [1, T ]), we receive observations which allow us to

generate posterior distribution Φpos
t (i). Denote by M t

i the set of all locked nodes after the ith

action is executed in session t. Denote by ∆ the set of all possible posterior distributions that we

can obtain during the CAIM problem. Denote by Γ all possible sets of locked nodes that we can

obtain during the CAIM problem. Finally, we define CAIM’s policy Π : ∆×Γ×[0, L]×[1, T ]→

Q∪M∪ E as a function that takes in a posterior distribution, a set of locked nodes, the number

of actions taken so far in the current session, and the session-id as input, and outputs an actionAti
for the current timestep.
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Problem 2. CAIM Problem Given as input a social network G = (V ,E) and integers T , K,

L, Qmax and ε, and a prior distribution Φ (as defined above), denote by R(MT
L ) the expected

total influence spread (i.e., number of nodes influenced) achieved by nodes in MT
L (i.e., locked

nodes at the end of T sessions). Let EMT
L∼Π[R(MT

L )] denote the expectation over the random

variable MT
L , where MT

L is updated according to actions recommended by policy Π(Φpos
T (L−

1),MT
L−1, L− 1, T ). More generally, in session t ∈ [1, T ], M t

i ∀i ∈ [0, L] is updated according

to actions recommended by policy Π(Φpos
t (i− 1),M t

i−1, i− 1, t). Then, the objective of CAIM

is to find an optimal policy Π∗ = argmaxΠEMT
L∼Π[R(MT

L )].

We now theoretically analyze the CAIM problem.

Lemma 1. The CAIM problem is NP-Hard.

Proof. Consider an instance of the CAIM problem with prior probability distribution Φ that is

the realization φ∗ with probability 1, where φ∗ is a vector of all 1s. Such a problem reduces to

the standard influence maximization problem, wherein we need to find the optimal subset of K

nodes to influence to have maximum influence spread in the network. But, the standard influence

maximization problem is an NP-Hard problem, making CAIM NP-Hard too.

Some NP-Hard problems exhibit nice properties that enable approximation guarantees for

them. (Golovin & Krause, 2011) introduced adaptive submodularity, the presence of which would

ensure that a simple greedy algorithm provides a (1−1/e) approximation w.r.t. the optimal CAIM

policy. However, we show that while CAIM can be cast into the adaptive stochastic optimization

framework of (Golovin & Krause, 2011), our objective function is not adaptive submodular,

because of which their Greedy algorithm does not have a (1− 1/e) approximation guarantee.

Lemma 2. The objective function of CAIM is not adaptive submodular.

Proof. The key idea is that taking a particular action (say ao) now, may have a low marginal gain

because of the realization of the current session, but after a few actions, taking the same action

ao might have a high marginal gain because of a change of session.

More formally, consider the following example. At the beginning of the first session, we take

a query action and ask about nodes {1, 2, 3}. We get the observation that each of them is absent.

At this point, if we take the invite action ao = 〈{2}, i〉, we get a marginal gain of 0. On the
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other hand, suppose we took the end-session action after the query, advance to the next session,

again take a query action and ask about nodes {1, 2, 3} and this time get the observation that 2

is present (while others are absent). Now if we take the same invite action ao, we get a positive

marginal gain. This shows that the objective function of CAIM is not adaptive submodular.

These theorems show that CAIM is a computationally hard problem and it is difficult to even

obtain any good approximate solutions for it. In this paper, we model CAIM as a POMDP.

9.2 POMDP Model

We cast the CAIM problem using POMDPs (Puterman, 2009), as the uncertainty about the real-

ization of nodes φt is similar to partial state observability in POMDPs. Finally, actions (queries

and invites) that are chosen for the current session depend on the actions that are taken in future

sessions (for e.g., influencing node A might be really important, but he/she may not be available

in session t, therefore invite actions in session t can focus on other nodes, and influencing nodeA

can be left to future sessions). This suggests the need to do lookahead search, which is the main

motivation behind solving a POMDP. We now explain how we map CAIM onto a POMDP.

States A POMDP state consists of four entities s = 〈φ,M , numAct, sessID〉. Here,

sessID ∈ [1, T ] identifies the session we are in. Also, numAct ∈ [0, L] determines the number

of actions that have been taken so far in session sessID. M denotes the set of locked nodes so

far (starting from the first session). Finally, φ is the node realization φsessID in session sessID.

In our POMDP model, states with sessID = T and numAct = L are terminal states, since they

represent the end of all sessions.

Actions A POMDP action is a tuple a = 〈S, type〉. Here, type is a symbolic character which

determines whether a is a query action (i.e., type = q), an invite action (i.e., type = i) or an

end-session action (i.e., type = e). Also, S ⊂ V denotes the subset of nodes that is queried

(type = q) or invited (type = i). If type = q, the size of subset ‖S‖ ∈ [1, Qmax]. Similarly, if

type = i, ‖S‖ ∈ [1,K] . Finally, if type = e, subset S is empty.

Observations Upon taking a query action a = 〈S, q〉 in state s = 〈φ,M , numAct, sessID〉,

we receive an observation that is completely determined by state s. In particular, we receive the

observation oq = {φ(v) ∀v ∈ S}, i.e., the availability status of each node in S. And, by taking
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an invite action a = 〈S, i〉 in state s = 〈φ,M , numAct, sessID〉, we receive two kinds of

observations. Let Γ = {v ∈ S s.t. φ(v) = 1} denote the set of available nodes in invited set

S. First, we get observation o1
i = {φ(v) ∀v ∈ S} which specifies the availability status of each

node in invited set S. We also get an observation o2
i = {b(v) ∀v ∈ Γ} for each available node

v ∈ Γ, which denotes whether node v accepted our invitation and joined the locked set of nodes

(b(v) = 1) or not (b(v) = 0). Finally, the end-session action does not generate any observations.

Rewards We only get rewards when we reach terminal states s′ = 〈φ,M , numAct, sessID〉

with sessID = T , numAct = L. The reward attained in terminal state s′ is the expected

influence spread (as per our influence model) achieved by influencing nodes in the locked set M

of s′.

Transition And Observation Probabilities Due to our exponential sized state and action

spaces, maintaining transition and observation probability matrices is not feasible. Hence, we

follow the paradigm of large-scale online POMDP solvers (Silver & Veness, 2010) by using a

generative model Λ(s, a) ∼ (s′, o, r) of the transition and observation probabilities. This gen-

erative model allows generating on-the-fly samples from the exact distributions T (s′|s, a) and

Ω(o|a, s′) at very low computational costs. In our generative model, the state undergoes tran-

sitions as follows. On taking a query action, we reach a state s′ which is the same as s except

that s′.numAct = s.numAct + 1. On taking an invite action 〈S, i〉, we reach s′ which is the

same as s except that s′.numAct = s.numAct + 1, and s′.M is s.M appended with nodes of

S that accept the invitation. Note that binary vector φ stays unchanged in either case (since the

session does not change). Finally, on taking the end-session action, we start a new session by

transitioning to state s′ s.t., s′.numAct = 0, s′.sessID = s.sessID + 1, s′.M = s.M and

s′.φ is resampled i.i.d. from the prior distribution Φ. Note that the components M , numAct

and sessID of a state are fully observable. The observations (obtained on taking any action) are

deterministically obtained as given in the “Observations" sub-section given above.

Initial Belief State The prior distribution Φ, along with other completely observable state

components (such as sessID = 1, numAct = 0, and an empty locked set M = {}) forms our

initial belief state.
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9.3 CAIMS: CAIM Solver

Our POMDP algorithm is motivated by the design of FV-POMCP, a recent online POMDP al-

gorithm (Amato & Oliehoek, 2015). Unfortunately, FV-POMCP has several limitations which

make it unsuitable for solving the CAIM problem. Thus, we propose CAIMS, a Monte-Carlo

(MC) sampling based online POMDP algorithm which makes key modifications to FV-POMCP,

and solves the CAIM problem for real-world sized networks. Next, we provide a brief overview

of FV-POMCP.

9.3.1 Background on FV-POMCP

FV-POMCP extends POMCP to deal with large action spaces. It assumes that the action space of

the POMDP can be factorized into a set of ` factors, i.e., each action a can be decomposed into a

set of sub-actions al∀l ∈ [1, `]. Under this assumption, the value function of the original POMDP

is decomposable into a set of overlapping factors. i.e., Q(b, a) =
∑

l∈[1,`]

αlQl(b, al), where αl

(∀l ∈ [1, `]) are factor-specific weights. FV-POMCP maintains a single UCT tree (similar to

standard POMCP), but it differs in the statistics that are maintained at each node of the UCT

tree. Instead of maintaining Q̂(bh, a) and nha statistics for every action in the global (unfactored)

action space at tree node h, it maintains a set of statistics that estimates the values Q̂l(bh, al) and

nhal ∀l ∈ [1, `].

Joint actions are selected by the UCB1 rule across all factored statistics, i.e., a =

argmaxa
∑

l∈[1,`]

Q̂l(bh, al) + c
√
log(Nh + 1)/nhal . This maximization is efficiently done using

variable elimination (VE) (Guestrin, Koller, & Parr, 2002), which exploits the action factorization

appropriately. Thus, FV-POMCP achieves scale-up by maintaining fewer statistics at each tree

node h, and by using VE to find the maximizing joint action.

However, there are two limitations which makes FV-POMCP unsuitable for solving CAIM.

First, the VE procedure used in FV-POMCP (as described above) may return an action (i.e., a

set of nodes) which is infeasible in the CAIM problem (e.g., the action may have more than K

nodes). We elaborate on this point later. Second, FV-POMCP uses unweighted particle filters to

represent belief states, which becomes highly inaccurate with exponentially sized state spaces in

CAIM. We address these limitations in CAIMS.
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9.3.2 CAIMS Solver

CAIMS is an online Monte-Carlo sampling based POMDP solver that uses UCT based Monte-

Carlo tree search to solve the CAIM problem. Similar to FV-POMCP, CAIMS also exploits action

factorization to scale up to large action spaces. We now explain CAIMS’s action factorization.

Action Factorization Real world social networks generally exhibit a lot of community struc-

ture, i.e., these networks are composed of several tightly-knit communities (partitions), with very

few edges going across these communities (Seshadhri et al., 2012). This community structure

dictates the action factorization in CAIMS. As stated before, the POMDP model has each action

of the form 〈S, type〉, where S is a subset of nodes (that are being queried or invited). This

(sub)set S can be represented as a boolean vector ~S (denoting which nodes are included in the

set). Let Qq(~S) denote the Q-value of the query action 〈S, q〉, Qi(~S) denote the Q-value of the

invite action 〈S, i〉 and let Qe denote the Q-value of the end-session action 〈{}, e〉. Now, suppose

the real-world social network is partitioned into ` partitions (communities) P1, P2, · · ·P`. Let

~SPx denote the sub-vector of ~S corresponding to the xth partition. Then, the action factorization

used is: Qq(~S) =
∑`

x=1Q
Px
q (~SPx) for query actions and Qi(~S) =

∑`
x=1Q

Px
i (~SPx) for invite

actions.

Intuitively, QPx
i (~SPx) can be seen as the Q-value of inviting only nodes given by ~SPx (and

no other nodes). Now, if querying/inviting nodes of one partition has negligible effect/influence

on the other partitions, then the Q-value of the overall invite action 〈S, i〉 can be approximated

by the sum of the Q-values of the sub-actions 〈SPx , i〉. The same holds for query actions. We

now show that this action factorization is appropriate for CAIM as it introduces minimal error

into the influence spread calculations for stochastic block model (SBM) networks, which mimic

many properties of real-world networks (Seshadhri et al., 2012). Note that we consider a single

round of influence spread (T=1) as empirical research by (Goel, Watts, & Goldstein, 2012) shows

that influence usually does not spread beyond the first hops (T=1) in real-world social networks.

Theorem 4. Let I(S) denote the expected influence in the whole network when nodes of set

S are influenced, and we have one round of influence spread. For an SBM network with n

nodes and parameters (p, q) that is partitioned into ` communities, the difference between the

true and factored expected influences can be bounded as E
[
maxS

∣∣∣I(S)−
∑`

x=1 I(SPx)
∣∣∣] ≤
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qn2
(
1− 1

`

)
pm, where pm = maxe∈E p(e) is the maximum propagation probability. Note that

the (outer) expectation is over the randomness in the SBM network model.

Proof. The difference between
∑`

x=1 I(SPx) and I(S) comes from the fact that
∑`

x=1 I(SPx)

over-counts influence spread across communities [since I(SPx) equals the expected influence in

the whole graph when SPx is influenced, assuming no nodes of other communities are influenced,

while in fact some actually may be].

Edges going across communities lead to this double counting of influence spread. We’ll call

these edges as cross-edges. Let Ma denote the total number of such cross-edges, i.e. Ma =

|{(u, v) ∈ E : u ∈ Px, v ∈ Py and x 6= y}|. Each cross-edge can lead to at most two nodes

being double counted. This is because of the following: Let (u, v) be a cross-edge (where u ∈ Px

and v ∈ Py), and suppose that both these nodes are influenced. On computing I(SPx), v might be

counted as being influenced by it [even though v is already influenced beforehand], hence leading

to an over-count of 1 [Note that, since we’re considering one round of influence spread, I(SPx)

assumes that v does not propagate influence further]. Similar holds with I(SPy).

Hence,
∑`

x=1 I(SPx) − I(S) is bounded by twice the expected number of cross-edges that

are activated (for arbitrary S). Let Eij be the random variable denoting whether there’s an edge

from node i to j in the SBM network. Then, the number of cross-edges is given as

Ma =
1

2

∑̀
x=1

∑
i∈Px

∑
j /∈Px

Eij ,

Hence, the expected number of cross edges is

E[Ma] = E

1

2

∑̀
x=1

∑
i∈Px

∑
j /∈Px

Eij


=

1

2

∑̀
x=1

∑
i∈Px

∑
j /∈Px

q =
1

2

∑̀
x=1

∑
i∈Px

(n− |Px|)q

=
q

2

∑̀
x=1

|Px|(n− |Px|)

=
q

2

(
n2 −

∑̀
x=1

|Px|2
)
.

83



Since
∑`

x=1 |Px| is equal to n,
∑`

x=1 |Px|2 is minimized when each |Px| is equal to n/`, i.e.

∑̀
x=1

|Px|2 ≥
∑̀
x=1

(n
`

)2
=
n2

`
.

Substituting it above:

E[Ma] ≤
q

2

(
n2 − n2

`

)
=
qn2

2

(
1− 1

`

)
.

Let pm = maxe∈E p(e). Remember that each cross edge e is activated with probability p(e)

(≤ pm). So, we have

E

[
max
S

(∑̀
x=1

I(SPx)− I(S)

)]
≤ 2 · E[Ma] · pm

And therefore,

E

[
max
S

(∑̀
x=1

I(SPx)− I(S)

)]
≤ qn2

(
1− 1

`

)
pm

Also, note that
∑`

x=1 I(SPx) is always at least as large as I(S), i.e.
∑`

x=1 I(SPx)−I(S) ≥

0. This gives us the desired result:

E

[
max
S

∣∣∣∣∣∑̀
x=1

I(SPx)− I(S)

∣∣∣∣∣
]
≤ qn2

(
1− 1

`

)
pm

This action factorization allows maintaining separate Q-value statistics (Q̂Px
type(

~SPx) ∀type ∈

{q, i, e}) for each factor (i.e., network community) at each node of the UCT tree maintained by

CAIMS. However, upon running MC simulations in this UCT tree, we acquire samples of only

Qtype (i.e., rewards of the joint un-factored actions). We learn factored estimates QPx
type from

estimates Qtype of the un-factored actions by using mixture of experts optimization (Amato &

Oliehoek, 2015), i.e. we estimate the factors as Q̂Px
type(

~SPx) = αPxE[Qtype(~S)|~SPx ], where this

expectation is estimated by using the empirical mean. Please refer to (Amato & Oliehoek, 2015)

for more details. We now describe action selection in the UCT tree.

Action Selection At each node in the UCT tree, we use the UCB1 rule (over all factors) to

find the best action. Let nq
h~SPx

(or ni
h~SPx

) denote the number of times a query (or invite) action

with sub-action ~SPx has been taken from node h of the UCT tree. Let Nh denote the number of
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times tree node h has been visited. The best query action to be taken is given as 〈Sq, q〉, where

~Sq = argmax‖~S‖1≤Qmax

∑`
x=1 Q̂

Px
q (bh, ~SPx) + c

√
log(Nh + 1)/nq

h~SPx

. Similarly, the best in-

vite action to be taken is given as 〈Si, i〉, where ~Si = argmax‖~S‖1≤K−|M |
∑`

x=1 Q̂
Px
i (bh, ~SPx)+

c
√
log(Nh + 1)/ni

h~SPx

(whereM is the set of locked nodes at tree node h). Let Vq and Vi denote

the value attained at the maximizing query and invite actions, respectively. Finally, let Ve denote

the value of the end-session action, i.e. Ve = Q̂e + c
√
log(Nh + 1)/neh where neh is the number

of times the end-session action has been taken from tree node h. Then, the values Vq, Vi and Ve

are compared and the action corresponding to max(Vq, Vi, Ve) is chosen.

Improved VE Note that the UCB1 equations to find maximizing query/invite actions (as de-

scribed above) are of the form argmax‖~a‖1≤z
∑`

x=1 fx(~ax) (where ~a ∈ {0, 1}n). Unfortunately,

plain application of VE (like FV-POMCP) to this results in infeasible solutions which may violate

the L-1 norm constraint. Thus, FV-POMCP’s VE procedure may not produce feasible solutions

for CAIM.

CAIMS addresses this limitation by using two adjustments. First, we incorporate this L-1

norm constraint as an additional factor in the objective function: argmax~a∈{0,1}n
∑`

x=1 fx(~ax)+

fc(~a). This constraint factor fc’s scope is all the n variables (as it represents a global constraint

connecting actions selected across all factors), and hence it can be represented using a table of

size O(2n) in VE. Unfortunately, the exponentially sized table of fc eliminates any speed-up

benefits that VE provides, as the induced width of the tree formed (on running VE) will be n,

leading to a worst possible time-complexity of O(2n).

To resolve this, CAIMS leverages a key insight which allows VE to run efficiently even with

the additional factor fc. The key idea is that, if all variables of a community are eliminated at

once, then both (i)fc; and (ii) the factors derived from a combination of fc and other community-

specific factors during such elimination, can be represented very concisely (using just tables of

size z + 1 elements), instead of using tables of size O(2n). This fact is straightforward to see for

the original constraint factor fc (as fc’s table only depends on ‖~a‖1, it has value 0 if ‖~a‖1 ≤ z

and −∞ otherwise). However, it is not obvious why this holds for derived factors, which need

to maintain optimal assignments to community-specific variables, for every possible combination

of un-eliminated variable values (thereby requiring O(2n) elements). However, it turns out that

we can still represent the derived factors concisely. The key insight is that even for these derived
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factors, all variable assignments with the same L-1 norm have the same value (Lemma 3). This

allows us to represent each of these derived factor as a table of only z + 1 elements (as we need

to store one unique value when the L-1 norm is at most z, and we use −∞ otherwise).

Lemma 3. Let ψi(~v) denote the ith factor generated during CAIMS’s VE. Then, ψi(~v1) = ψi(~v2)

if ‖v1‖1 = ‖v2‖1. Further ψi(~v) = −∞ if ‖v‖1 > z.

These compact representations allow CAIMS to efficiently run VE in time
∑`

i=1O (2si)

(si = size of ith community) even after adding the global constraint factor fc (Lemma 4). In

fact, this is the best one can do, because any algorithm will have to look at all values of each

community-specific factor in order to solve the problem.

Lemma 4. CAIMS’s VE has time-complexity
∑`

i=1O (2si), where si is the size of the ith factor

(community). There exists no procedure with better time complexity.

Proof of Lemma 3 & 4. We go over the exact procedure of the modified VE algorithm and prove

Lemmas 3 and 4 in the process. For the forward pass, we compute max~a
∑`

x=1 fx(~ax) + fc(~a).

We know that fc depends only on the L-1 norm of ~a, so we represent it as fc(‖~a‖1). Also note

that, the communities are disjoint, because of which each action bit ai (of action ~a) appears in the

argument of exactly one factor fx (other than the constraint factor fc).

As mentioned in the paper, we eliminate all variables of a community at once. So, to eliminate

the first block of variables, we compute max~a1 f1(~a1) + fc(‖~a‖1) = ψ1(‖~a−1‖1), where ~a−1

denotes all action bits of ~a except those in ~a1. Note that, in the RHS of this expression, we use

‖~a−1‖1 as opposed to ~a−1 itself because the LHS (before computing the max) depends only on

~a1 and ‖~a1‖1 + ‖~a−1‖1. Also, note that for ‖~a−1‖1 > z, we have ‖~a‖1 > z making fc(‖~a‖1)

and ψ1(‖~a−1‖1) equal to −∞.

To make this more concrete, Table 9.1 shows how ψ1 is exactly computed. Here, v(x)
i denotes

the maximum value of fx when exactly i bits of ~ax are 1, and sx denotes the number of bits in

~ax.

Apart from computing the maximum objective value (forward pass), we also need to com-

pute the maximizing assignment of the problem (backward pass). For this, we maintain another

function µ1(‖~a−1‖1) which keeps track of the value of ~a1 at which this maximum is attained

(for each value of ‖~a−1‖1), i.e. µ1(v) = argmax~a1 [f1(~a1) + fc(‖~a1‖1 + v)]. After eliminating
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‖~a−1‖1 ψ1(‖~a−1‖1)

0 max
(
v

(1)
0 + fc(0), v

(1)
1 + fc(1), · · · v(1)

s1 + fc(s1)
)

1 max
(
v

(1)
0 + fc(1), v

(1)
1 + fc(2), · · · v(1)

s1 + fc(s1 + 1)
)

...
...

z v
(1)
0 + fc(z)

> z −∞

Table 9.1: Factor obtained on (first) block elimination

variables of the first community, we are left with max~a−1

∑`
x=2 fx(~ax) + ψ1(‖~a−1‖1). We re-

peat the same procedure and eliminate ~a2 by computing max~a2 f2(~a2) + ψ1(‖~a−1‖1), to obtain

ψ2(‖~a−1,−2‖1). Note that, again, ψ2 depends only on the L-1 norm of the remaining variables.

Also, for ‖~a−1,−2‖1 > z, ψ2 becomes −∞. In a similar way, this holds for the remaining gener-

ated factors, giving Lemma 4.

Once we complete the forward pass, we are left with ψ`(0) which is the maximum value

of the objective function. Then, as in standard VE, we backtrack and use the µx functions to

obtain the maximizer argmax~a
∑`

x=1 fx(~ax) + fc(‖~a‖1), i.e. µ`(0) gives us the value of ~a`,

then µ`−1(‖~a`‖1) gives us the value of ~a`−1, µ`−2(‖~a`‖1 + ‖~a`−1‖1) gives us the value of ~a`−2

and so on.

Observe that to compute the ith derived factor, we needed to compute max~ai fi(~ai) +

ψi−1(‖~a−1,−2,···−(i−1)‖1) = ψi(‖~a−1,−2,···−i‖1). And for this, we just need to compute v(i)
s for

each s = 0, 1, · · · si, as evident from Table 9.1. This takes time O(2si), where si denotes the size

of the ith community. Hence, the time complexity of the whole algorithm is
∑`

i=1O (2si).

Markov Net Beliefs FV-POMCP uses unweighted particle filters to represent beliefs, i.e. a

belief is represented by a collection of states (also known as particles), wherein each particle

has an equal probability of being the true state. Unfortunately, due to CAIM’s exponential state-

space, this representation of beliefs becomes highly inaccurate which leads to losses in solution

quality.

To address this limitation, CAIMS makes the following assumption: availability of network

nodes is positively correlated with the availability of their neighboring nodes in the social net-

work. This assumption is reasonable because homeless youth usually go to shelters with their
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friends (Rice & Rhoades, 2013). Thus, the confirmed availability of one homeless youth increases

the likelihood of the availability of his/her friends (and vice versa). Under this assumption, the

belief state in CAIM can be represented using a Markov Network. Formally, the belief is given

as b = 〈N ,M , numAct, sessID〉, where N is a Markov Network representing our belief of

the true realization φ (note that the other three components of a state are observable). With the

help of this Markov Network, we maintain exact beliefs throughout the POMCP tree of CAIMS.

As mentioned before, the prior distribution Φ that serves as part of the initial belief state is also

represented using a Markov NetworkN0. This prior can be elicited from field observations made

by homeless shelter officials, and can be refined over multiple runs of CAIMS. In our simula-

tions, the social network structure G = (V ,E) is used as a surrogate for the Markov network

structure, i.e., the Markov network only has potentials over two variables/nodes (one potential

for each pair of nodes connected by an edge in social network G). Thus, we start with the initial

belief as 〈N0, {}, 0, 1〉. Upon taking actions a = 〈S, type〉 and receiving observations o, the

belief state can be updated by conditioning the Markov network on the observed variables (i.e.,

by conditioning the presence/absence of nodes based on observations received from past query

actions taken in the current session). This helps us maintain exact beliefs throughout the POMCP

tree efficiently, which helps CAIMS take more accurate decisions.

9.4 Evaluation

We show simulation results on artificially generated (and real-world) networks to validate

CAIMS’s performance in a variety of settings. We also provide results from a real-world fea-

sibility study involving 54 homeless youth which shows the real-world usability of CAIMS. For

our simulations, all the networks were generated using NetworkX library (Hagberg, Schult, &

Swart, 2008). All experiments are run on a 2.4 GHz 8-core Intel machine having 128 GB RAM.

Unless otherwise stated, we set L = 3, Qmax = 2, K = 2, and all experiments are averaged over

50 runs. All simulation results are statistically significant under t-test (α = 0.05).

Baselines We use two different kinds of baselines. For influence maximization solvers, we

use Greedy (Kempe et al., 2003), the gold-standard in influence maximization as a benchmark.

We subject Greedy’s chosen nodes to contingencies drawn from the same prior Φ distribution that
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(a) SBM Networks (b) PA networks

Figure 9.3: Influence Spread Comparison

CAIMS uses. We also compare against the overprovisioning variant of Greedy (Greedy+) where

instead of selecting K nodes, we select 2K nodes and influence the first K nodes that accept

the invitation. This was proposed as an ad-hoc solution in (Yadav et al., 2017c) to tackle con-

tingencies, and hence, we compare CAIMS against this. We also compare CAIMS against state-

of-the-art POMDP solvers such as SARSOP and POMCP. Unfortunately, FV-POMCP cannot be

used for comparison as its VE procedure is not guaranteed to satisfy theK budget constraint used

inside CAIMS.

Solution Quality Comparison Figures 9.3a, 9.3b and 9.6a compares influence spread of

CAIMS, Greedy, Greedy+ and POMCP on SBM (p = 0.4, q = 0.1), Preferential Attachment

(PA) (n = 5) and real-world homeless youth networks (used in (Yadav et al., 2016a)), respec-

tively. We select K = 2 nodes, and set T = 6, L = 3 for CAIMS. The X-axis shows the size of

the networks and the Y-axis shows the influence spread achieved. Figures 9.3a and 9.3b show that

on SBM and PA networks, POMCP runs out of memory on networks of size 120 nodes. Further,

these figures also show that CAIMS significantly outperforms Greedy and Greedy+ on both SBM

(by ∼73%) and PA networks (by ∼58%). Figure 9.6a shows that even on real-world networks of

homeless youth (which had ∼160 nodes each) , POMCP runs out of memory, while CAIMS out-

performs Greedy and Greedy+ by∼25%. This shows that state-of-the-art influence maximization

solvers perform poorly in the presence of contingencies, and a POMDP based method (CAIMS)

outperforms them by explicitly accounting for contingencies. Figures 9.3a and 9.3b also show

that Greedy+ performs worse than Greedy.

Scale up Having established the value of POMDP based methods, we now compare CAIMS’s

scale-up performance against other POMDP solvers. Figures 9.4a and 9.4b compares the runtime

89



(a) Scale up in T (b) Scale up in K

Figure 9.4: Scale Up Results

of CAIMS, POMCP and SARSOP on a 100 node SBM network with increasing values of T and

K respectively. The X-axis shows T (or K) values and the Y-axis shows the influence spread.

Figure 9.4a shows that both POMCP and SARSOP run out of memory at T = 2 sessions. On

the other hand, CAIMS scales up gracefully to increasing number of sessions. Similarly, Figure

9.4b (T = 10) shows that SARSOP runs out of memory at K = 1, whereas POMCP runs out

memory at K = 2, whereas CAIMS scales up to larger values of K. These figures establish the

superiority of CAIMS over its baselines as it outpeforms them over a multitude of parameters and

network classes.

(a) Influence Spread (b) Runtime

Figure 9.5: Value of using Markov Networks

Markov Nets We illustrate the value of Markov networks to represent belief states in CAIMS.

We compare CAIMS with and without Markov nets (in this case, belief states are represented us-

ing unweighted particle filters) on SBM networks of increasing size. Figure 9.5a shows influence
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spread comparison between CAIMS and CAIMS-Particle (the version of CAIMS which uses un-

weighted particle filters to represent belief states). Figure 9.5b shows runtime comparison of

CAIMS and CAIMS-Particle on the same SBM networks. These figures shows that using a more

accurate representation for the belief state (using Markov networks) improved solution qualities

by∼15% at the cost of∼3X slower runtime. However, the loss in speed due to Markov networks

is not a concern (as even on 160 node networks, CAIMS with Markov networks runs in ∼75

seconds).

(a) Homeless Youth Networks (b) Feasibility Trial

Figure 9.6: Real World Experiments

Real World Trial We conducted a real-world feasibility trial to test out CAIMS with a home-

less shelter in Los Angeles. We enrolled 54 homeless youth from this shelter into our trial and

constructed a friendship based social network for these youth (using social media contacts). The

prior Φ was constructed using field observations made by shelter officials. We then executed

policies generated by CAIMS, Greedy and Greedy+ on this network (K = 4, Qmax = 4 and

L = 3) on three successive days (T = 3) in the shelter to invite homeless youth to attend the

intervention. In reality, 14 out of 18 invitations (∼80%) resulted in contingency events, which

illustrates the importance of accounting for contingencies in influence maximization. Figure 9.6b

compares influence spread (in simulation) achieved by nodes in invited sets selected by CAIMS,

Greedy and Greedy+. This figure shows that CAIMS is able to spread 31% more influence as

compared to Greedy and Greedy+.
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9.5 Conclusion

Most previous influence maximization algorithms rely on the following assumption: seed nodes

can be influenced with certainty. Unfortunately, this assumption does not hold in most real-world

domains. This paper presents CAIMS, a contingency-aware influence maximization algorithm

for selecting key influencers in a social network. Specifically, this paper makes the following

five contributions: (i) we propose the Contingency-Aware Influence Maximization problem and

provide a theoretical analysis of the same; (ii) we cast this problem as a Partially Observable

Markov Decision Process (POMDP); (iii) we propose CAIMS, a novel POMDP planner which

leverages a natural action space factorization associated with real-world social networks; (iv) we

provide extensive simulation results to compare CAIMS with existing state-of-the-art influence

maximization algorithms; and (v) we test CAIMS in a real-world feasibility trial which confirms

that CAIMS is indeed a usable algorithm in the real world. Currently, CAIMS is being reviewed

by homeless youth service providers for further deployment.
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Chapter 10

Conclusion and Future Work

Artificial Intelligence has made rapid advances in the last couple of decades, which has led to

an enormous array of AI applications and tools that play an integral role in our society today.

However, despite this exciting success, strong market forces ensure that most AI applications are

developed to mostly serve people in urban areas, who are financially and geographically well

placed to access these AI applications and tools for their personal benefit. Unfortunately, even in

2017, a large proportion of the world population (45% to be precise) lives in extremely rural areas.

Even more tragically, almost 80% of the world population still lives in extreme poverty (i.e., they

survive on less than USD 2.5 a day). Thus, a very large fraction of people on planet Earth do

not have either financial resources, or cannot access most AI based applications. Moreover, these

low-resource communities suffer from a large range of problems (such as access to healthcare,

good education, nutritional food and respectful employment, among others), which have not been

tackled by Artificial Intelligence and Computer Science as much.

This thesis takes a forward step towards solving challenges faced by some low-resource com-

munities. In order to better understand these problems, this thesis is the result of long-lasting

collaborations and communications with researchers at the USC School of Social Work and prac-

titioners at several homeless youth service providers. I have been very fortunate to work directly

with these domain experts, learning from their experience and expertise to improve my influence

maximization solutions, and especially going on the field with them to deploy my algorithms in

the real-world. While this thesis primarily uses public-health issues faced by homeless youth for

motivation and exposition, the algorithms, methodological advances and insights derived from

this thesis could easily follow over to other domains involving low-resource communities. In
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particular, it emphasizes how several challenges faced by these low-resource communities can be

tackled by harnessing the real-world social networks of these communities. In the recent past,

governments and non-profit organizations have utilized the power of these social networks to

conduct social and behavioral interventions among low-resource communities, in order to enable

positive behavioral change among these communities. This thesis focuses on how the delivery

of these social and behavioral interventions can be improved via algorithmic techniques, in the

presence of real-world uncertainties, constraints and challenges.

While a lot of algorithmic techniques exist in the field of influence maximization to con-

duct these interventions, these techniques completely fail to address the following challenges:

(i) unlike previous work, most problems in real-world domains are sequential decision making

problems, where influence is spread in multiple stages; (ii) there is a lot of uncertainty in social

network structure, evolving network state, availability of which nodes can get influenced, and

the overall influenced model, which needs to be handled in a principled manner; (iii) despite two

decades of research in influence maximization algorithms, none of these previous algorithms have

been tested in the real-world, which leads us to question the effectiveness of influence maximiza-

tion techniques in the real-world. While adopting such simplistic assumptions is a reasonable

start for developing the first generation of influence maximization algorithms, it is critical to ad-

dress these aforementioned challenges in order to obtain effective strategies which not only work

on paper, but also in practice.

This thesis tackles each of these three challenges by providing innovative techniques and

significant methodological advances for addressing real-world challenges and uncertainties in in-

fluence maximization problems. Specifically, this thesis has the following five key contributions.

10.1 Contributions

1. Definition of the DIME Problem: Over the past twenty years, researchers have mostly

looked at the standard single-stage influence maximization problem (or some slight varia-

tions), and proposed increasingly complex and sophisticated algorithms to solve that prob-

lem. Informed by lots of discussions with domain experts, this thesis proposes the Dynamic
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Influence Maximization under Uncertainty (or DIME) problem, which is much more rep-

resentative of real-world problems faced in many domains involving low-resource commu-

nities. Further, this thesis characterizes the theoretical complexity of the DIME problem

and shows that it is not amenable to standard approximation techniques.

2. POMDP Based Algorithms for the DIME Problem: This thesis presents two algorithms

to solve the DIME problem: PSINET and HEALER. PSINET is a novel Monte Carlo (MC)

sampling online POMDP algorithm which makes two significant advances over POMCP

(the previous state-of-the-art). First, it introduces a novel transition probability heuristic

(by leveraging ideas from social network analysis) that allows storing the entire transition

probability matrix in an extremely compact manner. Second, PSINET utilizes the QMDP

heuristic to enable scale-up and eliminates the search tree of POMCP. On the other hand,

HEALER uses several novel heuristics. First, it uses a novel two-layered hierarchical en-

sembling heuristic. Second, it uses graph partitioning techniques to partition the uncertain

network, which generates partitions that minimize the edges going across partitions (while

ensuring that partitions have similar sizes). Since these partitions are “almost" discon-

nected, we solve each partition separately. Third, it solves the intermediate POMDP for

each partition by creating smaller-sized sampled POMDPs (via sampling uncertain edges),

each of which is solved using a novel tree search algorithm, which avoids the exponential

branching factor seen in PSINET (Yadav et al., 2015). Fourth, it uses novel aggregation

techniques to combine solutions to these smaller POMDPs rather than simple plurality vot-

ing techniques seen in previous ensemble techniques (Yadav et al., 2015).

3. First-ever real-world deployment of influence maximization algorithms: This thesis

also presents first-of-its-kind results from three real-world pilot studies, involving 173

homeless youth in Los Angeles. The pilot studies helped in answering several questions

that were raised in Section 1. First, we learnt that peer-leader based interventions are indeed

successful in spreading information about HIV through a homeless youth social network

(as seen in Figures 8.6a). These pilot studies also helped to establish the superiority (and

hence, their need) of HEALER and DOSIM – we are using complex agents (involving
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POMDPs and robust optimization), and they outperform DC (the modus operandi of con-

ducting peer-led interventions) by 160% (Figures 8.6a, 8.9a). The pilot studies also helped

us gain a deeper understanding of how HEALER and DOSIM beat DC (shown in Figures

8.6b, 8.7b, 8.7a) – by minimizing redundant edges and exploiting community structure of

real-world networks.

4. POMDP Based Algorithm to Handle Uncertainty in Availability of Nodes: Based on

experiences faced during the pilot studies, this thesis also proposes the Contingency-Aware

Influence Maximization problem and provide a theoretical analysis of the same. Further,

it proposes CAIMS, an algorithm to avoid contingencies (common events when homeless

youth fail to show up for the interventions). CAIMS is a novel POMDP planner which

leverages a natural action space factorization associated with real-world social networks,

and belief space compaction using Markov networks. Results from a real-world feasibility

trial involving CAIMS are also presented, which confirms that CAIMS is indeed a usable

algorithm in the real world.

10.2 Future Work

The field of Artificial Intelligence stands at an inflection point, and there could be many different

directions in which the future of AI research could unfold. My long-term vision is to push AI

research in a direction where it is used to help solve the most difficult social problems facing the

world today. Within this broad goal, I plan to tackle fundamental computer research challenges in

areas such as multiagent systems, reasoning with uncertainty, multiagent learning, optimization,

and others to model social interactions and phenomena, which can then be used to assist decision

makers in the real world in critical domains such as healthcare, education, poverty alleviation,

environmental sustainability, etc.

One example near-term research project I will focus on is fundamental research at the in-

tersection of game-theory and influence maximization, that arises from considering nodes of

the social network (i.e., human beings) as self-interested agents. For example, in domains such

as poverty alleviation and environment sustainability, humans (in the social network) have their

own personal incentives which need to be satisfied in order for them to get influenced (and for
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(a) PTSD Veterans: Promoting Men-
tal Health Awareness

(b) Food for Poverty Stricken:
Provisioning Food at Low Costs
for Poor Children

(c) Obesity Prevention among
School Children: Promoting
Healthier Eating Habits

Figure 10.1: Potential Domains for Future Work

.
them to spread influence). I aim to answer basic questions including how to model game theory

and influence maximization in an integrated manner, defining appropriate equilibrium solution

concepts, and incentivization mechanisms to achieve these notions of equilibrium. Moreover,

introducing game theoretic aspects into influence maximization would require tackling a multi-

tude of fundamental research challenges such as uncertainties about game and model parameters,

learning accurate human behavior models to find optimal game theoretic strategies.

I also plan to work on introducing spatio-temporal dynamics in influence maximization,

and more generally, social network problems in the presence of data. Most previous work in

influence maximization assumes that influence spreads in the network in discrete time steps, with

no regards to the spatial and temporal factors that may hinder or facilitate influence spread. As

my work on activation jump model (Section 1.2) illustrates, these assumptions are not adequate to

model real-world social phenomena. Moreover, in many real-world domains, the nodes in a social

network (or the influencers) act in a geographical space over time. Therefore, it is important to

develop models and algorithms which tackle spatio-temporal aspects such as continuity of the

influence spread process over space and time, complex spatial constraints and dynamic behavior

patterns (that limit possible paths of influence spread).
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