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Abstract 

To improve cyber defense, researchers have developed 
algorithms to allocate limited defense resources optimally. 
Through signaling theory, we have learned that it is possible to 
trick the human mind when using deceptive signals. The 
present work is an initial step towards developing a 
psychological theory of cyber deception. We use simulations 
to investigate how humans might make decisions under various 
conditions of deceptive signals in cyber-attack scenarios. We 
created an Instance-Based Learning (IBL) model of the 
attacker decisions using the ACT-R cognitive architecture. We 
ran simulations against the optimal deceptive signaling 
algorithm and against four alternative deceptive signal 
schemes. Our results show that the optimal deceptive algorithm 
is more effective at reducing the probability of attack and 
protecting assets compared to other signaling conditions, but it 
is not perfect. These results shed some light on the expected 
effectiveness of deceptive signals for defense. The implications 
of these findings are discussed. 
 
Keywords: cyber deception; cognitive models; instance-based 
learning; stackelberg security games 

Introduction 

Fooling the human eye is a skill that magicians learn to do 

very effectively, and one that cognitive scientists investigate 

to try to reveal answers about essential aspects of human 

cognition (Ekroll & Wagemans, 2016). Within the domain of 

cybersecurity, cognitive scientists try to understand the 

power of deception: a form of persuasion where one 

intentionally misleads an agent into a false belief, in order to 

gain an advantage over the agent and to achieve one’s goals 

(Rowe & Rushi, 2016). 

While there is much work in the psychology of deception, 

most of what is currently known consists of the use of verbal 

and nonverbal cues, including appearance, gestures, and 

descriptions, and the role of these attributes of social 

interaction (Morgan, LeSage & Kosslyn, 2009; Bond & 

DePaulo, 2008; Riggio & Friedman, 1983). For example, 

most studies frame the study of deception as it relates to the 

body, face, and the cues that may be leaked through gestures 

and words (Riggio & Friedman, 1983). In other words, most 

of what we know about the psychology of deception relies on 

the physical observation of behavior. 

Increased mobile technology and connectedness among 

people and communities have moved our societies from the 

physical to the cyberworld: an adversarial setting where 

security is of essence. Many cyber attacks occur when 

attackers take advantage of the power of deception. Cyber 

attackers intentionally mislead end-users and cyber defenders 

into believing that an action is “safe” in order to manipulate 

humans into disclosing information or granting access to 

security systems. Like magicians, cyber attackers are 

learning to fool the human mind quite effectively. However, 

cyber defenders can also use deceptive techniques to try to 

mitigate attacks and to deter or catch attackers. 

Understanding how attackers learn to adapt to deceptive 

techniques is important to developing better defense systems. 

In physical security systems, researchers have developed 

algorithms that plan optimal allocation of limited defense 

resources (Tambe, 2011; Pita et al., 2008; Shieh et al., 2012). 

The challenge of security resource optimization carries over 

to cybersecurity where it is important to assist human 

administrators in defending networks from attacks (Gonzalez 

et al., 2014). Researchers have relied on insights from 

Stackelberg Security Games (SSGs) to develop strategies to 

optimally allocate defense resources (Tambe, 2011). SSGs 

model the interaction between a defender and an adversary as 

a leader-follower game (Tambe, 2011). A defender plays a 

particular defense strategy (e.g., randomized patrolling of 

airport terminals) and then the adversary takes action after 

observing the defender’s strategy. Recently, this research 

leveraged signaling theory, where algorithms aim at finding 

how to “trick” an adversary through the use of deceptive 

signals in a two-stage SSG (Xu et al., 2015). While proven to 

work well against perfectly rational adversaries, this research 

is still in its infancy when it comes to understanding how a 

human would interpret and react to deceptive signals. 



Our research investigates how humans might learn to react 

to deceptive signaling algorithms. Whereas there is previous 

work in modeling human decision making in a single-stage 

SSG, it has not addressed deceptive signaling (Abbasi et al., 

2016). Our methods involve pairing deception strategies, 

including a known and highly regarded defense algorithm 

(Xu et al., 2015), against a high-fidelity cognitive model 

known for its accurate representation of human decisions 

from experience. We created an Instance-Based Learning 

(IBL) model of the attacker decisions (Gonzalez, Lerch & 

Lebiere, 2003) using the ACT-R cognitive architecture 

(Anderson & Lebiere, 1998). The security algorithms and 

ACT-R model interacted in a newly created Insider Attack 

Game over multiple rounds with multiple trials in each round. 

We studied the adaption and learning of the IBL model 

against the various defense algorithms in order to predict the 

effectiveness of the deceptive signals against boundedly-

rational human agents. 

Our simulation results show that the probability of attack 

increases when there is no warning and decreases under the 

optimal deceptive signaling algorithm, almost reaching the 

optimal probability of attack predicted by the algorithm. 

Interestingly, the cognitive algorithm learns to attack less 

often when the signal is sometimes deceptive than when the 

signal is always truthful. The cumulative score per round also 

demonstrates that the optimal deceptive signaling algorithm 

is far better at protecting the assets than truthful warnings. 

In what follows, we first describe the Stackelberg Security 

Game (SSG) in the context of the Insider Attack scenario 

used in our simulations, and introduce the optimal deceptive 

signaling algorithm. We next describe the IBL cognitive 

model and the implementation of the simulations that pair the 

model against the optimal deceptive signaling algorithm, and 

other defense algorithms, in a SSG. Finally, we present our 

results and discuss their implications. 

A SSG in an Insider Attack Scenario 

For the present work, a SSG was developed under an Insider 

Attack scenario in order to situate the cover story within the 

cybersecurity domain. In this Insider Attack Game, an 

adversarial agent takes the role of an employee at a company 

whose goal is to maximize their score by “hacking” 

computers to steal proprietary information and avoid being 

caught by the security analysts (defenders) that monitor the 

computers. Agents are presented with six computer targets, 

each with a different payoff (reward/penalty) structure. 

Agents are provided the reward and penalty values associated 

with each computer. On a given trial, two security analysts, 

controlled by an algorithm, monitor one computer each. 

From the perspective of the defenders, the game is a two-

stage security game. As in classic single-stage SSGs, the first 

stage involves allocating defense resources. For the present 

security game, the allocation of the security analysts is 

optimized by computing the Strong Stackelberg Equilibrium 

(SSE), which provides a probability of monitoring (m-prob) 

each computer. Agents are provided this information as a 

percentage of time that each computer is monitored. In the 

second stage, information about whether the computer 

selected by the attacker is being monitored is strategically 

revealed to the attacker (Xu et al., 2015). It is in this second 

stage where defenders can take advantage of deceptive 

signaling techniques. 

For each trial, agents first select one of the targets to attack. 

They are then presented with information about whether or 

not the computer is being monitored. They must then make a 

decision to either continue or withdraw the attack. If an agent 

attacks a computer that is monitored, then they lose a penalty 

between 1 and 10 points, but if the computer is not monitored 

they gain a reward between 1 and 10 points. If they choose to 

withdraw the attack, they receive 0 points. 

Agents perform four rounds of 25 trials each. Each round 

consists of a different set of computers each with different 

payoff structures, which results in a different allocation of 

defense resources. In the present game, the SSE allocates 

defenses across a round in such a manner that the expected 

values of attacking each computer are positive and all the 

same. In the current version of the game, defenses are 

allocated at the start of each trial in accordance with the SSE 

for the round. Table 1 shows the rewards, penalties, and m-

prob for each computer in each round. 

In the second stage of the Insider Attack Game, the warning 

signal was manipulated in different ways across different 

conditions of the game to assess the effect of deception on 

decision making. The baseline condition of the game is called 

the DeceptiveWarning condition, which presents deceptive 

warning signals according to the optimal deceptive signaling 

algorithm. The key mechanism in this condition is that the 

warning presented in the second stage of the game is 

sometimes a lie. If a computer is being monitored, then the 

attacking agent will always be given a truthful warning signal 

that the computer is currently monitored. If a computer is not 

being monitored, then a certain percentage of the time (which 

is unknown to the agents) a deceptive warning signal is 

presented claiming that the computer is monitored. 

 

Table 1: Payoff structure for each computer per round. 

 

Round Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 

Round 1 [2,  -1,  0.22] [8,  -5,  0.51] [9,  -9,  0.42] [9,  -10,  0.40] [2,  -6,  0.08] [5,  -5,  0.36] 

Round 2 [5,  -3,  0.41] [8,  -5,  0.48] [7,  -6,  0.41] [8,    -9,  0.37] [5,  -7,  0.27] [2,  -4,  0.05] 

Round 3 [3,  -3,  0.30] [9,  -4,  0.60] [6,  -6,  0.40] [5,    -8,  0.29] [3,  -6,  0.20] [2,  -2,  0.20] 

Round 4 [4,  -3,  0.37] [6,  -3,  0.51] [7,  -7,  0.40] [5,  -10,  0.24] [5,  -9,  0.26] [3,  -4,  0.23] 

Note. The first number in brackets is the reward, the second number is the penalty, and the third is the probability that the 

computer is being monitored on any given trial, [payment, penalty, m-prob]. 



The percent of time that a deceptive warning signal is 

presented is determined by computing a conditional 

probability that brings the expected value of attacking the 

computer to zero, as defined by the following equation: 

 

𝑥 =  
(𝑝𝑒𝑛𝑎𝑙𝑡𝑦 × 𝑚-𝑝𝑟𝑜𝑏) 𝑟𝑒𝑤𝑎𝑟𝑑⁄

1 − 𝑚-𝑝𝑟𝑜𝑏
 

 

The baseline DeceptiveWarning condition was compared 

to four other signaling conditions: 

TruthfulWarning – a warning signal is always presented 

when an analyst is present, never when an analyst is absent; 

only truthful signals are presented, no deception is used. 

NoWarning – a warning signal is never presented 

regardless of whether an analyst is present or absent; no 

deception is used. 

AllWarning – a warning signal is presented on every 

trial regardless of actual coverage, therefore a warning is 

deceptive every time the computer is not being monitored. 

RandomWarning – a warning signal is presented 

randomly whether an analyst is present or absent, in 

accordance with the probability of a warning signal being 

presented in the DeceptiveWarning condition. 

Model Description 

A cognitive model of the attacker was created to make 

predictions about how agents would perform against the 

various defense algorithms. The cognitive model is 

implemented in the ACT-R cognitive architecture (Anderson 

& Lebiere, 1998; Anderson et al, 2004) and decisions are 

made following the methodology of instance-based learning 

(IBL) theory (Gonzalez et al., 2003). A model based on 

mechanisms of the ACT-R architecture limits free parameters 

and constrains assumptions of representation and processes. 

IBL has been used to model decision making processes across 

a number of tasks with much success, including supply chain 

management (Gonzalez & Lebiere, 2005), social dilemmas 

(Gonzalez et al., 2015; Lebiere, Wallach & West, 2000; 

Juvina et al., 2011), two-person games (Sanner et al., 2000, 

West & Lebiere, 2001), repeated binary-choice decisions 

(Gonzalez & Dutt, 2011; Lebiere, Gonzalez, & Martin, 

2007), and classical single-stage SSGs (Abbasi et al., 2016). 

In IBL, decisions are based on past experiences, or 

instances, that are similar to the current situation. Typically, 

experiences are encoded as chunks in declarative memory 

that contain a description of the context in which each 

decision is made, the decision itself, and the outcome of that 

decision. In the current model, the context slots include the 

probability that a computer is being monitored (m-prob; 

range 0 to 1.0), the value of the reward (range 0 to 10), the 

value of the penalty (range 0 to -10), and whether or not a 

warning signal was provided (present or absent). The 

decision slot includes the action taken (attack or not attack 

the computer). The outcome slot includes the feedback 

representing the actual points received based on the action. 

For each decision, the model takes the description of each 

target and the action to attack as input, and produces a 

projected outcome of attacking that target by retrieving 

similar past instances. In ACT-R, the retrieval of past 

instances is based on the activation strength of the relevant 

chunk in memory and its similarity to the current context. The 

activation Ai of a chunk i is determined by this equation: 

𝐴𝑖 =  ln ∑ 𝑡𝑗
−𝑑

𝑛

𝑗=1

+ 𝑀𝑃 ∗ ∑ 𝑆𝑖𝑚(𝑣𝑘 , 𝑐𝑘)

𝑘 𝑖

+ 𝜀𝑖 

The first term provides the power law of practice and 

forgetting, where tj is the time since the jth occurrence of 

chunk i and d is the decay rate of each occurrence which is 

set to the default ACT-R value of 0.5. The second term 

reflects a partial matching process, where Sim(vk,ck) is the 

similarity between the actual memory value and the 

corresponding context element for chunk slot k. The term εi 

represents transient noise, a random value from a logistic 

distribution with a mean of zero and variance parameter s of 

0.25 (ACT-R default), to introduce stochasticity in retrieval. 

The activation of a particular chunk determines the 

probability of retrieving that chunk according to the softmax 

equation, also known as the Boltzmann equation, reflecting 

the ratio of chunk activation Ai and its noise level s: 

𝑃𝑖 =  
𝑒

𝐴𝑖
𝑠⁄

∑ 𝑒
𝐴𝑗

𝑠⁄
𝑗

 

The model uses ACT-R’s blending mechanism (Lebiere, 

1999) to retrieve an expected outcome of attacking a target 

based on past instances, computed by the following equation: 

𝑉 = argmin ∑ 𝑃𝑖 × (1 − 𝑆𝑖𝑚(𝑉, 𝑉𝑖))
2

𝑖

 

The value V is the one that best satisfies the constraints of all 

matching chunks i weighted by their probability of retrieval 

Pi. Satisficing is defined as minimizing the dissimilarity 

between the consensus value V and the actual answer Vi 

contained in chunk i. 

Figure 1 shows how the model operates on a given trial. 

The first step is to select a computer to attack (left side of 

Figure 1). The model loops through each of the six computers 

and retrieves a projected outcome of attacking the computer 

through blending, as described above. The computer with the 

highest projected outcome is selected. 

 

 
Figure 1: Model procedure. 



Next, the model is presented with or without a warning 

signal for the selected computer. The context is augmented 

with a slot representing whether a warning is present or 

absent. In the second step of the decision process (right side 

of Figure 1), the model retrieves a blended value representing 

the updated projected outcome of attacking the computer. In 

the selection step, all past instances are available for retrieval. 

However, in the second step, only instances whose Warning 

slot value matches the warning signal are available to be 

retrieved. If the projected outcome is less than or equal to 

zero then the model does not attack and the outcome slot is 

updated with the value 0. If the projected outcome is greater 

than zero then the model attacks and the outcome slot is 

updated to reflect the ground truth outcome depending on 

whether the computer was monitored or not. It is this final 

chunk that is saved in declarative memory as a new instance. 

The model behavior reflects its experiences. If an action 

results in a positive/negative outcome, then its expectation 

will be increased/lowered and the model will be more/less 

likely to select and attack that computer in the future. The 

impact of experiencing a specific outcome also strengthens 

with frequency and weakens with time. 

The model is initialized with eight instances in declarative 

memory that represent the edges of the decision space. That 

is, the chunks represent all the combinations of a reward slot 

value of 0 or 10, a penalty slot value of 0 or -10, an m-prob 

slot value of 0.0 or 1.0, an action slot value of “attack”, a 

warning slot value of “neutral”, and an outcome slot value of 

0, 10, or -10 depending on the given reward, penalty, and m-

prob. With these initial chunks, the model can make a 

heuristically sound decision when starting the game. The 

activation strengths of these chunks quickly decline and they 

do not play a large role in subsequent decisions due to low 

probabilities of retrieval. 

Model Results & Discussion 

For each condition, the model was run 1000 times to generate 

stable estimates. The model was assessed based on 

minimizing both the probability of attacking for the post-

warning decisions and the number of points earned per round. 

Figure 3 shows the mean probability to attack on a given 

trial across rounds. In addition to the five conditions of 

interest, we also plotted the optimal probability of attacking 

given the positive expected value of the targets if no warnings 

were presented (AlwaysAttack; attack 100% of the time 

because the expected value of each target is greater than 

zero), the rationally optimal probability of attacking in the 

TruthfulWarning condition (OptimalTruthful; attack 66% of 

the time, equal to the probability of not receiving a warning 

in the TruthfulWarning condition), and the rationally optimal 

probability of attacking in the DeceptiveWarning condition 

(OptimalDeceptive; equal to the probability of not receiving 

a warning in the DeceptiveWarning condition, assuming the 

employee attacks only when warnings are absent, which is 

0.35, 0.37, 0.33, and 0.30, for rounds 1-4 respectively). 

The results indicate that including deceptive warning 

signals can result in a lowered probability of attack compared 

to other conditions – particularly compared to the Truthful- 

and NoWarning conditions that use the SSE without 

deception – but the model attacks more often than what is 

specified by the OptimalDeceptive probability of attack. 

 

 
Figure 3: Probability to attack on each trial across rounds. 

 

For all conditions, the model begins by attacking a fairly 

high proportion of the time, just above 75% and the pattern 

of attacks adapts quickly in different directions depending on 

the signaling condition. As expected, the model attacks most 

often in the NoWarning condition and continues to increase 

its rate throughout the game approaching but never reaching 

100%. Although the expected value of attacking is positive, 

the model is deterred from attacking after experiencing a loss, 

but over time the model continues to attack as the gains 

outnumber the losses. In the DeceptiveWarning condition the 

probability of attack ultimately decreases to the lowest level 

of all conditions but stays just below 0.50, well above what 

is specified by the OptimalDeceptive probability. In the 

TruthfulWarning condition the model stabilizes between 0.60 

and 0.65 probability of attack (except in round 3), slightly 

below the OptimalTruthful decision of attacking only when 

the target is not covered. In the RandomWarning condition, 

the model quickly stabilizes just below 0.60 probability of 

attack. In the AllWarning condition, the model quickly learns 

to refrain from attacking, likely due to receiving a penalty 

early on when a warning is truthful and then is deterred from 

attacking until those past instances decay and their activation 

strength weakens. The model then begins exploring the 

possibility of attacking and slowly attacks more often 

throughout the rest of the game. Interestingly, Random- and 

AllWarning conditions converge to roughly the same 

probability of attack as the TruthfulWarning condition, even 

though those signals carry no information regarding the 

underlying monitoring probability. 

Figure 4 shows the mean probability of attacking on a 

given trial when a warning signal is present and when one is 

absent. The results indicate that when warnings are always 

truthful, in the TruthfulWarning condition, the model attacks 

when a warning is absent but rarely attacks when a warning 

is present. Interestingly, learning is slower when the warning 

is present than when it is absent, and the model still 

occasionally attacks in the presence of a warning, reflecting 



uncertainty about foregone payoffs. Contrary to expectations, 

when deception is added in the DeceptiveWarning condition, 

the model sometimes attacks when a warning is present, at a 

rate about midway between when only truthful warnings are 

presented (TruthfulWarning condition) and when the 

warnings carry no information of the underlying monitoring 

probability (Random- and AllWarning conditions). However, 

the DeceptiveWarning condition is best at mitigating attacks 

when a warning is presented in the absence of an analyst. 

In the RandomWarning condition, the probability of 

getting a warning is about 66%, but the computer is 

monitored only 33% of the time. Therefore, the probability of 

winning an attack is 66% regardless of the presence of a 

warning. The probability of attack of the model closely 

matches this probability of winning, reflecting the well-

known probability matching bias (Erev & Barron, 2005). 

Similarly, in the AllWarning condition, the model closely 

matches the probability of winning an attack at about 66%. 

In both conditions, the model initially falls to 50% or below, 

and then slowly approaches 66% by the end of the game, 

suggesting that the model displays a risk aversion behavior 

reflecting an initial sampling bias, but that can be unlearned 

through experience (Lebiere et al., 2007). In the 

DeceptiveWarning condition, the probability of attack is just 

below 33% of the time. In this condition warnings are 

presented about 66% of the time, but a computer is being 

monitored on only 50% of those instances. Therefore, the 

model should attack 50% of the time when a warning is 

present. However, that the model attacks less than 33% of the 

time is indicative of another manifestation of risk aversion. 

 

 
Figure 4: Probability to attack on each trial when warnings 

are present or absent. The NoWarning condition only shows 

a line for when warnings are absent. The AllWarning 

condition only shows a line for when warnings are present. 

 

Figure 5 shows the mean total score obtained for each 

round for each condition. The model obtains a much higher 

score in the TruthfulWarning condition than in any other 

conditions because it suffers little loss after learning to refrain 

from attacking when a warning is present in order to obtain 

the best possible outcome on each trial. In other conditions, 

the model sometimes attacks when a presented warning is 

truthful and therefore suffers some loss. The next rewarding 

condition is the DeceptiveWarning, which is far better at 

protecting against loss than the TruthfulWarning condition, 

substantially minimizing the number of points obtained. 

When deceptive signals are used, the model attacks less often 

when a computer is not monitored, reducing the possible 

number of rewards obtained. The model also attacks more 

often when warnings are true, increasing the number of 

penalties obtained. In the NoWarning condition, the model 

obtains almost as many points as in the DeceptiveWarning 

condition, indicating that a high rate of attack results in many 

rewards, but also many penalties, and closely matches the 

expected gain based on the mean expected value of attacking 

(M = 1.43). In the Random- and AllWarning conditions, ones 

in which the warning signals provide no information about 

the underlying monitoring probabilities, the model obtains 

the fewest points, indicating that a random warning signal 

drives randomness in behavior and limits performance. 

However, these two conditions are worse overall in terms of 

mitigating attacks in the presence of warning signals. 

 

 
Figure 5: Mean total score across rounds. 

Conclusion 

The DeceptiveWarning condition performs best in terms of 

both reducing the probability of attack and minimizing loss. 

However, the probability of attack does not reach the level 

predicted by the OptimalDeceptive probability of attack. 

Why does deception not reduce the probability of attack to 

the OptimalDeceptive probability of attack? The algorithm 

governing how often to present a deceptive warning is 

designed to bring the expected value of attacking to zero. 

With an expected value of zero, a perfectly rational agent 

would choose to never attack in the presence of a warning 

signal, preferring to receive zero points with certainty. 

However, a boundedly-rational human might attack 50% of 

the time because the expected value of attacking is equal to 

the expected value of not attacking. In the Insider Attack 

game, the model makes risky decisions and sometimes 

attacks when a warning is presented, learning that it can still 

win sometimes even when a warning is present. Through its 

decisions from experience, the model learns to attack when a 

warning is present at a rate that is still below the probability 

that a warning signal is deceptive, or 50% of the time. 

That the probability of attacking is just below 33% could 

possibly be due to a risk aversion affect (Lebiere et al., 2007). 

For example, in Lebiere et al. (2007), the IBL model initially 

makes risky decisions early on, but a series of poor payoffs 

results in a projected outcome that is lower than that of the 



non-risky alternative. Therefore, the model avoids risky 

decisions and makes the safe choice more often. Similarly, in 

the present model, a series of penalties will lower the 

projected outcome and the model may attack less often. A 

series of non-attacks will lower the probability of attacking, 

but as was seen in Lebiere et al., we can expect the probability 

of attacking to increase to the OptimalDeceptive level given 

more trials as the increasingly long history of instances 

begins to match the probabilities of receiving a warning. 

In conclusion, the allocation of optimal deceptive warning 

signals reduces the probability of attacking when a computer 

is not being monitored, and increases the probability of attack 

when a computer is truly monitored. This latter effect is 

actually good for cybersecurity because the attacker can be 

caught in such situations. The optimal deceptive signaling 

algorithm is effective at persuading adversarial agents to 

behave in a manner that benefits the defender. Using a 

cognitive model to test the assumptions predicted by the 

optimal deceptive signaling algorithm has proven useful to 

exploit opponent cognitive biases and in optimizing the 

effectiveness of the algorithm beyond what can be projected 

by assumptions of perfect rationality. Future research is 

aimed at validating the model against human participants and 

optimizing the defense algorithm. 
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