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ABSTRACT
Increases in poaching levels have led to the use of unmanned aerial
vehicles (UAVs or drones) to count animals, locate animals in parks,
and even find poachers. Finding poachers is often done at night
through the use of long wave thermal infrared cameras mounted
on these UAVs. Unfortunately, monitoring the live video stream
from the conservation UAVs all night is an arduous task. In order to
assist in this monitoring task, new techniques in computer vision
have been developed. This work is based on a dataset which took
approximately six months to label. However, further improvement
in detection and future testing of autonomous flight require not
only more labeled training data, but also an environment where
algorithms can be safely tested. In order to meet both goals effi-
ciently, we present AirSim-W, a simulation environment that has
been designed specifically for the domain of wildlife conservation.
This includes (i) creation of an African savanna environment in
Unreal Engine, (ii) integration of a new thermal infrared model
based on radiometry, (iii) API code expansions to follow objects of
interest or fly in zig-zag patterns to generate simulated training
data, and (iv) demonstrated detection improvement using simulated
data generated by AirSim-W. With these additional simulation fea-
tures, AirSim-W will be directly useful for wildlife conservation
research.
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Figure 1: Example conservation UAV used by Air Shepherd.
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1 INTRODUCTION
Wildlife conservation is one of the most important sustainability
goals today, and innovations in artificial intelligence are uniquely
suited to advancing it. When it comes to wildlife poaching in par-
ticular, artificial intelligence has already played an important miti-
gating role. In order to maximize the protection of national parks
and conservation areas, it has been used to assist park rangers in
planning their patrols to find poachers and snares, both in pre-
dicting future poaching incidents [16, 22] and creating strategies
to detect poaching or signs of poaching activity [19, 62]. Recent
advances in unmanned aerial vehicle (UAV or drone) technology
have made UAVs viable tools to aid in park ranger patrols. UAVs
can play a role in patrolling by deterring poaching through the use
of signaling [63], serving as a lookout for park rangers, or even
acting as a separate patroller when equipped with the ability to
automatically detect animals and poachers in UAV videos. An ex-
ample of a conservation UAV flown by the conservation program,
Air Shepherd, is shown in Fig. 1.

The ability to detect animals and poachers in UAV videos, partic-
ularly thermal infrared videos, is an active area of research due to
the small size of humans and animals in UAV videos, the UAV mo-
tion, and the low-resolution, single-band nature of thermal infrared
videos. In our previous work, a dataset of 70 historical thermal
infrared videos was labeled [13]. These videos were collected by
Air Shepherd between 2015 and 2017 during flights which typically
occur at night based on pre-programmed paths. Flights go on for
about 8 hours per night, with individual flights that are 2 hours long
due to battery life. When objects of interest are observed on these
flights, the UAVs are flown manually in order to follow the objects
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of interest. Often, however, videos do not have many objects of
interest, or it is difficult to identify objects of interest in the videos
as human observers. This means that videos had to be checked for
content first before labeling, which added additional time to the
process. In total, this labeling process took approximately 800
hours over the course of 6 months to complete, and produced
39,380 labeled frames and approximately 180,000 individual poacher
and animal labels on those frames. At a rate of $11 per hour, this
cost about $8,800 for labeling alone, plus flying costs between 2015
and 2017. Together, the time and money associated with labeling
make it extremely difficult to collect large labeled datasets like this.

Once the 70 videos had been labeled, individual frames were
used to train Faster RCNN [44] for animal and poacher detection,
which was part of a larger system called SPOT [12]. Training was
completed on 22,663 total frames, with 18,480 total frames for the
animal model and 4,183 frames for the poacher model. Note that
these models each detect both animals and poachers, but due to the
random sampling, the animal model performed better at detecting
animals than other tested models, and the poaching model per-
formed better at detecting poachers than the other tested models.
SPOT performed better than the existing tool used by Air Shepherd.

Although SPOT is immediately useful to park rangers in the
field as a decision aid, park rangers or others hired to monitor
the videos are still required to confirm human detections made by
SPOT and then manually fly the UAV to follow the human. In order
to improve detection performance, more labeled training data is
needed. Additionally, to further relieve the burden on rangers, we
would like to allow for autonomous flight to follow planned patrol
routes, deviate from the plans as needed to further investigate
possible detections, and automatically follow detected humans.
However, testing of autonomous flight in the field could be costly,
as mistakes could lead to poached animals. Existing work does
not address these unique challenges, so we propose a new method
based on simulation of the domain environment. This allows us to
augment our dataset of labeled thermal infrared videos efficiently,
and to provide a testing environment for future autonomous flight
and other costly experiments in the domain of wildlife conservation,
such as patrol planning.

To build a simulation with these features, we use Unreal Engine
and AirSim [51]. Unreal Engine is a game engine where various
environments and characters can be created, and AirSim is a simu-
lator for drones and cars built on Unreal Engine. AirSim supports
hardware-in-the-loop (e.g., Xbox controller) or a Python API for
moving through the Unreal Engine environments, such as cities,
neighborhoods, and mountains. AirSim specifically consists of a
vehicle model for the UAV, which is modeled as a quadrotor, an
environment model, made up of gravity, magnetic field, and air
pressure and density models, a physics engine for the linear and an-
gular drag, accelerations, and collisions, and finally a sensor model
for the barometer, gyroscope and accelerometer, magnetometer,
and GPS. The models are created such that real-time flights are
possible. As a result, scene, segmentation, and depth images can be
collected during flights or drives through the environments, which
allows artificial intelligence researchers to experiment with deep
learning, computer vision, and reinforcement learning algorithms
for autonomous vehicles.

In this work, we present AirSim-W, which includes the (i) cre-
ation of an African savanna environment in Unreal Engine, (ii)
expansion of the current RGB version of AirSim to include a ther-
mal infrared model based on physics, (iii) expansions to follow
objects of interest or fly in zig-zag patterns to generate simulated
training data, and (iv) demonstrated detection improvement using
simulated data generated by AirSim-W. With these contributions,
AirSim-W will be directly used for wildlife conservation research,
especially for the challenges of poacher and animal detection in
UAV videos and patrol planning for UAVs and foot patrols.

2 RELATEDWORK
First of all, the main problem of interest is to utilize simulation for
wildlife conservation. For the problem of automatic detection of
wildlife and humans in UAV videos, in addition to SPOT [12], there
has also been some work on wildlife counting based on videos from
UAVs using primarily traditional computer vision or machine learn-
ing techniques, including [39] and [57]. They either rely on RGB
images in high resolution or do not consider real-time detection,
and SPOT has shown improvement over a traditional computer
vision result in near real time.

To improve on these results, we now examine data augmentation.
Performance is often improved by increasing the amount of data
used during training. For example, to train AlexNet [30], simple
data augmentation involving cropping, translation, and horizontal
reflections was utilized to increase the size of the training dataset
by a factor of 2048, which helped reduce overfitting. They further
augmented the dataset using PCAs to perturb digital counts. More
recently, deep learning models such as generative adversarial net-
works (GANs) and recurrent neural networks (RNNs) have shown
great promise in the realm of data augmentation [14, 24, 27, 43, 55].
In [43], deep convolutional GANs (DCGANs) are used to augment
datasets and even draw certain objects, such as a bedroom. Style
transfer and image-to-image translation are other areas being con-
sidered for data augmentation [36, 67]. These could be used to take
many images of horses and convert them to zebras, or convert im-
ages taken in daylight to nighttime images, all of which may help
with a specific computer vision task. However, these methods (i) do
not account for thermal infrared imagery, and (ii) do not consider
the physical processes that are involved in image capture, such as
movement of the image capture platform.

Further data augmentation is possible using simulation from
computer graphics. There are many examples of environments that
have been built using rendering tools such as Unity [46] and Unreal
Engine [51]. Digital Imaging and Remote Sensing Image Generation
(DIRSIG) [26] is another example, where facetized surface models
can be generated using AutoCAD, 3ds Max, Rhinoceros, Blender3D,
or SketchUp, for example. Some environments exist with physics
engines that allow for testing robotics systems within the envi-
ronment, such as autonomous cars or UAVs. There are many of
these environments, but we will only mention AirSim and Gazebo
[29, 51]. In any case, datasets can then be generated using these
environments. For example, SYNTHIA [46] is a dataset generated
by capturing images in a city environment in Unity, and has shown
improvement in semantic segmentation. GANs have been used to
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give simulated data like SYNTHIA a more realistic look and to fur-
ther improve semantic segmentation [52, 65]. Few models examine
the thermal domain, except DIRSIG, which uses a full radiometric
model for thermal simulation, and [18], which uses simple 3D CAD
models of solitary objects and a basic radiometric model.

Specifically in domains where little training data exists, undertak-
ing the task of labeling large amounts of data can be time consuming
and tedious, and data augmentation may be a necessity. For exam-
ple, in the self-driving car domain, [28] trains a model using only
simulated data to improve over the same model trained entirely
on real data, while testing on real data. Video games such as GTA
V can also be used to collect eye movement data for driving [9].
Another example in which there is a specific domain that may not
have enough data in existing datasets is [53], where a mapping
from simulated data from Unity to more realistic simulated data
is learned and applied, and the results are used to train reactive
obstacle avoidance and semantic segmentation neural networks.

For the purposes of our wildlife conservation domain, we re-
quire (i) data augmentation capabilities for computer vision tasks
and (ii) a full simulation environment for future development in
ranger and UAV patrol planning and autonomous UAV flights for
conservation purposes. As already mentioned, GAN models have
shown promise in data augmentation, but they do not account for
thermal infrared imagery and the physics behind image capture.
Of the simulation environments mentioned, although all promising
for data augmentation, only AirSim and Gazebo allow for future
conservation patrol and autonomous flight testing.

In this paper, we seek to build a tool suitable for the wildlife con-
servation domain.Wewill utilize AirSim due to the ability to use Un-
real Engine as the underlying rendering tool. We will generate our
environment, which will be an African savanna, in Unreal Engine.
This will allow us to capture images in real time with AirSim [51],
and to control actual flight parameters for image capture. We will
also create a basic model of the physical characteristics of thermal
infrared cameras to expand the performance of Unreal Engine and
AirSim for training data generation in the poacher and animal detec-
tion domain. Finally, we will utilize our novel simulation technique
in the area of wildlife conservation in particular, and it can be down-
loaded and easily used here: https://github.com/Microsoft/AirSim.

3 AFRICAN SAVANNA ENVIRONMENT
To effectively run simulation of thermal infrared imagery capture,
we needed to build out an environment that was similar to biomes
found in the central African savanna, when viewed through imagery
captured at an altitude from 200 to 400 feet (61 to 122 m) above
ground level (AGL). We used web-sourced target images and Google
Earth to visualize the environment in several national parks where
Air Shepherd has flown previously. Visual targets varied from wide-
open savanna plains to dense forest, and flatland to craggy canyons.
Because of this large range, we chose to develop a representative
biome rather than a facsimile of an existing location. Key features
were wide-open space, dense forest, a mid-density area, a water
feature, road access, and poachers and appropriate animals.

We first included the correct plants, animals, and humans. Flora
in the area generally consists of baobab, acacia, and hookthorn
trees, as well as brush and grass. We were able to find accurate

vegetation models for each of the tree types from an existing 3D
model vendor, SpeedTree. We were also able to find a variety of
pre-animated and rigged animals including elephants, rhinoceroses,
hippopotamuses, zebras, lions, and crocodiles in the Unreal Engine
Marketplace. Animals can also be found at TurboSquid, another 3D
model vendor. Note that while we have not seen hippopotamuses or
crocodiles in real data, we are able to model them in this simulated
environment, allowing us to train on features which are lacking in
our dataset. This is extremely useful as it allows us to address issues
such as missing data or class imbalances in data, which is another
benefit of using simulation. Our three poacher characters were the
only assets that were custom, and were created with Autodesk,
leveraging animation created from a motion capture suit to give a
realistic walking motion.

Then, the general flow for the environment creation follows
typical game environment workflow. We created the one square
mile flat terrain, then sculpted in hills and depressions for water,
with the water in the center of the map. The Unreal Engine scale
unit is 1 cm, so we started with a rectangular polygon of 6 feet
in length to appropriately scale people and animals in the scene.
Following this, we created spline-based movement of the actors
before starting the scene dressing. The Path Follow plug-in, which
can be found on the Unreal Engine Marketplace, was used to create
the actor movement as it provided a better movement capability
than the native UE4 spline-based movement.

We next started dressing the scene. A water plane was added and
adjusted for the desired water level. Vegetation was added with the
native paintbrush capability using various densities to reflect dense,
mid, and sparse areas, and was repeated for each of the vegetation
types. Instead of painting performance-reducing grass across the
entire scene, textures were created to reflect the look we desired
for improved performance during real-time video capture. A dirt
road was cut into the scene and textured appropriately, and two
vehicles were sourced to add to the scene.

The scene reflects three generic areas of vegetation density to
support imagery targets across all three areas with three sets of
poachers added to the scene. A set of poachers consists of three
individual characters with each set following a spline in a large
loop. We intersected the poacher loops with elephants on spline
loops to capture images of both poachers and animals together.
Additionally, zebras were scattered across the environment and
animals were clustered around the watering hole.

Overall, the Africa environment was created in approximately
3 working weeks with an artist and part-time developer, totaling
approximately $5000 and about 180 hours. The bulk of the time
spent on this scene was the terrain, watering hole, vegetation, and
design of the NPC movement, with a lesser amount of time on
creating the animal and poacher spline movement. Several example
images from the environment are shown in Fig. 2.

Should these costs be unmanageable to those in the conservation
domain when considering environments other than an African sa-
vanna, transfer learning is a low-cost possibility to consider in
the future, especially because the Africa environment is being
made freely available through Microsoft AirSim (https://github.
com/Microsoft/AirSim/releases). In addition, many of the assets
used in the Africa environment came from the Unreal Engine Mar-
ketplace. There are likely environments, animals, and plants from
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Figure 2: Example still images from theAfrica environment.

other regions that could be simply bought and used directly. To-
gether, these facts make creating an environment other than an
African savanna for other domains possible at a relatively low cost.

4 EXPANSION FROM RGB TO THERMAL
INFRARED

4.1 Physical Modeling Assumptions
Although the African savanna environment is already useful by
itself, we must expand it to include thermal infrared imagery in
order to augment our dataset for detecting animals and humans
in thermal infrared imagery. Simulated RGB imagery alone is not
useful because flights are done at night, when RGB imagery is not
available. Additionally, we pre-train Faster RCNN using ImageNet,
which is a database including millions of RGB images that can
be used by the network to understand edges and shapes before
learning the specific thermal infrared image domain.

In order to simulate thermal infrared imagery from the RGB
imagery in AirSim, particularly the resulting segmentation map,

we will rely on physical modeling. Due to the large number of inter-
actions between photons and objects in or near the scene, modeling
light can become extremely complicated. In the thermal domain
at night, for example, thermal light reaching the camera on a UAV
could come from several different sources: (i) atmosphere at some
temperature emitting thermal infrared photons directly into the
sensor, (ii) atmosphere at some temperature emitting thermal in-
frared photons that hit the ground and are reflected by the target
into the sensor, (iii) thermal infrared photons emitted directly from
the target into the sensor (this can be modeled using Planck’s Law
[49]), and (iv) thermal infrared photons emitted by nearby objects
that are then reflected by the target into the sensor. These different
contributions are called upwelled, downwelled, direct, and back-
ground radiance, respectively [49]. In addition to the atmosphere
contributing photons directly to the signal, it can also play a role
whenever photons travel from the target to the sensor. Depending
on whether it is humid, cloudy, rainy, etc., this role can be larger or
smaller, and is often modeled by radiative transfer models such as
MODTRAN [11]. Other effects on the signal include the uniformity
with which the objects of interest emit light (e.g., whether or not
they are Lambertian), camera spectral response, and camera sensor
noise, especially non-uniformity correction in microbolometers.

Because all of this involves a significant amount of modeling of
complex physical phenomena, we will make simplifying assump-
tions to create a simplistic physical model of the thermal infrared
image that would result from objects in the African savanna at
certain temperatures. First, upwelled radiance and downwelled ra-
diance are negligible with a clear, dry, cool atmosphere. Most of
the year this would hold true in Africa, except during rainy season
in the summer, when flights are not likely to take place anyway.
A clear, dry, cool atmosphere also has negligible effects on trans-
mission. Background radiance is negligible in cases of mostly flat
terrain, which generally applies in a savanna. This means that the
dominant contribution is direct, so we do not consider the contri-
butions of the atmosphere to the signal, nor do we consider the
transmission of the atmosphere because we assume it is clear, dry,
and cool. We must also assume that objects emit energy uniformly
(e.g., Lambertian objects) in order to use Planck’s Law to model the
direct contribution. The camera spectral response is measurable,
and an estimate for a similar FLIR sensor was available [6]. Finally,
we assume that the camera lens has perfect transmission and no
falloff. These last two assumptions are false. However, these and
some of the other effects we are assuming to be negligible could be
accounted for in the future either by including them in the calcula-
tions explicitly, or with a technique such as style transfer [36] or
image-to-image translation [67].

Given these assumptions, we model the signal at the sensor using
only the direct contribution, given by Planck’s Law (Eq. 1):

L(T , ϵavд ,Rλ) = ϵavд

∫ λ=14µm

λ=8µm
Rλ

(
2hc2

λ5
1

exp( hc
kT λ ) − 1

)
dλ (1)

where L is radiance [W /m2/sr ],T is temperature [K], ϵavд is the
average emissivity over the bandpass, Rλ is the peak normalized
camera spectral response, h is Planck’s constant, c is the speed of
light, λ is the wavelength [µm], and k is the Boltzmann constant.
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Emissivity, a value ranging between 0 and 1, relates the radiation
of a real object to that of a blackbody, which is a perfect emitter. A
blackbody would have an emissivity of 1, and a real object would
have an emissivity less than 1. Emissivity is wavelength dependent,
but we consider the average over the wavelengths to which the
thermal infrared camera is sensitive.

We can calculate this integrated radiance for all objects in our
segmentation map from AirSim. For example, given the pixel loca-
tions of a human, we can estimate or measure the temperature and
emissivity of the human and use Eq. 1 to estimate the resulting ra-
diance at the sensor. We then normalize by the maximum radiance
in the scene to create an 8-bit thermal image.

4.2 Database
For our simulation, we estimate the temperatures and emissivities
of objects that may be found in the African savanna, although
these could be measured in the future if desired. In terms of the
objects to model, we are interested in humans and animals, and
the typical plants found in the savanna, which include acacia and
baobab trees, shrubs, and grass, including elephant grass [4]. Thus
our database focuses on bare soil, water, trucks, grass, shrubs, acacia
trees, humans, elephants, rhinoceroses, hippopotamuses, crocodiles,
and zebras, with possible future expansions of this database. All
estimates of these objects’ temperatures and emissivities can be
found in Table 1.

The emissivities and sources can primarily be found in Table 1,
though some cases require slightly more explanation. First, note
that for animal and human emissivity, the emissivity refers to skin.
Also note that the estimate for elephant skin emissivity comes from
Asian elephants. We assume that rhinoceroses and hippopotamuses
have the same emissivity of the elephant, as supported by the claim
in [42] that 0.96 is the standard emissivity for biological tissue. For
crocodile skin, we assume an emissivity similar to that of other
reptiles, 0.96 [54]. Emissivity for a truck is based on the emissivity
of oxidized steel [5], which is based on the rusty look of the trucks
in simulation. Also, for acacia emissivity, the estimate came from a
woodland savanna in Veracruz. Emissivities for specific species of
grass and other plants can be found in this study [40].

Although we will assume these emissivities apply in all seasons,
the temperature estimates will depend on the air temperature. We
first consider winter conditions for these estimates because of the
cool, dry assumptions wemade of the atmosphere already. However,
we also have real data in other seasons, so wewill make temperature
estimates for summer conditions as well, bearing in mind that
assuming the atmospheric effects are negligible in the summer will
be less accurate than the winter. Overnight in winter, it can be near
or below freezing, often with frost in southern Africa, where Air
Shepherd typically flies [2, 41]. Therefore, we will assume the air
temperature is approximately 273 K in winter at night. In summer
at night, we assume air temperature is 293 K [2].

Internal temperatures in the cases of humans and animals are
relatively simple to consider, but we need external temperatures,
with clothes in the case of humans. There is extensive work in
modeling human temperature for thermal comfort [15, 20, 33]. We
use a study that measured human surface temperature with clothes
[35], find a linear fit for the increasing temperature data found for

Winter Summer
Object Temp. (K) Temp. (K) Avg. ϵ
Soil 278 288 0.914 [56]
Grass 273 293 0.958 [56]
Shrub 273 293 0.986 [56]

Acacia Tree 273 293 0.952 [8]
Human 292 301 0.985 [5]
Elephant 290 298 0.96 [47]
Zebra 298 307 0.98 [37]

Rhinoceros 291 299 0.96
Hippopotamus 290 298 0.96

Crocodile 295 303 0.96
Water 273 293 0.96 [5]
Truck 273 293 0.80

Table 1: Approximate temperatures and emissivities over
night.

"Mean skin and surface temperatures in the stable condition", and
use the linear fit to estimate the surface temperature of a human
in an environment at 273 K. For elephants, we refer to two stud-
ies in which external temperatures were measured [10, 60]. We
estimate external elephant temperature to be 290 K at an external
temperature of 273 K, again by using a linear fit to the measure-
ments from the two studies. Based on [10], the temperature of the
rhinoceros and hippopotamus are approximately the same as that
of the elephant, though the rhinoceros is 1 K warmer. We therefore
assume that these will have the same temperature at 273 K as the
elephant (plus 1 K for the rhinoceros). The external temperature of
the zebra [25] was measured at an air temperature of 296 K to be
308 K. We use the same linear fit as elephants, adjusted to intersect
this data point, to estimate the zebra’s external temperature to be
298 K at 273 K. Crocodiles are cold-blooded and therefore bask in
the sun in the winter for survival. [17] has approximately measured
their external temperature in the winter to be 295 K because of this.
Finally, the temperature for the truck was assumed to be equal to
air temperature since it is metal that is not in sunlight, which we
also assume has been off for several hours. This would likely lead to
thermal equilibrium since metals have a lower thermal conductivity
[45]. This assumption was validated using a non-contact infrared
thermometer after a car sat in darkness for several hours.

For plants and soil, there is also quite a bit of modeling that could
be done to estimate their exact temperatures. We will instead find
our estimated temperatures based on some generalizations. Also,
we will assume that the temperatures of only the top-most objects
will be observed by the sensor, so, for example, we will not consider
soil under plants. Plant leaves are typically cooler than the air due
to evaporation, especially at night when the sun is not present to
warm them [34]. Small leaves typically have smaller differences
in temperature with the air than large leaves because they have a
thinner boundary layer with the air [61]. Acacia leaves are typi-
cally very small [1], on average 0.175 square cm in southern Africa
[61]. Spiny shrub leaves and grass leaves are also typically smaller.
Therefore, these should approximately track the air temperature.
This is supported by [21].



COMPASS ’18, June 20–22, 2018, Menlo Park and San Jose, CA, USA Bondi et al.

The plains in parts of southern Africa are made up of red loamy
mokata soils, which can become dry during the winter dry season
[41]. The soil is likely at the permanent wilting point (PWP) in
terms of water content in the winter [58]. Loam at PWP has the
following characteristics: density of 1.52 t/m3, specific heat of 1.72
MJ/m3/K, thermal conductivity of 0.65 W/m/K, thermal diffusiv-
ity of 0.38 10−6m2/s, and thermal admittance of 1057 J/K/m2/s0.5
[58]. Saturated loam, which might be the case in the summer, has
a specific heat of 3.06 MJ/m3/K. Because air has a specific heat
closer to 0.0012 MJ/m3/K, soil temperatures change less quickly
than air temperatures [3]. Depending on the time of night, there
will be different air temperatures, and consequently different soil
temperatures. At 1am in Morris, Minnesota on Oct. 30 at a depth of
1 cm, for example, both the soil and air temperatures are about 279
K. However, at 5am, the soil temperature is about 277 K, and the
air temperature is about 273 K [38]. In addition, [66] estimated soil
temperature based on air temperature. At 273 K in Arizona, the soil
temperature is approximately 278 K. Given these examples, we will
assume the temperature of the soil overnight is approximately 5 K
warmer than the air temperature.

Now we have established that the leaves we care about have
approximately the same temperature as the air, and that soil has a
slightly more moderate temperature than the air. The air tempera-
ture should be tracked by grass, shrubs, acacia trees, and soil.

To create a summer temperature database, we utilize the same
techniques and linear fits to estimate the temperatures of humans,
elephants, rhinoceroses, hippopotamuses, and zebra. We now as-
sume that soil will be 5 K cooler than air temperature, once again
due to Arizona estimates and knowing that soil temperature will
be more moderate in temperature changes than air. Otherwise, we
assume grass, shrubs, trees, truck, and water, will track air tem-
perature. We assume the crocodile has a temperature of 303 K in
summer based on [50].

4.3 Blur and Noise
To this points, we have not considered blur or noise. The point
spread function (PSF) is a measure of blur, as it describes the re-
sponse of an imaging system to a perfect point of radiance. At best,
the imaging system will be diffraction-limited, which will lead to
some blur around the point of radiance. However, other factors,
such as imperfections in the lens or atmospheric effects, can also
contribute to the PSF and lead to blur in the image [49]. After light
passes through the environment and the lens, it interacts with
the detector to create an image. Noise is present in all detectors.
Microbolometers are the detectors that are commonly used in un-
cooled thermal infrared cameras. When a thermal infrared photon
strikes the detector, the temperature rises, and the resistance of
the detector changes [7]. According to [32], the three main sources
of noise in microbolometers are Johnson noise, flicker noise, and
thermal noise. The Johnson noise is due to the resistor nature of
the microbolometer. The flicker noise is due to flaws in the material
surface in semiconductors [48]. The thermal noise is due to the heat
exchange with the environment, which is important with uncooled
microbolometers, though can be mitigated by changing the gain.
[7] mentions that there is also fixed pattern noise (FPN) due to the
fact that each microbolometer has a slightly different resistance for

the same incoming thermal infrared photons. Although there are
in fact other noise sources, such as periodic noise, which can be
present in these videos, we focus on Johnson noise, flicker noise,
thermal noise, and FPN. Other noise sources could be incorporated
in the future.

In order to model these phenomena, again in a simplistic manner,
we first utilize a Gaussian distribution for the PSF. This could be
replaced with a real model of the PSF for the cameras being used
in the field based on images they capture. However, the Gaussian
blur kernel used here to loosely approximate a PSF has a standard
deviation of 1, which was chosen visually.

Thermal noise and Johnson noise are both characterized bywhite
Gaussian noise ([23, 32]). We utilize Gaussian 1/f noise to model
the flicker noise [59]. Both are modeled based on [31, 64]. Finally,
the FPN is modeled as uniform random noise [7]. The same noise
distributions were used for all frames of the same video, with the
FPN scaled by the first image’s standard deviation. All are added to
the normalized image, which is then scaled and clipped, to produce
the final image.

4.4 Process
In order to convert from RGB to infrared, therefore, we now have
the following: a segmentation map from the RGB simulation that
specifies the objects in each image captured, a thermal infrared
digital count associated with all of the objects in the simulation,
and a simple model for blur and noise. We therefore assign the
thermal infrared digital count to the corresponding object in the
segmentation map to get a thermal infrared image. Finally, we add
the blur and noise. Fig. 3 shows two examples, one each for winter
and summer temperatures, where we see the segmentation map,
the corresponding thermal infrared image, and the image with blur
and noise.

5 UTILIZING AIRSIM-W FOR POACHER AND
ANIMAL DETECTION

5.1 Generating Training Data with AirSim-W
In order to generate simulated thermal infrared imagery for use in
deep learning algorithms, we follow the workflow depicted in Fig.
4. We utilize the Python API and add the option to fly in a zig-zag
pattern, or to return a position for a specific object of interest at each
time step. This could then be used to follow the specific object of
interest, such as a poacher, to ensure the object is in the frame at all
times. Furthermore, we adjust flight altitude and look angle using
Computer Vision Mode, and we adjust the season to determine
which digital counts should be used. Once these parameters are
set, we fly, either in the zig-zag pattern or following an object of
interest, and capture the segmentation image in each time step.
Finally, we convert this image into the thermal infrared image for
the time step.

For evaluation purposes, this process was used to generate data
from 12 flights, 6 summer and 6 winter. Together, this yielded 84,073
individual frames containing objects of interest. Each of the 12
flights consisted of 30 minutes of flying time, totaling 6 hours.
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Figure 3: Segmentation, thermal infrared image without noise, and final thermal infrared image. Top: summer, bottom: winter.
Both rows contain animals.

Fly	in	AirSim-W

Capture	
segmentation	

images

Map	
segmentation	
to	infrared	DC

Add	noise

Train	deep	
learning	model

Repeat as needed

Balance	real	
dataset

Model	infrared	
DC

Figure 4: Workflow for generating deep learning training
data with AirSim-W, particularly for generating data for
poacher and animal detection in thermal infrared data.

5.2 Balancing Data
In the case of real thermal infrared videos of animals and poachers
captured aboard UAVs, we have six classes: small animal, medium
animal, large animal, small poacher, medium poacher, and large
poacher, where the threshold for “small” is an average bounding box
area of about 200 pixels and less throughout the video, and “large”
is on average greater than 2000 pixels. These are balanced with
negative samples automatically in Faster RCNN. However, because
we have full videos whichmust stay consistently in either the test or
train sets, and individual frames thatmay containmultiple objects of
interest from different classes, we cannot simply randomly sample
full videos for use in training, as was done in [12]. If we do, we may
not actually balance all six classes in terms of individual samples.

For example, if we have 100 frames with two small poachers and
one small animal, we must take into account that there will be 200
small poachers introduced by including all 100 frames, while there
will only be 100 small animals introduced. Furthermore, we would
like to be able to detect at all three sizes.

Therefore, we sample the training set through the use of a mixed-
integer linear program (MILP). The motivation of using a MILP is
that we would like to use as many different train videos as possible,
so the balanced dataset will not just sample all consecutive frames
from just one or two videos. In other words, by utilizing more
unique videos, we provide our algorithm with samples with more
variety. We also define “frame types”, each can be represented by a
6-dimensional vector, indicating the number of objects from each
class. For example, one frame type could be (1, 0, 0, 1, 0, 0) meaning
frames of this type have one small animal and one small poacher. A
video can have frames of various frame types. For simplicity in the
paper, we denote the frame types as type 1, 2, 3, etc. Therefore, our
objective is to use frames from as many different videos as possible,
while maintaining balance between the total number of labels in
different classes, and bearing in mind that we have many different
frame types in videos.

We now formally define this as an MILP. i is the index of the
video, j is the index of the frame type, and k is the index of the
label type (i.e., which class the object of interest belongs to). Then,
cki j is the number of type k labels in the type j frame in video i

(e.g., if type 2 frame is “empty” frame in video 1, then ck12 = 0 for
any k , if type 4 frame is “single small poacher only” frame in video
1, then c114 = 1 and ck14 = 0, ∀k , 1). Ni j is the number of type j
frames in video i . Lkl and Lku are the lower bound and upper bound,
respectively, of the desired total number of type k labels. These
bounds implement the balance requirement on the total number of
labels in different classes.

xi j is a variable representing the number of type j frames in video
i that are sampled or selected. uk and vk are variables referring
to the maximum and minimum number of type k labels that are
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selected from a single video among all videos except the videos that
have no type k label at all and the videos whose type k labels are all
selected (i.e.,

∑
j c

k
i jxi j =

∑
j c

k
i jNi j ). Finally,wk

i is binary indicator
indicating if all type k labels in video i are selected.

min
∑
k

(uk −vk ) (2)

uk ≥
∑
j
cki jxi j ,∀i,k (3)

vk ≤
∑
j
cki jxi j +Mwk

i ,∀i,k (4)

wk
i ∈ {0, 1},∀i,k (5)

M(1 −wk
i ) ≥

∑
j
cki jNi j −

∑
j
cki jxi j ,∀i,k (6)

xi j ≤ Ni j ,∀i, j (7)

Lkl ≤
∑
i

∑
j
cki jxi j ≤ Lku ,∀k (8)

xi j ∈ N,∀i, j (9)

(2) is the objective function, which minimizes the difference in the
number of labels of each type selected from videos. The objective
function implicitly encourages a balanced number of labels being
selected from different videos for each label type. In the ideal case,
this objective function takes value 0, when each label type, an equal
number of labels is selected from each video. (3) and (4) define the
variables in the objective function. In (4), we will multiply byM , a
large positive number, if all k labels in the video i are selected, as
defined in (5) and (6). (7) simply ensures that the number of sampled
frames is less than or equal to the number of frames in the video i .
(8) ensures that we are within the desired number of samples based
on our frame choices, and finally (9) ensures the number of frames
sampled is integer.

The introduction ofwk
i is to make sure that when we compute

vk , we exclude the videos whose type k labels are already fully
selected. Consider the case where there is a video A that only has
3 large animal labels in total among all frames. Then, we want to
include all these labels in our selection, and at the same time, we
also want to balance the number of labels of large animals in other
videos which have a large number of large animal labels. So, we
need to exclude video A when computing vk .

The current MILP enforces this requirement. Given the objective
function in (2), the optimizer will try to makevk as large as possible.
Since (4) is the main restriction for vk , the optimizer will try to set
wk
i to be 1 whenever possible. (6) ensures thatwk

i can take the value
of 1 only if all type k labels in video i are already selected. Note
that settingwk

i = 0 is still feasible when the condition is satisfied,
but setting wk

i = 1 can achieve at least the same and sometimes
better objective value.

Given the optimal solution to this MILP, we randomly select the
specified number of frames from each frame type in each video to
achieve a balanced dataset that uses as many different videos as
possible.

6 EVALUATION
6.1 Qualitative Tests
First, we examine the simulated images qualitatively. In Fig. 5,
we observe three pairs of real and simulated frames side-by-side.
Although noise has been modeled simply, meaning some periodic
noise and gain fluctuations are not present, they otherwise look
very similar when it comes to relationships between the objects of
interest, such as trees and soil. For example, in Fig. 5(b), the trees
are darker than the surrounding ground, as in the simulation. The
same is true for Fig. 5(a). In Fig. 5(c), humans are approximately the
same size in both.

6.2 Quantitative Tests
Qualitatively, the simulated images look similar to the real images
(other than noise). We now evaluate the simulated data quantita-
tively by utilizing it in one wildlife conservation task of interest,
detecting poachers and animals in thermal infrared images. First,
we examine the effects of balancing the real dataset based on the
MILP we presented earlier. For the new balanced dataset, we have
651 total labeled frames to train onemodel, out of the original 39,380
frames. We do not choose different models (e.g., different training
data) for animals and poachers based on performance as we did
previously with SPOT. To conduct this first test of balancing data
only, we initialize using pre-trained ImageNet weights for Faster
RCNN, and fine-tune using the 651 balanced frames. These results
are found in the column labeled “None, Regular” in Tables 2 and 3,
as there was no simulated data used in this initial test of balancing
data only.

Next, we examine the effects of adding simulated data. We test
two types of simulated data: regular simulated data, without blur
or noise added, and noisy simulated data, including the blur and
noise discussed in Section 4.3. To run these tests, we initialize using
pre-trained ImageNet weights for Faster RCNN as before. We then
fine-tune using the simulated data, and finally fine-tune using real
data. For real data, we conduct two tests: (i) fine-tune using the
balanced real dataset, and (ii) fine-tune using the SPOT datasets.
SPOT is our previous system based solely on real data. Again, the
first test (i) is fine-tuning with balanced data after first fine-tuning
with simulated data, and the second test (ii) is fine-tuning with
the SPOT unbalanced data after first fine-tuning with simulated
data. Each fine-tuning process takes 4 hours on an NVIDIA Titan
X (Pascal).

The results for fine-tuning using the simulated data only, without
noise, can be found in the column labeled “Regular, None”, the
results for (i) are labeled “Regular, Balanced” and “Noisy, Balanced”
based on the type of simulated data, and the results for (ii) are
labeled “Regular, SPOT”. We also include the previous results from
SPOT in the first column. Again, SPOT uses different models for
poacher and animal videos, so results for SA, MA, LA for “None,
SPOT” and “Regular, SPOT” are fine-tuned using the SPOT animal
model, and the results for MP, LP are fine-tuned using the SPOT
poacher model. Note that the simulated data is primarily balanced
by construction because poachers and animals are co-located in
the simulation environment, and because we believe that balancing
the data becomes less important when there is a large amount of it.
Also note that in the simulated dataset, we flew only at 200 and 400
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(a)

(b)

(c)

Figure 5: Qualitative comparison of real frames (left), basic thermal infrared simulated frames (middle), and noisy simulated
frames (right). 5(a): summer, 5(b): winter, 5(c): winter. The images in the first and third rows contain poachers, and the images
in the second row contain animals. The simulated images in the third row also contain animals.

ft, which means there were no large animals or large poachers, and
most objects of interest were actually around the small-medium
data threshold of 200 pixels in area.

The test set contains six historical videos containing animals or
poachers of different sizes. These are the same test videos used to
evaluate SPOT in [12]. The combined results for all tests can be
found in Table 2 and Table 3. SA, MA, LA, MP, and LP represent
the objects of interest in that particular test video. They are small
animals, medium animals, large animals, medium poachers, and
large poachers, respectively. Small poachers were excluded because,
as with SPOT, none in this particular test video were identified

correctly. This is because the poacher bounding boxes are less than
20 pixels in area.

6.3 Discussion
There are several interesting results. First, for recall, using simu-
lated data produces best results for 4 test videos and on average.
It is especially interesting that using only simulated data without
any real data produces the best recall results for SA. Using simu-
lated data plus SPOT produces the best precision results on average,
though SPOT without simulated data does produce the best pre-
cision results overall for videos SA, MA, and LA. We believe this
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Table 2: Precision results.

Simulation None None Regular Regular Regular Noisy
Video/Real SPOT Balanced None SPOT Balanced Balanced

SA 0.5729 0.5232 0.0166 0.4044 0.3536 0.4286
MA 0.5544 0.5510 0.0041 0.5066 0.5228 0.5498
LA 0.5584 0.3873 0.0318 0.5407 0.4404 0.4592
MP 0.0995 0.1660 0 0.1136 0.1864 0.2633
LP 0.3977 0.3571 0.0074 0.7799 0.2286 0.0294
Avg. 0.4366 0.3969 0.0120 0.4690 0.3464 0.3461

Table 3: Recall results.

Simulation None None Regular Regular Regular Noisy
Video/Real SPOT Balanced None SPOT Balanced Balanced

SA 0.0025 0.0026 0.0044 0.0027 0.0020 0.0014
MA 0.0131 0.0278 0.0117 0.0355 0.0272 0.0254
LA 0.2293 0.2939 0.1297 0.2825 0.3149 0.2971
MP 0.0073 0.1304 0 0.0111 0.1168 0.0953
LP 0.0188 0.0054 0.0038 0.0374 0.0014 0.0004
Avg. 0.0542 0.0920 0.0299 0.0738 0.0925 0.0839

could be attributed to several reasons: (i) we selected the model
from SPOT that performed best with animals and kept this separate
from the poacher model, (ii) using more real data is better than
using more simulated data in general, as the SPOT animal model
used about 18,480 real animal frames, or (iii) we lacked large animal
examples in simulation. More simulated data could be generated in
the future to test this.

The addition of noise only improves over the other datasets in
the case of precision for MP. This is interesting, as it implies that
perfect images for initial training may actually be beneficial, or that
a more sophisticated noise model such as a GAN is necessary. We
can further examine this in future work.

It is also interesting to note that balanced data alone performs
comparably to SPOT, which used 22,663 frames, while balanced data
used only 651 frames. This implies that having a dataset with variety
might mean that less data is needed. For example, if we must label
real data, we may consider labeling only a few frames per video in
the future as opposed to labeling full videos in [13]. We may also
consider different distinctions than small, medium, and large, or
assign these distinctions per frame instead of on average to further
improve balancing. In addition, using simulated data only for fine-
tuning while testing on real data does provide nonzero results
on most videos, sometimes comparable with real data only. This
implies that should labeling a large dataset be too costly, generating
large amounts of simulated data may be sufficient to achieve results
on real data, and will reduce significant labeling burden. Either
of these techniques, or both combined, could allow for less costly,
better data collection in the future. Future work could determine
the optimal amount of simulated and real data.

7 CONCLUSION
In conclusion, we present AirSim-W, a new simulation environment
and data augmentation technique built specifically for wildlife con-
servation. AirSim-W includes the (i) creation of an African savanna
environment in Unreal Engine, (ii) thermal infrared modeling, (iii)
new methods to fly the UAVs throughout the scene for training
data collection, and (iv) demonstrated detection improvement using
simulated data generated by AirSim-W. Labeling real data costs
over $8000, while the creation of the simulated environment, which
can generate unlimited amounts of data, costs closer to $5000. The
cost of the simulated data could be lowered in the future when ex-
panding to other animals and environments by developing transfer
learning techniques, possibly by using the existing Africa envi-
ronment (https://github.com/Microsoft/AirSim/releases), and/or by
finding existing environments and animals. Also, labeling real data
took approximately 800 hours total, whereas creating the environ-
ment and generating simulated data took approximately 200 hours.
With these contributions, AirSim-W will be a cost efficient, useful
tool for wildlife conservation research, especially for the problems
of poacher and animal detection in UAV videos, patrol planning for
UAVs and foot patrols, and camera trap placement.
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