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Abstract

Protecting an organization’s cyber assets from intrusions and breaches due to attacks by

malicious actors is an increasingly challenging and complex problem. Companies and or-

ganizations (hereon referred to as the defender) who operate enterprise networks employ

the use of numerous protection measures to intercept these attacks, such as Intrusion and

Detection Systems (IDS) and along with dedicated Cyber Emergency Readiness Teams

(CERT) composed of cyber analysts tasked with the general protection of an organiza-

tion’s cyber assets. In order to optimize the use of the defender’s limited resources and

protection mechanisms, we can look to game theory which has been successfully used to

handle complex resource allocation problems and has several deployed real-world appli-

cations in physical security domains. Applying previous research on security games to

cybersecurity domains introduce several novel challenges which I address in my thesis to

create models that deceive cyber adversaries and provide the defender with an alert pri-

oritization strategy for IDS. My thesis provides three main contributions to the emerging

body of research in using game theory for cyber and physical security , namely (i) the

first game theoretic framework for cyber deception of a defender’s network, (ii) the first

game-theoretic framework for cyber alert allocation and (iii) algorithms for extending

these frameworks to general-sum domains.

vii



In regards to the first contribution, I introduce a novel game model called the Cyber

Deception Game (CDG) model which captures the interaction between the defender and

adversary during the recon phase of a network attack. The CDG model provides the

first game-theoretic framework for deception in cybersecurity and allows the defender to

devise deceptive strategies that deceptively alters system responses on the network. I

study two different models of cyber adversaries and provide algorithms to solve CDGs

that handle the computational complexities stemming from the adversary’s static view

of the defender’s network and the varying differences between adversary models.

The second major contribution of my thesis is the first game theoretic model for

cyber alert prioritization for a network defender. This model, the Cyber-alert Allocation

Game, provides an approach which balances intrinsic characteristics of incoming alerts

from an IDS with the defender’s analysts that are available to resolve alerts. Additionally,

the aforementioned works assume the games are zero-sum which is not true in many real-

world domains. As such, the third contribution in my thesis extends CAGs to general-sum

domains. I provide scalable algorithms that have additional applicability to other physical

screening domains (e.g., container screening, airport passenger screening).
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Chapter 1

Introduction

Protecting an organization’s cyber assets from intrusions and breaches due to attacks by

malicious actors is an increasingly challenging and complex problem. This challenge is

highlighted by several recent major breaches which have caused severe damage, such as

the Equifax breach in 2017 and Yahoo in 2016 1. To protect from cyber breaches, com-

panies and organizations employ the use of anti-virus softwares, Intrusion and Detection

Systems (IDS), and Cyber Emergency Readiness Teams (CERT) composed of cyber an-

alysts tasked with the general protection of an organization’s network and cyber assets.

Modern day cyber adversaries are persistent, targeted and sophisticated. This highlights

the tremendous need for organizations protecting against such attacks to model these

adversaries to optimize the application of the network defender’s to protect targets and

systems across the enterprise network. The Cyber Kill Chain [55, 8] encapsulates the nec-

essary steps an adversary must complete to successfully breach the defender’s enterprise

124th Air Force - AFCYBER: http://www.24af.af.mil; 688th Cyberspace Wing: http://www.24af.
af.mil/Units/688th-Cyberspace-Wing
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network.2 Figure 1.1 shows the Cyber Kill Chain3. In the first phase of the Cyber Kill

Chain the adversary spends a significant amount of time completing reconnaissance of

the defender’s enterprise network to learn about the vulnerabilities present and potential

points of compromise. After recon, the adversary’s next phases consist of weaponizing

his exploit or malware, delivering it to the network through some medium and then ex-

ploiting a vulnerability in a system connected to the defender’s network. To finish out his

attack, the adversary’s installs additional malware to ensure persistence and then estab-

lishes a command and control channel so he is able to act on his objectives, i.e., exfiltrate

sensitive information, and complete his ultimate goal from breaching the network.

Figure 1.1: The Cyber Kill Chain developed by Lockheed Martin.

Stopping a cyber breach crucially depends on thwarting an adversary’s attack during

one of the phases occurring in the Cyber Kill Chain. To impede the adversary during

the phases of his attack, network administrators use techniques such as the whitelisting

2The Cyber Kill Chain is a common framework for post analysis of a cyber breach. Recently, it was
used to analyze the methods used by Russian actors targeting energy and other critical U.S. infrastructure
sectors. https://www.us-cert.gov/ncas/alerts/TA18-074A

3Source: https://www.eventtracker.com/tech-articles/siemphonic-cyber-kill-chain/.
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of applications, locking down permissions, and immediately patching vulnerabilities [42].

An interesting direction of research is the use of deception as a framework to improve

cybersecurity defenses [4]. In particular, deception is extremely useful as a defense mech-

anism to impede an adversary during the recon phase of his attack. Criminals who target

networks first map it out by using network scanning tools to ascertain network informa-

tion through a suite of requests using tools such as NMap [53]. Deception is useful here

as the adversary relies on the information received from network scanning tools to learn

about the vulnerabilities he can exploit to compromise the defender’s network. Instead of

directly stopping an attack, deceptive techniques concentrate on diverting an adversary

to attack non-critical systems or honeypots using deceptive views of the network state.

Essentially, approaches for deception focus on making it difficult for the adversary to as-

certain the true state of the network using network scanning tools like NMap. However,

one drawback of most of these previous approaches is that they do not adequately model

the adversarial nature of the cybersecurity domain.

After the recon phase, the adversary must complete phases 2 through 6 of his attack

which include the delivery and exploitation phases of his attack. During these phases,

automated intrusion detection and prevention systems (IDS) generate alerts for poten-

tially malicious activity occurring on the defender’s network where the generated alerts

are aggregated into a central repository security information and event management tools

(SIEM). To resolve the alerts generated by the IDS, human cybersecurity analysts on the

CERT must investigate the alerts to assess whether they were generated by malicious

activity, and if so, how to respond. Unfortunately, these automated systems are noto-

rious for generating high rates of false positives [78]. Compounding this problem is the

3



fact that expert analysts are in short supply, so organizations face a key challenge in

investigating and managing the enormous volume of alerts they receive using the limited

time of analysts. Failing to solve this problem can render the entire system insecure,

e.g., in the 2013 attack on Target, IDS raised alarms, but they were missed in the deluge

of alerts [69]. It is important to note these alerts give the defender the ability to stop

the adversary during the later phases of the cyber kill chain, e.g., the delivery, exploita-

tion, or installation phases, and prevents a network breach from occurring or catches the

adversary earlier in his attack that reduces the damage from a network breach.

An overriding consideration throughout the Cyber Kill Chain is the strategic reasoning

taking place between the network defender and a motivated adversary. Unfortunately, the

defender is limited in her security resources and cannot protect all systems from an attack;

further, the adversary could be conducting surveillance to learn about the defender’s

deceptive strategies and resolution strategies. A drawback of previous approaches to

deception and the prioritization of cyber alert resolution is that they do not sufficiently

consider the response of a strategic adversary. Failing to consider the actions of a strategic

adversary can have detrimental effects on the effectiveness of the defender’s deception and

protection strategies as deterministic (non-randomized) strategies are open to exploitation

by smart adversaries. Game theory provides a foundation for modeling the strategic

interactions between two opposing parties. In this sense, my thesis looks to game theory as

a foundation to improve cyber defense for enterprise networks and to provide another tool

to the network defender to harness for protecting her network from constantly evolving

cyber adversaries.

4



In recent years, the use of game theory has seen tremendous success in security do-

mains for handling handling the complex scheduling and resource allocation problems of

security resources. One model of interest for the cybersecurity problems studied in my

thesis is the Threat Screening Game (TSG) model which was developed for the airport

passenger screening domain. Airport passenger screening relates nicely to the problem of

choosing which incoming alerts to screen with cyber analysts. However, it and other game

theory models fail in three significant ways when being applied to cyber deception and

alert prioritization. Namely, (1) previous game theory models consider an adversary who

observes a mixed strategy from the defender, (2) they do not model defender resources

with heterogenous screening times or attacks which present as probabilistic distributions

over alert types, and (3) previous work assumes a game with zero-sum payoffs.

(a) Network Reconnaissance (b) Cyber Security Operations (c) TSA Screening

Figure 1.2: Domains of application for game theory in varying security domains and
operations.

My thesis addresses these issues and advances the state of the art in the application of

game theory to cybersecurity and the field of security games. The first major contribution

of my thesis is the Cyber Deception Game (CDG) model which captures the interaction

between defender and adversary during the reconnaissance phase of an enterprise network

attack. The second major contribution of my thesis is the Cyber-alert Allocation Game

5



model which provides a game theoretic framework for prioritization of cyber alerts coming

from IDS placed throughout the defender’s network and tackles to second limitation of

previous game theoretic models. The final major contribution of my thesis extends CAGs

to domains with general-sum payoffs that is additionally applicable to physical security

domains as it applies to TSGs as well.

1.1 Cyber Deception

Experienced attackers attempting to infiltrate a network spend a significant amount of

time during the reconnaissance phase of their attack to find vulnerabilities throughout

the network by mapping out the network through NMap scans, stealth SYN scans, TCP

connections scans along with others [54, 42]. After gathering all of this information,

the attacker then mounts their attack on a network. In the cyber domain, the network

administrator has asymmetric information as she knows the true state of the network,

i.e., properties of systems such as its operating system and applications running, and

further, she can deceptively alter responses to network scans sent by an adversary [18, 2].

By hiding or lying about part of each system’s configuration, the defender makes it

significantly harder for the adversary to determine the true vulnerabilities present in

systems on the network. Since exploits generally rely on specific vulnerabilities and

versions of software, incorrectly identifying a system’s software information decreases the

likelihood of a successful attack and increases the amount of time it takes an adversary to

compromise the defender’s network. This type of interaction introduces an opportunity

6



for the defender to employ deceptive techniques at a network level to increase uncertainty

during an adversary’s reconnaissance activities.

The first contribution of my thesis concentrates on how the defender can maximize the

benefit from deceiving cyber adversaries with a mix of true, false and obscure responses to

network scans. To highlight the defender’s advantage, consider a network with 1 system

running Nginx and 2 running Tomcat. Suppose the adversary has a specific exploit for

Nginx. The adversary uses nmap to determine the webserver for each system and deploy

his exploit to the one running Nginx. However, if the defender can lie about the webserver,

the adversary potentially has to deliver his exploit to all systems before infiltrating the

network. This process increases the time spent by the adversary to infiltrate the network

(which gives the defender time to mount a better defense) and increases the chances

the defender identifies an ongoing attack. The main problem for the defender then is

to determine how to alter the adversary’s perception of the network to minimize her

expected loss from an attack.

In this regard, I introduce a novel game theoretic model called the Cyber Deception

Game (CDG) [72] which captures the interaction between the defender and adversary

during the recon phase of network attacks and the cyber kill chain. The CDG model

introduces a framework for a defender to deploy randomized deceptive strategies in a

holistic fashion at a network wide level. I first consider a powerful adversary where I make

a robust assumption about the information the adversary has to determine his optimal

response to the defender’s deceptive strategy In this domain, the adversary is assumed to

view a static version of the network state, i.e., one observed configuration for each system

on the network, which in turn causes the problem of computing the defender’s optimal

7



strategy to be NP-hard. To alleviate these issues, I explore two separate algorithms for

solving CDGs. First, I use a reformulation approach to convert the defender’s non-linear

optimization problem into a MILP. Second, I make use of a Bisection algorithm framework

which solves a sequence of Mixed Integer Linear Programs (MILP) feasibility problems to

obtain an ε-optimal approximate strategy for the defender. The second adversary model

I explore in this research focuses on a naive adversary who is not aware of the deception

and has a fixed set of preferences for systems (given an observed configuration) on the

network. Extensive experimental evaluation is provided comparing the two approaches

and the trade-off between the solving the optimal reformulated MILP and the bisection

algorithm.

1.2 Cyber Threat Screening

Many approaches for mitigating the problem of sifting through the deluge of alerts gener-

ated focus on reducing the number of overall alerts. IDS can be carefully configured, alert

thresholds can be tuned, and the classification methods underlying the detections can be

improved [77, 13, 48]. Other techniques include aggregating alerts [91], and visualizing

alerts for faster analysis [61]. Even when using all of these techniques, there is still a large

volume of alerts which makes it infeasible for analysts to investigate all of them in depth.

My work focuses on the remaining problem of assigning limited analysts to investigate

alerts after automated pre-processing methods have been applied.

The typical approach to managing alerts is either ad-hoc or first investigates alerts

with the highest priority (e.g., risk). However, this fails to account for the adversarial

8



nature of the cyber security setting. An attacker who can learn about a predictable alert

management policy can exploit this knowledge to launch a successful attack and reduce

the likelihood that they will be detected. For example, if the defender had a policy that

only inspects alerts from high valued assets in her network, an attacker who can learn

this evades detection indefinitely by only attacking lower valued assets.

To address shortcomings of the previous methods for cyber alert allocation, I intro-

duce the Cyber-alert Allocation Game (CAG) [73] model which provides a game theoretic

framework for the defender to prioritizes and assign alerts for resolution raised from IDPS

placed on systems and nodes across the network. Game theory allows us to explicitly

model the strategies an attacker could take to avoid detection. By following a randomized,

unpredictable assignment strategy the defender can improve the effectiveness of alert reso-

lution strategies against strategic attackers. The CAG model considers the characteristics

of the alerts (e.g., criticality of origin system), as well as the capabilities of the analysts in

determining the optimal policy for the defender. I develop techniques to find the optimal

allocation of alerts to analysts on the Computer Emergency Readiness Teams (CERT)

in general CAGs and identify special cases where the computation becomes easy. The

main algorithm takes advantage of a compact marginal representation of the defender’s

strategy space that leverages a special type of constraint structure called a bihierarchy

which provides special conditions for when optimizing over the defender’s marginal strat-

egy space is equivalent to the mixed strategy space. Further heuristics are developed to

achieve significant scale-up in CAGs without significant trade-offs in solution quality.

Both the CDG and CAG models assume games in which the payoffs are zero-sum,

however, in many real world security domains this assumption may not hold. Hence, the
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last contribution of my thesis extends the CAG to domains with general-sum payoffs which

I show makes the computation of the defender’s optimal strategy NP-hard [71]. This

work has additional applicability to physical security domains (e.g., shipping container

screening or airport passenger screening) as it extends the work done on Bayesian Threat

Screening Games (TSGs) which previously assumed the payoffs to be general-sum as well.

To deal with these issues, I provide the GATE which combines branch-and-bound search

with Marginal Guided Algorithm, introduced in [22] to solve zero-sum TSGs, to optimally

solve general-sum TSGs and additional heuristics which improve the scalability of GATE

to real-world domains.

1.3 Thesis Outline

In Section 2, I discuss two relevant game theoretic models which inspire the development

of the game theoretic models in this thesis. In Section 3, related works are discussed for

background in security games and cybersecurity research. Next, Section 4 I introduce the

Cyber Deception Game (CDG) model and discuss the associated algorithms for solving

for optimal deceptive defender strategies. Section 5 introduces the Cyber-alert Allocation

Game (CAG) model and presents algorithms for determining defender alert allocation

strategies to her cyber analysts on the floor. In Section 6, I present the GATE algorithm

which solves General-sum Bayesian Threat Screening Games. Finally, in Section 7 I

discuss relevant future work for the use of deception in cybersecurity domains, future

work for using the alert prioritization strategies in the real world and conclude my thesis.
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Chapter 2

Background

2.1 Security Games

A security game [70, 27, 60, 81, 43] is a two-player game player between a defender and

an adversary, where the defender protects a set of N targets from the attacker. The

defender is assumed to have K security resources at her disposal to prevent an attack.

A pure strategy for the defender is an assignment of the K resources to eiher targets or

patrols (which can consist of multiple targets) while an adversary’s pure strategy consists

of choosing a target to attack. Denote the kth defender pure strategy as Pk, which is an

assignment of all security resources. Pk is represented as a column vector Pk = [Pki]
T ,

where Pki = 1 determines whether target i is protected by Pk. For instance, consider

a security game with 3 targets and 2 resources, then Pk = [1, 0, 1] represents the pure

strategy where the defender protects targets 1 and 3 while 2 is left uncovered. Each

target i ∈ N has a corresponding set of payoffs {U cd , Uud , U ca, Uua }: If an adversary attacks

target i and it is protected by a resource, then he receives utility U ca and the defender

receives utility U cd . If target i is not protected then the adversary receives utility Uua
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while the defender receives Uud . For security games, it is assumed that U ca < U cd and

Uua > Uud , which means the defender strictly benefits from covering a target more often

with a resource while it is disadvantageous to the adversary. In security domains, it is

often true that there are significantly more targets to protect than security resources

available to protect them, i.e., K < N , and hence, it is of tremendous importance to the

defender to carefully design a protection strategy.

A major assumption in most work on security games is that the interaction between

the defender and adversary can be captured via the Stackelberg assumption, i.e., the de-

fender commits to a strategy first. The adversary is then assumed to conduct surveillance

and learns the defender’s strategy before selecting his best response. This type of game

is called the Stackelberg Security Game (SSG) where the standard solution concept is

the Strong Stackelberg Equilibrium (SSE). For SSE, the defender is assumed to select an

optimal strategy based on the assumption that an adversary selects his best response,

breaking ties in favor of the defender. In an SSG, the defender’s optimal strategy is

generally a mixed (randomized) strategy q, which is a distribution over pure strategies

P, as an adversary can typically exploit any deterministic (pure strategy) played by the

defender. The mixed strategy is represented as a vector q = [qk]
T , where qk ∈ [0, 1] is

the probability of choosing a pure strategy Pk and
∑

k qk = 1. The defender’s strategy

can also be represented in a compact manner using a “marginal” representation. Let

n be the marginal strategy, then ni =
∑

Pk∈P qkPki is the probability that target i is

protected. Hence, work on SSG typically focus on solving for the defender’s optimal

marginal strategy q or the marginal strategy n.

12



2.2 Threat Screening Games

A threat screening game (TSG) is a Stackelberg game played between the screener (leader)

and an adversary (follower) in the presence of a set of non-player screenees that pass

through a screening checkpoint operated by the screener. While TSGs are applicable to

many domains, given that readers may be familiar with passenger screening at airports,

I use examples from that domain. A TSG is composed of several features beyond the

traditional SSG. A TSG is played over Time windows w ∈W that capture the temporal

aspect of screening. The incoming passengers are group together by implicit characteris-

tics, e.g., risk level and flight, into screenee categories c ∈ C. Nc gives the total number

of screenees arriving in a category while Nw
c denotes the number of screenees in category

c arriving in time window w. The adversary is assumed to have an adversary type θ ∈ Θ

that defines implicit characteristics of an adversary which cannot be chosen, e.g., TSA-

assigned risk level. This in turn restricts the adversary to select from screenee categories

Cθ ⊂ C. The adversary is assumed to know his type, but the defender only knows a prior

distribution z over the types. The adversary then chooses an attack methods m ∈ M to

attack with, e.g., on-body explosive. The defender has resource types r ∈ R that can be

used to screen at most Lwr in a given time window. Each resource has effectiveness Erm

which is the probability of detecting attack method m. These resources can be combined

to team types t ∈ T that are used to screen a passenger, e.g., walk-through metal detector

and x-ray machine. Each team has effectiveness Etm = 1 − Πr∈t(1 − Erm) which defines

the probability of detecting m.
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Figure 2.1: TSG Strategies

Pure strategy A pure strategy P for the screener can be represented by |W |×|C|×|T |

non-negative integer-valued numbers Pwc,t, where each Pwc,t is the number of screenees

in c assigned to be screened by team type t during time window w. Pure strategy P

must assign every screenee to a team type while satisfying the resource type capacity

constraints for each time window, via the following constraints:
∑

t∈T I
t
r

∑
c∈C P

w
c,t ≤

Lwr ∀w ∈ W, ∀r ∈ R and
∑

t∈T P
w
c,t = Nw

c ∀w ∈ W, ∀c ∈ C where Itr is an indicator

function returning 1 if team type t contains resource type r and 0 otherwise. P̂ denotes

the set of all valid pure strategies and it is assumed P̂ 6= ∅, i.e., it is possible to assign

every screenee to a team type. The pure strategies for the adversary types are denoted

as aθ,wc,m which specifies that adversary type θ selects time window w, screenee category c,

and attack method m.

For example, consider a game with one time window w1 and two screening resources

r1, r2 with capacity constraints Lr1,r2 = 20, respectively. The resources are combined into

three screening teams t1 = {r1}, t2 = {r1, r2} and t3 = {r3}. There are three categories

c1, c2 and c3 and each has Nc = 9 passengers. Figure 2.1(a) shows an example of a pure

strategy allocation in this game.
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Marginal strategy A marginal strategy n for the screener can be represented by

|W |×|C|×|T | non-negative real-valued numbers nwc,t, where nwc,t is the number of screenees

in c assigned to be screened by team type t during time window w. We would want this

marginal strategy to be a valid mixed strategy (implementable), i.e., there should exist

a probability distribution over P̂ given by qP (i.e.,
∑

P∈P̂ qP = 1, 0 ≤ qP ≤ 1) such that

nwc,t=
∑

P qPP
w
c,t. An example marginal screener strategy is shown in Figure 2.1(b) with

the same game parameters described previously.

Utilities Since all screenees in category c are screened equally in expectation, we

can interpret nwc,t/N
w
c as the probability that a screenee in category c arriving during

time window w will be screened by team type t. Then, the probability of detecting an

adversary type in category c during time window w using attack method m is given

by xwc,m =
∑

tE
t
mn

w
c,t/N

w
c . The payoffs for the screener are given in terms of whether

adversary type θ chooses screenee category c and is either detected during screening,

denoted as Uds,c, or is undetected during screening, denoted as Uus,c. Similarly, the payoffs

for adversary type θ are given in terms of whether θ chooses screenee category c and

is either detected during screening, denoted as Udθ,c, or is undetected during screening,

denoted as Uuθ,c. Given adversary type θ pure strategy aθ,wc,m, the screener’s expected utility

is given by Us(a
θ,w
c,m) = xwc,mU

d
s,c + (1 − xwc,m)Uus,c and the expected utility for adversary

type θ is given by Uθ(a
θ,w
c,m) = xwc,mU

d
θ,c + (1− xwc,m)Uuθ,c.
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Chapter 3

Related Work

3.1 Stackelberg Security Games

Stackelberg Security Games (SSG) have been well studied in previous literature [45,

50, 47, 34, 80, 41, 51, 46]. The early work in this area of research concentrated on

providing the necessary theoretic and algorithmic foundation needed to solve general

Stackelberg games and not on the problem of security. [82] is the first work to explore the

concept of commitment to mixed (i.e., randomized) strategies in Stackelberg games. The

earliest approach to solving general Stackelberg games termed Multiple LPs is introduced

in [27] which shows that you can compute the optimal commitment by solving a single

LP for each adversary action. The DOBSS algorithm presented in [60] improves on the

Multiple LPs approach by showing the Strong Stackelberg Equilibrium (SSE) in Bayesian

Stackelberg Games, i.e., where the leader may face multiple follower types, can be found

using a single Mixed Integer Linear Program (MILP).
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The formal Stackelberg Security Game model was introduced in [43] along with the

ORIGAMI and ERASER algorithms for solving these games. ORIGAMI gives a polyno-

mial time algorithm for solving security games without resource constraints, e.g., schedul-

ing constraints in patrolling domains. ERASER, on the other hand, compactly represents

the defender’s strategy space which allows for significantly more scalability in security

games with multiple resources. Additionally, ERASER handles resource constraints that

are not considered in ORAGAMI. The first optimal approach to solving SSG with arbi-

trary resource constraints is ASPEN [37] which uses a branch-and-price framework that

considers only the most relevant pure strategies to incrementally build up the defender’s

optimal mixed strategy. The HSBA algorithm [39] advanced the state-of-the-art in solv-

ing Bayesian SSG. HSBA breaks down the Bayesian game into smaller restricted games,

i.e., games with a subset of the adversary types from the original problem, and solves

the restricted games by combining an efficient branch and bound search with column

generation. The solution information from these restricted games is then used to solve

the original game more effectively.

Research on SSGs have led to several successfully deployed decision-support ap-

plications including ARMOR [64], IRIS [81], GUARDS [65], PROTECT [75], and

TRUSTS [87]. These decision aids provide algorithms that generate strategies and patrols

of defender security resources for the protection of physical targets such as airports, ports

and metro systems. All of these works assume that an adversary observes a mixed strat-

egy from the defender and assume the security resources are 100% effective at protecting

a target if allocated to it. This is in contrast to the work in this thesis that accounts
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for resources that are not 100% effective and an adversary who observes a pure strategy

from the defender, which are crucial features of the cyber domain.

The problem of threat screening has been explored extensively in literature. The

Threat Screening Game (TSG) model was introduced in [22] and looks to SSG for inspi-

ration to devise a game theoretic model for the threat screening domain. As [22] points

out, the TSG approach provides a significant improvement on prior non-game-theoretic

models in domains such as, screening for shipping containers [6], stadium patrons [68],

and airport passengers [57, 58] or simple game-based models such as [83]. Specifically,

previous non-game-theoretic approaches fail to model a rational adversary who aims to

take advantage of vulnerabilities in the screening strategies whereas TSGs take this into

account when devising screening strategies. Furthermore, previous solution methods for

solving security games fail to apply directly to airport passenger screening. This hap-

pens because TSGs (i) include a group of non-player screenees that all must be screened

while a single adversary tries to pass through screening undetected, (ii) model screening

resources with different efficacies and capacities that can be combined to work in teams

and (iii) do not have an explicitly modeled set of targets. These are fundamental dif-

ferences from traditional security games [43, 64, 75, 81] where the defender protects a

set of targets against a single adversary. [22] provides MGA to solve for the defender’s

optimal screening strategy in Bayesian zero-sum TSGs, but these techniques fail to apply

to TSGs with non-symmetric (i.e., general-sum) payoffs. HSBA represents an interesting

approach for solving Bayesian general-sum TSGs, but as shown in [22] column generation

is not a scalable approach for solving TSGs. Hence, novel algorithms are needed to tackle

the challenges of scaling up solution methods to Bayesian general-sum TSGs.
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3.2 Cyber-alert Allocation

Intrusion detection has been studied for over three decades, beginning with the early

work of [7, 29]. A major concentration of research on intrusion detection has focused

on developing automated techniques (e.g., machine learning) for identifying malicious

activity [36, 35, 84, 30, 79]. However, these methods have significant detection error and

suffer from generating a plethora of alerts for the defender to investigate [77]. As the

volume of alerts increased significantly due to Intrusion and Detection systems across a

network, later research [12, 77] focused on reducing the number of false positive alerts

by developing automated alert reduction techniques. In this regard, there are both open

source [21] and commercially available [91] Security and Event Management (SIEM) tools

that take raw data input from sensors, aggregate and correlate them, and provides a

central repository of alerts from the enterprise network that can then be assigned for

investigation by the cyber security analysts. Most modern cybersecurity operations of

large organizations house a team of human cyber analysts (e.g., Computer Emergency

Response Team (CERT)1 ) who are tasked with investigating these alerts generated by the

automated detectors [28]. A recent line of work [33] uses decision theory to optimize the

scheduling of cyber-security analysts over 2 week periods to minimize the risk associated

with investigating and needing to remediate a critical attack, but this approach does not

consider the response of a strategic attacker. In contrast with this previous work, my

thesis focuses on the problem of how to assign the alerts to analysts which are currently on

1As an example the United States Air Force employs the use of 688th Cyberspace Wing to pro-
tect Department of Defense networks and systems from priority threats. http://www.afcyber.af.mil/

About-Us/688th-Cyberspace-Wing/
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the operations floor given an adversary attempting to exploit weaknesses in the defender’s

allocation strategy.

My approach for cyber alert allocation draws on the principles and modeling tech-

niques of the large body of work that applies game theory to security problems [80]. The

existing work on security games focuses heavily on applications to physical security (e.g.,

patrolling), with some exceptions (e.g., [48, 31]). However, Cyber-alert Allocation Games

(CAG) significantly differs from SSG due to the absence of an explicit set of targets, a

large number of benign alerts and varying time requirements for inspections. TSGs relate

nicely to CAGs, but there are some crucial differences with the cybersecurity domain: (1)

Screening in airports is a quick scan of a passenger; in CAGs, investigating a threat may

take varying amounts of time leading to a different “non-implementability” [45] issue for

CAG as compared to TSG and other security games which require novel techniques to

resolve, (2) CAG does not consider teams of resources, and (3) in cybersecurity attacks

result in a distribution of potential alert types.

3.3 Cyber Deception

The use of game theory has been studied before in the context cybersecurity problems

[52, 5, 74, 49, 73]. [44, 63, 32, 31] study a honeypot selection game where the defender

chooses the properties of the network, a sequel where the adversary can probe machines

to ascertain the true state and a final version which models the adversary’s actions as

attack graphs. [24] studies a signaling game where the defender signals to an adversary if

a system is either real or a honeypot when the adversary performs a scan. [62] extends the
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signaling game to account for an adversary who can gain evidence about the true state

of a system. In my work, I consider a game scenario in which the defender determines

the optimal way to respond to scans sent by a potential adversary given a set of possible

responses. Further, I explore different types of adversaries with varying awareness of

deception.

Deception has also been widely studied as a means to improve the protection of

enterprise networks from potential hackers and intruders [3, 1]. [2] uses a graph theoretic

approach to confuse a potential attacker by manipulating his view of systems on the

network. However, this work focuses on finding a view which is measurably different

from the true state and does not adequately model the response of a strategic adversary.

[40] is closely related to my work on deception. The authors study how to respond to an

attacker’s scan queries using an annotated probabilistic logic model. My research provides

a complimentary view using game theory to determine how a defender manipulates scan

responses to confuse an attacker’s view of systems on the network. I also study varying

adversary models, which can have significant impact on the defender’s optimal strategy

which is not explored in [40].
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Chapter 4

Cyber Deception Games

4.1 Problem Domain

The first stage of the cyber kill chain, the reconnaissance phase, is one of the most critical

stages for an adversary attempting to breach an enterprise network, and hence, a critical

phase in which the defender can protect against network intrusions. . Motivated ad-

versaries spend a significant amount of time completing reconnaissance on the enterprise

network to learn about system vulnerabilities and the best points of compromise in the

defender’s network. Reconnaissance is completed through a suite of scan requests, such

as Stealth SYN scans, OS scans, and services scans by using network scanning tools such

as NMap. Importantly, the type of interaction between the defender and an adversary

during the recon phase provides an opportunity for the defender to deceive a cyber ad-

versary by altering and lying about the system information which is returned from from

scanning activity.

This chapter explores a game theoretic model, the Cyber Deception Game (CDG),

which provides a framework for the defender to deceptively set scan responses for systems
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across the defender’s enterprise network to deceive potential cyber adversaries. Two

adversary models are explored that represent the various types of real-world adversaries

that can be encountered in the network security domain. The first is a powerful adversary

who is assumed to have a robust amount of information about the defender’s deceptive

strategy, e.g., nation-state level adversaries who may have access to insider information.

The second is a naive adversary assumed to not be aware of the deception and who

has a fixed set of preferences over observed systems on the network, e.g., script-kiddies

who are not as advanced. I show that computing the optimal strategy for the network

defender is NP-hard due when facing a powerful adversary due to either masking or cost

constraints imposed on the defender’s deceptive response strategy space. Additionally, I

show computing the optimal strategy against the naive adversary to be NP-hard as well

when both the masking and cost constraints are imposed on the defender. I develop three

solution approaches to find the defender’s optimal deceptive response scheme against a

powerful adversary: (1) a Mixed Integer Linear Programming (MILP) approach, (2) a

bisection algorithmic approach, and approaches to find the defender’s optimal strategy

against naive adversaries and (3) a greedy heuristic approach to quickly generate defender

deceptive strategies. I also present experimental results showing the scalability of the

algorithms to larger scale CDGs. Finally, technical deceptive techniques and approaches

are discussed which could leverage the use of the CDG model to generate deceptive

network views.
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Figure 4.1: The network reconnaissance domain in which an adversary scans the de-
fender’s enterprise network and the defender deceptively alters the system’s responses.

4.2 Cyber Deception Game

The Cyber Deception Game (CDG) is a zero-sum Stackelberg game between the defender

(e.g., network administrator) and an adversary (e.g., hacker). The defender moves first

and chooses how the systems should respond to scan queries from an adversary, and the

adversary subsequently moves by choosing a system to attack based on the responses.

Despite the similarities with game-theoretic models in security domains, such as [80,

15, 16], there are two key differences. First, the defender can only commit to a pure

strategy and not an arbitrary mixed strategy. This is because, in these domains, network

administrators modify the network very infrequently, and thus, the attackers’ view of

the network is static. Second, there are no explicit security resources for the defender in

CDGs. Consequently, the existing approaches for solving standard Stackelberg games in
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security domains, cannot be directly applied. The various components of the game and

the aforementioned model characteristics are described in detail as follows:

Systems and True Configurations

The defender aims to protect a set K of systems, from possible exploits and intrusions.

Each system has certain attributes, e.g., an operating system, an anti-virus protection

mechanism, services hosted, etc. These attributes altogether constitute the true config-

uration (TC) of the system. The set of all possible TCs is denoted by F . Each system

has an associated utility, which captures how much the adversary would get by attacking

it. This utility solely depends on the TC of the system — each f ∈ F induces a utility

denoted by Uf to any system that is assigned f . Uf can be negative if the security level of

the system is so high that the attacker’s efforts end in vain or the attacker gets fake data

from a seemingly successful attack, leading to a loss in the end. It follows that, the true

state of the network (TSN) can be represented as a vector N = (Nf )f∈F , where Nf ∈ Z>0

denotes the number of systems on the network which have a TC f and
∑
f∈F

Nf = |K|

(Assume Nf 6= 0, since such a TC simply need not be considered).

Observed Configurations

The adversary attempts to gain information about every system on the network, via

probes and scans. By scanning a system, the adversary observes certain attributes, which

constitute the observable configuration (OC) of the system. The set of possible OCs is

denoted by F̃ . It is assumed that it is possible for the defender to make some of the

observable attributes of a system appear different than what they truly are (e.g., altering
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the TCP/IP stack of a system, spoofing a running service on a port). By means of such

alterations at her disposal, the defender controls the OC an attacker sees when probing

a system. Note that it may not be possible for an arbitrary TC f to be made to appear

as an arbitrary OC f̃ ∈ F̃ — such a constraint is called a feasibility constraint, and these

are denoted by a (0,1)-matrix π. Iff πf,f̃ = 1, then f can be covered, or masked with f̃ .

The set of OCs which can mask a TC f , is denoted by F̃f = {f̃ ∈ F̃ | πf,f̃ = 1}, and

similarly, the set of TCs which can be masked by an OC f̃ , by Ff̃ = {f ∈ F | πf,f̃ = 1}.

From the adversary’s perspective, two systems having the same f̃ as their OC are

indistinguishable, and hence, his observed state of the network (OSN) can be represented

as a vector Ñ = (Ñf̃ )f̃∈F̃ where Ñf̃ ∈ Z≥0 denotes the number of systems which have an

OC f̃ . As is the case with the TSN N , we must have
∑̃
f∈F̃

Ñf̃ = |K|.

It is assumed that masking a TC f with an OC f̃ , has a cost of c(f, f̃) incurred by the

defender, which typically captures the monetary costs for deploying network modifications

necessary for such a deception. It is also useful to note that although honeypots are not

explicitly discussed in the model they can represented with a true configuration fhoney

and an observable f̃honey. Systems on the network which do not appear for a specific

system can also be modeled with an observable configuration f̃hidden which does not have

a utility, and further, any systems masked with f̃hidden do not appear in the optimization

problem formulated in Section 4.3.2.

Defender Strategies

Naturally, F , F̃ , π, c and N are known to the defender. Given all this information, the

defender must decide her strategy — for each TC f , she must decide how many of the Nf
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systems having TC f , should be assigned the OC f̃ , where f̃ ∈ F̃f . Thus, any possible

strategy can be represented as a |F | × |F̃ | matrix φ having non-negative integer entries,

with φf,f̃ representing the number of systems having TC f and OC f̃ . Hence, φ must

satisfy

φf,f̃ ∈ Z≥0 ∀f ∈ F,∀f̃ ∈ F̃ (4.1)

Since the TSN N is fixed, φ must also satisfy

∑
f̃∈F̃

φf,f̃ = Nf ∀f ∈ F (4.2)

Since feasibility constraints π are specified, φ must also satisfy

φf,f̃ ≤ πf,f̃Nf ∀f ∈ F, ∀f̃ ∈ F̃ (4.3)

Finally, since setting any OC on a system has an associated cost, the defender’s total cost

cannot exceed a limit B, which is called the budget constraint. Formally, φ must also

satisfy ∑
f∈F

∑
f̃∈F̃

φf,f̃ c(f, f̃) ≤ B (4.4)

The set of strategies φ which satisfy the constraints (4.1), (4.2), (4.3), and (4.4), is

denoted by Φ.1 When the defender plays φ ∈ Φ, the resulting OSN Ñ is given by

Ñf̃ =
∑
f∈F

φf,f̃ ∀f̃ ∈ F̃ .

1The feasibility constraints can simply be captured via the budget constraint by setting the costs of
infeasible assignments to be higher than the budget. However, they are essential in the model, since, in
some cases, having no budget constraint allows an efficient solution to the problem (e.g. Section 5), while
still having the very practical feasibility constraints keeps the problem non-trivial.
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Adversary Strategies

Depending on the defender’s strategy, the adversary observes Ñ as described above. All

systems having the same OC f̃ are indistinguishable to the adversary, and hence, he must

be indifferent between all such Ñf̃ systems when deciding which system to attack. As a

result, the adversary is assumed to choose the OC f̃ which gives him the highest expected

utility (described momentarily), and attack all the Ñf̃ systems having this OC with an

equal probability. In short, we say “the adversary attacks an OC f̃” to mean he attacks

all the systems having OC f̃ with an equal probability. A general mixed strategy for the

adversary is to attack the set of OCs with any probability distribution. However, since

there always exists a pure best-response strategy in any game, it suffices to consider the

adversary’s strategies as simply attacking a particular f̃ .

Utilities

When the defender plays a strategy φ, the adversary’s expected utility on attacking an

OC f̃ with Ñf̃ > 0, denoted by Ūf̃ (φ) — or, as Ūf̃ for simplicity, when the underlying φ

is unambiguously understood — is given by

Ũf̃ = E[Uf |φ, f̃ ] =
∑
f∈Ff̃

P (f |φ, f̃)Uf =
∑
f∈F

φf,f̃

Ñf̃

Uf (4.5)

(4.5) follows from computing P (f |φ, f̃) using the fact that out of Ñf̃ systems having an

OC f̃ , φf,f̃ have a TC f . Since the game is zero-sum, the defender’s expected utility

is −Ũf̃ when f̃ is attacked. Note the attacker cannot attack an OC f̃ with Ñf̃ = 0, or

equivalently, his expected utility is −∞ if he does so.
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Next, the model is illustrated using a simple example.

Figure 4.2: Simple example of an enterprise network.

Example Game 1: Figure 4.2 shows a simple example enterprise network which will

be used as a running example. We have a set of systems K = {k1, k2, k3}, set of TCs

F = {f1, f2, f3} (shown in Figure 4.2 as the green boxes) and set of OCs F̃ = {f̃1, f̃2}

(shown in Figure 4.2 as the yellow boxes). Let the feasibility constraints be given by the

sets Ff̃1
= {f1, f2} and Ff̃2

= {f2, f3}. The TCs are as follows:

f1 = [[os] L, [web] T, [ssh] O, [files] S]

f2 = [[os] L, [web] N, [ssh] O, [files] P]

f3 = [[os] W, [web] N, [ssh] O, [files] I]

For the TCs, the utilities are Uf1 = 10, Uf2 = 0, and Uf3 = 6. The OCs are as follows:

f̃1 = [[os] L, [web] T] f̃2 = [[os] W, [web] T]
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For simplicity, let all the costs c(f, f̃) to be 0, so that there is essentially no budget

constraint. Based on the TCs assigned as shown, the state of the network (Nf )f∈F is

(1, 1, 1). When the defender assigns OCs as shown in Figure 4.2, her strategy φ is given

by



f̃1 f̃2

f1 1 0

f2 1 0

f3 0 1


The expected utility of the adversary (loss of the defender) when he attacks f̃1 or f̃2 is

respectively given by Ũf̃1
= (10 + 0)/2 = 5 and Ũf̃2

= 6/1 = 6. Thus, attacking f̃2 leads

to the highest expected utility for the attacker.

Adversary Knowledge and Utility Estimation

The attacker’s awareness of the deception and the understanding of the defender’s strategy

may vary. Note that if the adversary is always able to find the OC with highest expected

utility, it is the worst case scenario for the defender given the game is zero-sum. An

attacker who is fully aware of how the defender sends the false responses to scan requests

(via insider threats, information leakage, etc.) would have such an ability. Formally, a

powerful attacker is defined as someone who knows F , F̃ , π, U and φ and chooses to

attack the OC with the (correct) highest expected utility Ũf̃ computed through Equation

(4.5). If the defender chooses a strategy that minimizes the expected utility of a powerful

attacker, she gets a robust strategy as the defender can be assured that no matter the
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extent of the adversary’s knowledge, no strategy he plays can lead to a greater loss for

the defender, in alignment with the minimax principle.

However, the attacker may not be so powerful. On the other end of the spectrum, if

the attacker is unaware of the defender’s precise deception scheme or has a very limited

understanding of the situation such that he cannot make any meaningful inference, his

decision making would be completely dependent on the observed configurations of the

systems and some fixed preferences over OCs in terms of the estimated expected utility.

Formally, a naive attacker is defined to be someone who chooses to attack an existing OC

f̃ (i.e., one which has at least one system configured to it) with the highest Ūf̃ where Ūf̃

is not dependent on the defender’s strategy and is known to the defender. This is also

equivalent to the case where the attacker just has a fixed preference of the OCs. CDGs

with powerful attackers are analyzed in Section 4.3, and CDGs with naive attackers in

Section 4.4.

4.3 Optimal Defender Strategy against Powerful Adversary

In this section, it is shown how to compute the defender’s optimal strategy in a CDG

assuming a powerful adversary. The adversary attacks an OC from the set arg maxf̃∈F̃ Ũf̃

and gets an expected utility of maxf̃∈F̃ Ũf̃ , denoted in short as Ũ∗(φ), where the negative

value is the defender’s expected loss. Hence, the defender aims to minimize her loss by

choosing her φ from the set arg minφ∈Φ Ũ
∗(φ).
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4.3.1 Computational Complexity

The problem of finding optimal defender strategy against a powerful adversary in a CDG

is called CDG-Robust.

First, it is useful to investigate a special case. The following proposition provides a

tight lower bound on minφ∈Φ Ũ
∗(φ).

Lemma 4.1 The expected loss of the defender when playing her optimal strategy, is no

lower than the average utility of the systems, i.e.,

min
φ
Ũ∗(φ) ≥ UAve(K) =

∑
f∈F NfUf

|K|

Proof 4.1 Equivalently, it can be shown that, Ũ∗(φ) ≥
∑
f∈F NfUf
|K| for all φ. Fix any

φ ∈ Φ. We then have,

Ũ∗(φ) ≥ Ũf̃ (φ) ∀f̃ (by definition of Ũ∗(φ))

∴
∑
f̃∈F̃

Nf̃ Ũ
∗(φ) ≥

∑
f̃∈F̃

Nf̃ Ũf̃

∴ |K| · Ũ∗(φ) ≥
∑
f̃∈F̃

∑
f∈F

φf,f̃Uf (using (4.5))

=
∑
f∈F

Uf ∑
f̃∈F̃

φf,f̃

 (re-ordering terms)

=
∑
f∈F

UfNf (by definition of φ, Nf )

∴ Ũ∗(φ) ≥
∑

f∈F NfUf

|K|

Since the choice of φ was arbitrary, the claim follows.
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Thus, even when the defender plays her optimal strategy, the attacker’s expected

utility is at least UAve(K). Consequently, if the inequality becomes tight for a strategy

φ, it must be an optimal strategy. It is easy to see that the bound becomes tight if and

only if Ũ∗(φ) = Ũf̃ (φ), ∀f̃ . Clearly, this is true if and only if Ūf̃ is the same for each f̃

set on any system, and trivially so, if only a single OC is set on all the systems. Thus,

Corollary 4.1 If it is feasible for the defender to set the same OC on all the systems

making them all indistinguishable to the adversary, doing so is an optimal strategy. For-

mally, if ∃f̃∗ s.t. ∃φ∗ ∈ Φ where φ∗
f,f̃∗

= Nf ,∀f , then φ∗ ∈ arg minφ∈Φ Ũ
∗(φ).

It is possible to efficiently check if such an OC exists, by enumeration. However, it

may not exist, and next it is shown that CDG-Robust is NP-hard in general.

Proposition 4.1 CDG-Robust is NP-hard.

Proof 4.2 The result is proven via a reduction from the Partition problem (PART )

which is known to be NP-complete. Given a multiset S of n positive integers that sum up

to 2r, PART is the decision problem to determine if S can be partitioned into two subsets

S1 and S2 such that the sum of integers in S1 and S2 are each r. It can be reduced to

CDG-Robust as follows.

Let the input to PART be a set of integers S = {s1, . . . , sn} whose elements sum to

2r. To construct a CDG, let the set of TCs be F = {f1, . . . , fn} ∪ {fn+1, fn+2}, with

utilities Ufi = si for each i ∈ {1, . . . , n} and Ufn+1 = Ufn+2 = −r. Next, let there be

n + 2 systems, each having a different TC. Let the set of OCs be F̃ = {f̃1, f̃2}, with

F̃fi = F̃ for each i ∈ {1, . . . , n}, and F̃fn+1 = {f̃1}, F̃fn+2 = {f̃2}. Let all the costs be 0 so
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that the budget constraint can be ignored. Assuming the adversary to be powerful, these

components completely define a CDG-Robust problem.

Note that, by Corollary 4.1 and the fact that
∑

f Uf = 0, the optimal strategy φ must

have Ũ∗(φ) ≥ 0. Now, suppose S can be partitioned into subsets S1 and S2 such that

the numbers in each sum to r. Then, consider the strategy φ which masks the TCs in

{fi|si ∈ S1} and fn+1 with f̃1, and masks the TCs in {fi|si ∈ S2} and fn+2 with f̃2.

It is easy to check that Ũf̃1
(φ) = Ũf̃2

(φ) = 0 = Ũ∗(φ), making φ an optimal strategy.

On the other hand, suppose the defender’s optimal φ yields Ũ∗(φ) = 0. Since f̃1 must

mask fn+1, and f̃2 must mask fn+2, neither of the OCs are unused. Since Ũ∗(φ) = 0,

w.l.o.g., assume Ũf̃1
= 0. Hence, the sum of utilities of the TCs masked with f̃1 must be 0.

Therefore, the sum of utilities of TCs masked by f̃2 is also 0. Then, S1 = {si|φfi,f̃1
= 1},

and S2 = {si|φfi,f̃2
= 1} form a partition of S, each having sum of the elements r. It

follows that, PART should output Y ES iff CDG-Robust finds an optimal strategy φ with

Ũ∗(φ) = 0. This reduction, being polynomial-time, proves the claim.

4.3.2 The Defender’s Optimization Problem

The defender’s optimal strategy φ can be computed by solving the optimization problem

given below.
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min
u,φ

u (4.6a)

s.t. u
∑
f∈F

φf,f̃ ≥
∑
f∈F

φf,f̃Uf ∀f̃ ∈ f̃ (4.6b)

Constraints (4.1) ∼ (4.4)

The objective function in Equation (4.6a) minimizes the utility u the adversary re-

ceives for the game. Equation (4.6b) enforces that the adversary chooses a best response

to the defender’s strategy φ, where the expected utility for attacking a given f̃ is given

by (4.5). Constraints (4.1)∼(4.4) represent a feasible defender strategy.

This optimization problem is non-convex due to constraint (4.6b), which can be lin-

earized, to convert the optimization problem to a MILP as follows. First, an alternate

representation is devised for the defender’s strategy φ, as a |K| × |F̃ | (0,1)-matrix σ,

where σk,f̃ = 1 denotes system k is masked with f̃ . Further, the TSN N is represented

via a vector x, where xk ∈ F represents the TC for system k. Then, for each TC f ,

we have Nf = |Kf | where, Kf = {k ∈ K | xk = F}, and φf,f̃ =
∑

k∈Kf σk,f̃ ∀f, ∀f̃ .

Hence, the alternate representations are indeed equivalent. Then, constraints equiva-

lent to (4.1)∼(4.4) can be easily formulated for σ and x with an additional constraint∑
f̃∈F̃ σk,f̃ = 1 ∀k ∈ K to ensure feasibility. More importantly, equation (4.6b) can be

reformulated as

u
∑
k∈K

σk,f̃ ≥
∑
k∈K

σk,f̃Uxk ∀f̃ ∈ F̃ (4.7)
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The left-hand side of (4.7) can be seen as the sum of a set of terms uσk,f̃ , each of which

is the product of binary variable σk,f̃ and the continuous variable u. Such an expression

can be linearized by introducing variables zk,f̃ for each k ∈ K and f̃ ∈ F̃ , and enforcing

zk,f̃ = uσk,f̃ . Consequently, (4.7) can be rewritten as:

∑
k∈K

zk,f̃ ≥
∑
k∈K

σk,f̃Uxk (4.8)

To enforce zk,f̃ = uσk,f̃ , consider u ∈ [Umin, Umax] where Umin = minf∈F Uf and Umax =

maxf∈F Uf . With these bounds on u, we then include the constraints for each z variable

in the optimization problem as follows:

Uminσk,f̃ ≤ zk,f̃ ≤ U
maxσk,f̃ (4.9)

u− (1− σk,f̃ )Umax ≤ zk,f̃ ≤ u− (1− σk,f̃ )Umin (4.10)

After this conversion the optimization problem becomes a MILP. The complete formula-

tion is given below for clarity.
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min
u,σ,z

u (4.11a)

s.t.
∑
k∈K

zk,f̃ ≥
∑
k∈K

σk,f̃Uxk ∀f̃ ∈ f̃ (4.11b)

∑
f̃∈F̃

σk,f̃ = 1 ∀k ∈ K (4.11c)

σk,f̃ ≤ πxk,f̃ ∀k ∈ F,∀f̃ ∈ F̃ (4.11d)∑
f̃∈F̃

∑
k∈K

σk,f̃c(xk, f̃) ≤ B (4.11e)

Uminσk,f̃ ≤ zk,f̃ ≤ U
maxσk,f̃ ∀k ∈ F,∀f̃ ∈ F̃ (4.11f)

u− (1− σk,f̃ )Umax ≤ zk,f̃ ∀k ∈ F,∀f̃ ∈ F̃ (4.11g)

zk,f̃ ≤ u− (1− σk,f̃ )Umin ∀k ∈ F,∀f̃ ∈ F̃ (4.11h)

σk,f̃ ∈ {0, 1} ∀k ∈ F,∀f̃ ∈ F̃ (4.11i)

4.3.3 MILP Bisection Algorithm

The reformulated MILP presented requires the addition of |K||F̃ | variables and 4|K||F̃ |

constraints to solve for φ. This conversion significantly increases the size of the opti-

mization problem from the original number of |F ||F̃ | decision variables in the original

optimization problem and can create issues when solving larger CDG instances. The

second approach develop for CDGs does not require the reformulation and instead solves

a sequence of smaller MILPs (same size as (4.6a)) to find an ε-approximate solution for

the defender [89]. This is done via a bisection algorithmic framework. The algorithm

initially is given an interval that the optimal objective value Ũ∗ lies in which for CDGs
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is U∗ ∈ [ULB, UUB] where ULB = UAV E(K) and UUB = maxf∈F Uf . For the algorithm,

two variables l = ULB and d = UUB are introduced with the initial width as ε0 = d − l

that contains the optimal value U∗ of the optimization problem. The main loop of the

algorithm is repeated until the width d − l ≤ ε. The main loop has the following two

steps:

1. Take τ = (u + l)/2 and solve the feasibility problem in Equation (4.12a) to find if

there exists a solution n that satisfies the constraints.

2. if feasible, take u := τ ; if not feasible, take l := τ .

The algorithm is guaranteed to converge as after each update the interval [l, u] contains

the optimal U∗ and the width is halved. The number of steps that are needed to find the

ε-approximate optimal solution is dlog ε0
ε e.

max
φ

1 (4.12a)

s.t. τ
∑
f∈F

φf,f̃ ≥
∑
f∈F

φf,f̃Uf ∀f̃ ∈ f̃ (4.12b)

Constraints (4.1) ∼ (4.4)

While the bisection algorithm may need to solve on the order of a dozen MILPs to

arrive at the approximate solution, as is shown in the experiments it can significantly

outperform the reformulated MILP in computational speed.
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4.3.4 Greedy-Minimax Algorithm

Although the optimal φ can be found via a MILP, it can still be computationally expen-

sive for large instances. Hence, heuristic algorithms can be preferable as they may be

suboptimal but run fast and perform well on average. In this section, a simple approach

is described to sequentially assign OCs to the systems, by greedily minimizing attacker’s

maximum expected utility for the partially built strategy at each stage. Algorithm 1

gives the pseudo-code.

Algorithm 1: Greedy-Minimax

1 minIndCost[]← (minf̃ c(f, f̃))f∈F

2 minTotCost←
∑

f Nf ∗minIndCost[f ]

3 initialize minu∗, σbest
4 For iter = 1 . . . numIter
5 Klist[]← shuffle(K)
6 initialize remB ← B, reqB ← minTotCost
7 initialize σ[], N̄ [], Ū []
8 For i = 1 . . . |K|
9 k ← Klist[i], f ← x[k]

10 σ[k]← GMMAssign(f, σ[], N̄ , Ū [])
11 N̄ [σ[k]]← N̄ [σ[k]] + 1
12 update(Ū [σ[k]])
13 remB ← remB − c(f, σ[k])
14 reqB ← reqB −minIndCost[f ]

15 compute u∗ = maxf̃ Ū [f̃ ])

16 update(minu∗, u∗, σbest, σ)
17 return σbest
18 Procedure GMMAssign(f, σ[], N̄ , Ū [])
19 initialize newU∗[]

20 For f̃ ∈ F̃f
21 If (reqB −minIndCost[f ] + c(f, f̃) > remB) Then
22 Continue

23 σ[k]← f̃

24 newU∗[f̃ ]← U∗(σ)

25 F̃best ← arg minf̃ newU
∗[f̃ ]

26 generate f̃best ∼ uniRand(F̃best)

27 return f̃best
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Greedy-Minimax starts by computing for each f ∈ F , the minimum cost of masking f

with any feasible OC, and subsequently, the minimum total cost of masking all the systems

(Lines 1-2). Next, σbest and minu∗ are initialized, which respectively denote the final

output strategy of the algorithm and the corresponding utility (Line 3). Subsequently, the

algorithm is conducted in a number of iterations. In each iteration, a random shuffle of the

set of systems is obtained, referred to as Klist above. Subsequently, the strategy σ which

is a candidate solution corresponding to this shuffle, the corresponding observed state of

the network (N̄f̃ )f̃∈F̃ , and the corresponding utilities (Ūf̃ )f̃∈F̃ are all initialized. These

are constantly maintained as the algorithm loops through Klist, building the solution

by assigning an OC to a system one by one (Lines 8-10). The OC to be assigned for

a system is determined via the function GMMAssign() which is the essence of this

heuristic algorithm. The input to this function is the TC f of the system in question, and

the currently built solution in terms of σ, N̄ , Ū , remB, reqB. Given these, the function

considers the candidate OCs in F̃ one by one, refutes those which lead to the violation of

the budget constraint (i.e., make the resultant minimum required budget to exceed the

resultant remaining budget). For every other f̃ , it computes resultant Ūf̃ if the system

is masked with f̃ , and stores it in the array newU∗ (Lines 19, 23-24). Finally, based

on these, it uniformly randomly chooses an OC from those which minimize the resultant

utility newU∗() (Lines 25,26). Once GMMAssign() returns an OC f̃ , it is assigned to

the system in question, N̄f̃ , Ūf̃ are updated accordingly, as well as the remaining budget

and the minimum required (Lines 11-14). Once the loop through Klist is over and the

full strategy σ is built, its utility u∗ is computed, and compared with minu∗, to update

minu∗ and σbest appropriately (Lines 15-16).
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It is possible to conceive examples where this heuristic approach does not yield a

good solution on an arbitrary shuffle, even for problem instances with small parameters.

Such an example with 4 systems, 4 TCs and 2 OCs is discussed next. Further, there are

examples where the solution value is Θ(|K|) times as bad as the optimal, on exponentially

many shuffles. This motivates getting candidate solutions for a large number of shuffles

and choosing the best among them as described above. Since the greedy choice does

not guarantee optimality, Soft-GMM is also proposed, a slight modification of GMM

which makes assignment probabilistically, and not deterministically. It works exactly as

GMM, except Lines 25,26 — it draws fbest from a distribution P (F̃ ) where, P (f̃) ∝

exp(−newU∗[f̃ ]).

Note that the adversary’s utility U∗(φ) for any strategy φ can be at most |K| times

the optimal value minφU
∗(φ). This follows from observing that for any strategy φ, we

have Ũf̃ ≤ max
f |Nf>0

Uf∀f̃ by definition, and thus, U∗(φ) ≤ max
f |Nf>0

Uf , whereas minφU
∗(φ)

is at least the average of all the system utilities by Proposition 4.1. Since any choice

a greedy heuristic makes can be potentially suboptimal, one may intuitively expect its

performance to be worse for a higher number of choices to be made, that is, for larger

sized inputs, and relatively better for smaller inputs. However, an example instance is

shown next of a CDG where despite the input size (|F |, |K|, |F̃ |) being very small, the

(hard-)GMM algorithm in a particular iteration (i.e., when conducted on a particular

shuffle of the systems) gives a highly suboptimal solution.

Consider the set of systems K = {k1, k2, k3, k4}, the set of TCs F = {f1, f2, f3, f4}

and the set of OCs F̃ = {f̃1, f̃2}. Let the feasibility constraints be given via the sets

Ff̃1
= {f1, f2, f3} and Ff̃2

= {f2, f3, f4}. Let each system ki have the TC fi, so that the
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TSN (Nf )f∈F is (1, 1, 1, 1). For the TCs, let the utilities be Uf1 = 1, Uf2 = 2, Uf3 = 30,

and Uf4 = 40. For simplicity, let all the costs c(f, f̃) to be 0, so that there is essentially

no budget constraint.

Consider the ordering of the systems on which GMM is performed to be:

{k1, k2, k3, k4}. Then, the strategy σ computed by the GMM on this ordering is as

follows:



f̃1 f̃2

k1 1 0

k2 1 0

k3 1 0

k4 0 1


Accordingly, the expected utilities of OCs are Ũf̃1

= (1 + 2 + 30)/3 = 11 and Ũf̃2
=

40/1 = 40, and thus, adversary’s utility is 40 for this strategy. The optimal solution,

however, masks k1, k3 with f̃1 and k2, k4 with f̃2 giving the expected utilities of the OCs:

Ũf̃1
= (40 + 2)/2 = 21 and Ũf̃2

= (30 + 1)/2 = 15.5, thus, the optimal being just 21.

Further, the following is an example of a CDG which shows the GMM algorithm can

perform Θ(|K|) as bad as the optimal solution on exponentially many shuffles.

Consider the CDG instance with the set of systems K = {k1, . . . , km}, so that |K| =

m. Let the set of TCs F = {f1, f2, f3} and the set of OCs F̃ = {f̃1, f̃2}. Let the true

state of the network be: x = (1, 2, 3, . . .) Let the feasibility constraints be given by the

sets Ff̃1
= {f1, f3} and Ff̃2

= {f2, f3}. For the TCs, the utilities are Uf1 = 1, Uf2 = 2000,

and Uf3 = ε. For simplicity, let all the costs c(f, f̃) to be 0, so that there is essentially no

budget constraint.
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The optimal solution to this CDG is to assign systems k2, . . . , km to be masked by f̃2

with k1 being masked with f̃1. This gives the following expected utilities: Ũf̃1
= 1/1 = 1

and Ũf̃2
= 2000+(m−2)ε

m−1 = 2000
m−1 + (m−2)ε

m−1 . Consider any shuffle which orders the systems

such that k1 is first and k2 is last (of which there are (m−2)!). Given any ordering of this

type, GMM assigns assigns systems k3, . . . , km to be masked with f̃1 and would assign

k2 to be masked with f̃2. The expected utilities given this assignment is the following:

Ũf̃1
= 1+(m−2)ε

m−1 = 1
m−1 + (m−2)ε

m−1 and Ũf̃2
= 2000/1 = 2000. The loss in this case is

≈ 2000
2000
m−1

= 1
m−1 which is a Θ(|K|) loss.

4.3.5 Solving for an Optimal Marginal Assignment n

The prior analysis focuses on finding the optimal pure strategy φ for the defender to

commit to in the game. This is due to the assumption that adversaries view a fixed (static)

version of the network when completing reconnaissance. However, it can also be useful

to find the optimal mixed strategy q for the defender in the game. Formally, a mixed

strategy is defined as a probability distribution over all possible defender pure strategies

φ ∈ Φ where
∑

φ∈Φ qφ = 1 and 0 ≤ qφ ≤ 1. For this game, enumerating the set of pure

strategies is infeasible, but it is possible to find the defender’s optimal marginal strategy

n =
∑

φ∈Φ qφφ due to compactly representing the defender’s strategy space. The optimal

marginal strategy can be found using the same optimization as (4.6a) and replacing all

instances of φf,f̃ with nf,f̃ . The optimization problem for finding the defender’s optimal

marginal strategy can be seen as a generalized fractional linear program.

As in Section 4.3, generalized linear fractional programs are solved efficiently using a

bisection algorithmic approach which solves a sequence of linear programming feasibility
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problems to get an ε-approximate optimal solution [10]. Similarly to the MILP bisection

algorithm, this algorithm is given an interval that U∗ lies in which is U∗ ∈ [ULB, UUB].

The variables l = ULB and d = UUB are introduced with the initial width ε0 = d− l that

contains the optimal value U∗ of the optimization problem. The main loop is repeated

until the width d− l ≤ ε. The main loop has the following two steps:

1. Take τ = (u+ l)/2 and solve the feasibility problem in Equations (4.13)∼(4.18) to

find if there exists a solution n that satisfies the constraints.

2. if feasible, take u := τ ; if not feasible, take l := τ .

The algorithm is guaranteed to converge as after each update the interval [l, u] contains

the optimal U∗ and the width is halved. The number of steps that are needed to find the

ε-approximate optimal solution is dlog ε0
ε e.

max
u,σ

1 (4.13)

s.t. τ
∑
f∈F

nf,f̃ ≥
∑
f∈F

nf,f̃U(f) ∀f̃ ∈ f̃ (4.14)

∑
f̃∈f̃

nf,f̃ = Nf ∀f ∈ F (4.15)

∑
f̃∈F̃

∑
f∈F

nf,f̃c(f, f̃) ≤ B (4.16)

nf,f̃ ≤ πf,f̃Nf ∀f ∈ F, ∀f̃ ∈ F̃ (4.17)

nf,f̃ ≥ 0 ∀f ∈ F, ∀f̃ ∈ F̃ (4.18)
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4.4 Optimal Defender Strategy against Naive Adversary

The robust approach to solving CDGs, i.e., assuming a powerful adversary with knowledge

of φ, can cause the defender to not fully realize the benefit of her informational advantage

when faced with a less powerful attacker. In particular, the adversary may value OCs in

a fixed manner that is known to the defender.2 In this case, the values Ūf̃ are fixed and

the defender’s strategy does not affect the adversary’s expected utility for attacking some

f̃ . Importantly, if there is no budget constraint one can solve for the defender’s optimal

strategy φ in polynomial time using Algorithm 2. W.l.o.g. it is assumed the adversary

has a strict preference ordering over F̃ as if Ūf̃ is equal for any two OCs, the sets could be

merged from the defender’s perspective, with the feasibility constraint and cost adjusted

accordingly.

Algorithm 2 begins by initializing φ, Γ∗ (which stores the TCs the adversary attacks)

and f̃∗ (the OC the adversary attacks given φ). In Line 3 the matrix minUtil[] is

computed which stores the lowest utility achievable for each TC which is minf̃∈F̃f Ūf̃ .

The For loop in Line 4 iterates over all f̃ ∈ F̃ which is sorted descending by Ūf̃ (Line 2)

and determines for each f̃ the best set of TCs to mask if f̃ is attacked by the adversary

in Lines 5 through 12. To do this, F is split into 4 separate sets P1, P2, P3 and P4 and

the set of TCs to be masked with f̃i is stored in Γ
′
. Note that for each f , Nf copies

for the algorithm are enumerated. P1 contains all TCs which cannot be masked with an

f̃ that has Ūf̃ < Ūf̃i . Intuitively, if this set is non-empty it means the defender is not

able to devise a strategy φ such that the adversary prefers to attack f̃i, and hence, all

2As an example, the adversary could estimate his utility according to values derived from the NIST
National Vulnerability Database [59].
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subsequent f̃i will never be preferred by the adversary. P2 (P4) contain TCs f which must

be masked (cannot be masked) with f̃i. P3 then contains all TCs f which can be masked

with f̃i but may also be masked with another OC f̃j 6= f̃i. The function update(Γ
′
, P3)

sorts the TCs in ascending order and iterates over the TCs f ∈ P3 and masks all TC f

with f̃i ⇐⇒ Uf ≤ EU(Γ
′
). In Line 13 update(Γ∗,Γ

′
, f̃∗, f̃i) sets Γ∗ = Γ

′
and f̃∗ = f̃i

if EU(Γ
′
) < EU(Γ∗). Finally, the function update(φ,Γ∗, f̃∗) in Line 14 determines the

OCs f̃
′

for all f /∈ Γ∗ given Ūf̃ ′ < Ūf̃∗ and the strategy φ is returned.

Algorithm 2: Compute defender’s optimal φ with fixed Ūf̃ .

1 initialize φ, Γ∗, f̃∗

2 sort(F̃ ) //descending by utility Ūf̃
3 minUtil[] := (minf̃ Ūf̃ )f

4 For i = 1, . . . , |F̃ |
5 initialize Γ

′

6 P1:={f | minUtil[f ] > Ūf̃i}
7 If P1 6= ∅
8 break
9 P2:={f | minUtil[f ] = Ūf̃i}

10 P3:={f | minUtil[f ] < Ūf̃i and f̃i ∈ F̃f}
11 P4:={f | minUtil[f ] < Ūf̃i and f̃i /∈ F̃f}
12 Γ

′
:= P2

13 update(Γ
′
, P3)

14 update(Γ∗,Γ
′
,f̃∗,f̃i)

15 update(φ,Γ∗,f̃∗)
16 return φ

Proposition 4.2 Given fixed utilities Ūf̃ and no budget constraint, Algorithm 2 computes

the optimal strategy φ in O(|F ||F̃ |).

Proof 4.3 First, I show that for each f̃ ∈ F̃ , Lines 5 through 13 in Algorithm 2 computes

the set Γ
′

with the minimum average value. To see this, note that all TCs f ∈ P2 must
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be in Γ
′

while all TCs f ∈ P4 cannot be included. In update(Γ
′
, P3) (note P3 is given in

sorted order) the defender decides for each f ∈ P3 to include the Nf TCs in Γ
′ ⇐⇒

Uf ≤ EU(Γ
′
). At the end of this update, tt follows that Γ

′
must be the minimum average

set for f̃i. Given that the for loop in Line 4 iterates through all f̃ ∈ F̃ , it must be the

case that the optimal Γ∗ is returned for some f̃ .

In Line 2, sorting F̃ takes O(|F̃ | log |F̃ |) time and calculating minUtil[] takes

O(|F ||F̃ |) time. For each iteration of the for loop in Line 4, it takes O(|F |) time to

split F into the sets the four sets P1, P2, P3 and P4. It takes the function update(Γ
′
, P3)

at most |F | operations to update Γ
′

while update(Γ∗,Γ
′
, f̃∗, f̃i) takes O(1) time. Hence,

each iteration it takes O(|F |) time and hence, O(|F ||F̃ |) time for the for loop. Lastly,

update(φ,Γ∗, f̃∗) takes at O(|F ||F̃ |) time to return the defender’s strategy φ as it must

find an OC f̃j for each f /∈ Γ∗ with Ūf̃j < Ūf̃i.

It is possible to efficiently compute the defender’s optimal strategy when there is no

budget constraint. When the defender has a budget constraint, however, the question

arises if her optimal strategy can be found efficiently as well. This problem is called

CDG-Fixed and next it is shown to be NP-Hard.

Proposition 4.3 CDG-Fixed is NP-hard.

Proof 4.4 The proposition is proved via a reduction from the 0-1 Knapsack problem (0-1

KP), which is a classical NP-hard problem. Given a budget B and a set of m items each

with a weight wi and value vi, 0-1 KP is the optimization problem of finding the subset of

items Y which maximizes
∑

i∈Y vi subject to the budget constraint
∑

i∈Y wi ≤ B. Now I
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show that 0-1 KP can be reduced to CDG-Fixed. For convenience, [m] is used to denote

the set {1, 2...,m} and S =
∑

i∈[m] vi denote the sum of all utilities.

Given a 0-1 KP instance as described above, construct a CDG instance as follows.

Let the set of TCs be F = {f1, . . . , fm} ∪ {fm+1}, with utilities Ufi = vi, ∀i ∈ [m] and

Ufm+1 = −W for some fixed constant V . Note Nf = 1 ∀f ∈ F . Let the set of OCs be

F̃ = {f̃1, f̃2}, with F̃fi = F̃ ∀i ∈ [m] and F̃fm+1 = {f̃1}. Set the costs as c(fi, f̃1) = 0,

c(fi, f̃2) = wi for all i ∈ [m] and c(fm+1, f̃1) = 0. Set Ūf̃1
> Ūf̃2

. Assuming a naive

adversary, these components completely define a CDG-Fixed problem. Since fm+1 is

bound to be masked by f̃1, and Ūf̃1
> Ūf̃2

, attacking f̃1 is a dominant strategy for the

adversary.

Observe that
∑

f∈F Uf is
∑

i∈[m] vi−V = S−V . It is claimed that the optimal objective

of the 0-1 KP instance is greater than S−V if and only if the optimal defender utility in

the constructed CDG-Fixed problem, i.e., U∗(φ), is negative. The ⇐ direction is proven

next as the ⇒ is a similar proof. Let φ∗ be the optimal solution to the CDG-Fixed

problem. By definition, the set Y = {i : φ∗
fi,f̃2

= 1} is a feasible solution to the 0-1 KP

since the cost of mapping fi to f̃2 is wi. The sum of all utilities of all systems is S − V

whereas U∗(φ∗) < 0 means the total utilities of systems mapped to f̃1 is less than 0, this

implies that the total utilities of systems mapped to f̃2 is at least S−V . Note each system

mapped to f̃2 corresponds to an item and hence, the optimal objective of the 0-1 KP is

also at least S − V .

The above claim shows that for any constant V , one can check whether the optimal

objective of the 0-1 KP is greater than S − V by solving a CDG-Fixed instance. Using

this procedure as a black-box, a binary search can be performed to find the exact optimal
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objective of the 0-1 KP with integer values within O(poly(log(S))) steps (both S and

weights are machine numbers with input size O(log(S))). As a result, a polynomial time

reduction has been constructed from computing the optimal objective of any given 0-1 KP

to solving the CDG-Fixed problem. This implies the NP-hardness of the CDG-Fixed

problem.

CDG-Fixed can be solved with Algorithm 2 via a modification to the function

update(Γ
′
, P3) in Line 13. Given Γ

′
, one computes the minimum budget B

′
required

to mask all TCs f ∈ Γ
′

with f̃i and mask all TCs f ∈ P3 and f ∈ P4 with f̃j such that

Ūf̃j < Ūf̃i . If Γ
′

= ∅, then for f ∈ P3 mask f with f̃i if c(f, f̃i) < B
′
. Assuming P3

is sorted ascending, once the defender assigns f̃i to a TC f she is done. If Γ
′ 6= ∅, the

defender must solve multiple MILPs, with n = nΓ′ , . . . , |K| to find the best Γ
′
. Denote

uΓ′ = EU(Γ
′
).

min
φ

nΓ′uΓ′ +
∑
f

φf,f̃Uf (4.19a)

s.t.
∑
f

φf,f̃i ≤ n− nΓ′ (4.19b)

Constraints (4.1) ∼ (4.4)

4.5 Experiments

The CDG model and solution techniques are evaluated using synthetically generated

game instances. The game payoffs are set to be zero-sum, and for each TC, the payoffs

Uf are uniformly distributed in [1, 10]. Each OC f̃ is randomly assigned a set of TCs it
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can mask, while ensuring each TC can be masked with at least one OC. To generate the

TSN, each system is randomly assigned a TC uniformly at random. The costs c(f, f̃) are

uniformly distributed in [1, 100] with the budget B uniformly distributed in-between the

minimum cost assignment and maximum cost assignment. All experiments are averaged

over 30 randomly generated game instances.

4.5.1 Powerful Adversary - Scalability and Solution Quality Loss
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Figure 4.3: Runtime Comparison and Solution Quality Comparison (20 Observables) -
Reformulated MILP (MILP), the bisection algorithm with ε = .0001 (Bisection) and
Greedy MaxiMin (GMM) with 1000 random shuffles.

When solving for the defender’s optimal strategy φ strategy for enterprise networks,

it is important to have solution techniques which can scale to large instances of CDGs.

The first experiment compares the scalability of the reformulated MILP, the bisection

algorithm and the Greedy Minimax (GMM) algorithm with 1000 random shuffles along

with the solution quality of the approaches. In Figure 4.3(a) the runtime results are shown

with the runtime in seconds on the y-axis and the number of systems varied on the x-axis.

As can be seen, the runtime for solving the reformulated MILP increases dramatically
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# OCs 2 4 6 8 10

10 systems 0 0.092% 0.015% 0.028% 0.512%

Optimal Instances 30 29 29 29 25

20 systems 0 0.028% 0.615% 1.91% 3.18%

Optimal Instances 30 28 17 12 9

Table 4.1: Solution Quality % loss and number of optimal instances for GMM versus
MILP.

as the number of systems increases while both GMM and the bisection algorithm finish

in under 10 seconds in all cases. The results from the bisection algorithm compared to

the reformulated MILP are quite surprising given it provides the ε optimal solution and

highlights the benefit from solving smaller MILP for larger CDG instances.

While GMM is much faster than the reformulated MILP (but comparable to the bisec-

tion algorithm), it is not guaranteed to provide the optimal solution or an ε-approximate

solution. However, the experimental results show that empirically the solution quality

loss is very small. In Figure 4.3(b) the solution quality of the MILP is compared to GMM,

where the attacker’s utility is given on the y-axis and the number of OCs are varied on the

x-axis. Importantly, GMM shows a low solution quality loss for the defender compared

to the MILP with a minimum loss of 1.68% for 12 systems and a maximum loss of 5.93%

for 16 systems. This experiment highlights the scalability of GMM and shows the loss

in solution quality from GMM can give a reasonable trade-off between computational

efficiency and solution quality.

An interesting feature of GMM is how often it returns the optimal solution for the

defender as the CDG game size changes. Table 4.1 compares the solution quality of

GMM (with 1000 random shuffles) versus the MILP for several game sizes with 10 and 20

systems where the number of OCs are varied from 2 to 10. Interestingly, for CDGs with
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Figure 4.4: Solution Quality Comparison (20 systems and 20 OCs) - Comparison of
Hard-GMM (GMM - H) and Soft-GMM (GMM - λ) varying the number of shuffles.

10 systems, Hard-GMM is able to find the optimal solution in a vast majority of instances

(142 out of 150 instances). However, for CDGs with 20 systems, GMM fails to recover

the optimal solution in about a third of the instances (96 out of 150). Nevertheless, the

loss of solution quality still remains low (3.18%) even when GMM returns the optimal

solution a third of the time.

The solution quality of a variation of GMM, called Soft-GMM or GMM−λ, was tested

as well. Instead of greedily choosing the OC with minimax expected utility at the stage,

a soft-min function [19] is applied with parameter λ controlling the greediness of the

next choice. Figure 4.4 shows the solution quality of GMM (denoted as GMM-H) and

GMM−λ with varying λ values. GMM−.01 is very close to randomly choosing OCs for

the systems and performs poorly compared to larger λ values, indicating that GMM is

an effective heuristic and performs much better than random assignment. Importantly,

the randomness in GMM−λ leads to a potential of finding better strategies than GMM

since GMM-Hard is restricted to a limited strategy space and GMM−λ is not. This

can be seen by comparing the results for GMM-Hard and GMM-10 where the latter
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outperforms the solution quality achieved with GMM-Hard at 8000 and 16000 shuffles.

Further investigation is deferred to future work.

4.5.2 Comparing Solutions for Different Types of Adversaries

The last experiment compares how the optimal strategies for the two adversary models

(powerful versus naive) perform in the opposite case. Figure 4.5(a) compares the solution

quality of the MILP in Section 4.3 to Algorithm 2 when the adversary is assumed to know

φ with the attacker’s utility on the y-axis and the number of systems varied on the x-axis.

This figure highlights that for the powerful adversary the MILP performs significantly

better than Algorithm 2 (except for 5 systems) and shows the risk of underestimating

the adversary’s information when devising the defender’s strategy φ. In Figure 4.5(b) the

solution quality of Algorithm 2 is compared to the MILP when the adversary is assumed

to have fixed utilities. As the figure shows, the improvement in utility is dramatically

higher for Algorithm 2 compared to the MILP. The reason for this difference lies in

Algorithm 2 leveraging the adversary’s fixed preferences over OCs and minimizes the

value of systems masked with the OC the adversary will attack. The MILP, however,

minimizes the worst case utility given the adversary may attack any OC and hence, fails

to leverage the defender’s advantage to a high benefit.

4.6 Real World Applicability

In this section, I will highlight several recent works that have provided technical solutions

to achieving the deception outlined in this chapter. This section is not meant to be a

complete reference of all technical deceptive techniques available, but rather, a catalog
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Figure 4.5: Solution Quality Comparison (10 OCs) - In (a) the solution quality of the two
types of defender strategies is shown against a powerful adversary. In (b) the solution
quality of the strategies is shown against a naive adversary.

of applicable deceptive methods for a network administrator using the Cyber Deception

Game model. There are three main areas of active research in developing deceptive tech-

niques to thwart adversarial network reconnaissance: (1) Operating System and applica-

tion/service obfuscation against fingerprinting, (2) deceptive network topology alteration

and (3) honeypots and honey-* defenses.

4.6.1 OS and Application Fingerprinting & Obfuscation

One of the first pieces of information an adversary must gain when completing reconnais-

sance on a defender’s network is determining the operating systems deployed on systems

in the network. This important first step provides crucial information about the types

of exploits available to be used and potentially the difficulty in attacking the defender’s

network. Operating System (OS) fingerprinting is an area of significant interest as it

provides the tools necessary for an adversary to determine the OSs that systems across

the enterprise network are running. OS fingerprinting can be accomplished in two ways
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(i) active fingerprinting which involves sending carefully crafted packets to the target

system and analyzing the results and (ii) passive fingerprinting which sniffs and analyzes

network network traffic traveling between systems.

Active fingerprinting techniques are generally more sophisticated than passive finger-

printing. In some cases, an adversary can disregard stealthier approaches and simply

attempt to connect to the host system to learn about the OS of the system by establish-

ing a connection via the Telnet or SSH protocol which sends the OS version as part of

the welcome message. For network recon tools, active fingerprinting techniques trigger a

target system to send a series of responses that are then analyzed by the adversary’s net-

work tools to determine the type and version of the OS a system is running. The ICMP,

TCP and UDP packets sent to a system are specially crafted to observe how the system

responds to both valid and invalid packets. For example, some features of TCP probes

received from a system can distinguish in-between different operating systems (e.g., order

of the TCP options, the TCP sequence number).

Passive fingerprinting consists of using a packet sniffer that passively collects and

analyzes packets traveling between systems in a network. One simple method of passive

fingerprinting uses the Time To Live (TTL) field in the IP header and the TCP Window

Size of the SYN or SYN+ACK packet in a TCP session to determine the OS of a system.

This is due to the values for TTL and the TCP Window Size depending on the OS

implementation as the RFC specifications only define intervals of values and recommended

values, and does not mandate specific values to be used.

There are numerous tools available for fingerprinting today. Due to the variety of the

network mapping tools, no single deception approach can be used to defeat all of them,
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but with a combination of approaches it is possible to significantly increase the difficulty

in the reconnaissance efforts of an adversary. Below is a list of some of the network

scanning tools available to give the reader a small overview of this area. A more in-depth

and exceptional technical breakdown of network scanning tools and their specifications

can be found in [1].

1. Nmap [53]: Nmap is a network security scanner used to discover hosts and services

on a computer network that builds a “map” of the network. It works as an active

tool by sending specially designed packets to a host which it then analyzes to identify

the OS and applications running on different ports.

2. SinFP3: SinFP was developed in order to complete OS fingerprinting of a host

under the worst-case network conditions [9]. This includes a remote host having

only one port or the traffic to all other TCP and UDP ports is dropped by filtering

services. Once the response packets have been received SinFP uses a matching

algorithm to determine the OS of a particular system.

3. Xprobe: Xprobe is an active OS fingerprinting tool that uses fuzzy signature match-

ing, probabilistic guesses and a signature database to determine the OS for a given

host [86]. Many of the techniques in Xprobe have been built into nmap over time.

4. p0f3: p0f v3 [90] is a tool that utilizes passive traffic analysis to fingerprint hosts

behind any TCP/IP communications in a network without interfering in any way.

The techniques it uses for the fingerprinting are sophisticated and this tool can be

used when Nmap probes may be blocked or the adversary wants to be stealthy.
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5. amap: amap [67] is a application mapper tool which determines the applications

a host on a network is running and the specific versions of those applications by

interrogating network services and sockets.

6. Nessus: Nessus [17] provides a wide-variety of network scanning tools in order to

map out a network. It is extremely useful as a vulnerability scanner by looking for

types of vulnerabilities such as misconfigurations, default passwords, and denials

of service against TCP/IP stack by using malformed packets. Additionally, it uses

many of the other network and application fingerprinting tools in conjunction to

provide results to a Nessus user.

For the fingerprinting of applications running on a port of a host system, a typical

approach relies on retrieving the service banner to gather information on the application

and version along with using the port number (e.g., webservers typically have HTTP on

port 80). In this regard, approaches to combat application fingerprinting rely on altering

the service banner sent back in a packet for a given probe. There are a few potential

issues from altering the banner of a service which causes it to not be applicable to some

services. For example, services that use the banner information during the connection

process (like SSH) require a non-transparent approach.

A recent paper [1] provides a technical approach for OS and application obfuscation

against nmap reconnaissance efforts. Their approach works by altering important infor-

mation contained in the TCP/IP header’s in order to fool nmap scans into misclassifying

the OS of a particular system, and potentially, the application and services running on
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Figure 4.6: The alteration of an outgoing packet to mimic a certain desired deceptive
signature.

that system as well. Figure 4.6 shows how an outgoing packet is modified in order to pro-

vide a deceptive signature of the host machine through the alteration of specific properties

in the packet header. This approach is useful as it can thwart both active and passive OS

fingerprinting tools, such as Nmap and p0f3, while also altering the reported services by

altering the header files sent back from a particular service scan (achieved by scanning

the socket). For the obfuscation of a service hosted on a system, the techniques presented

in [1] relies on altering the banner message sent back when establishing a connection or

in the header of each appliance-level protocol data unit.

4.6.2 Deceptive Network Topologies

Another area of interest for recent research focuses on altering the network view each

host system on a network observes from reconnaissance efforts. A recent line of work [26]
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provides the the Adaptive Cyber Deception System (ACyDS) that gives the network

administrator an incredibly powerful tool. ACyDS provides each network host a unique

virtual view of the enterprise network that alters the subnet topology and IP address

assignments of reachable hosts and servers and does not reflect the physical network

configurations.

ACyDS works by altering the network view for each host (system) on the network

which consists of the network entities and network topology. The network entities viewable

from a system are those which it is permitted to communicate with on the network. The

network topology view of a system’s network view consists of the routers connecting the

host and other systems present on the network from the network entities view. For a

given system, the network view is then the composite of the network entities and network

topology views. An example is given in Figure 4.7 which shows Host1’s network view.

(a) True Network (b) Deceptive Network

Figure 4.7: Network views for a host connected to the defender’s network. In 4.7(a) is the
true network state while in 4.7(b) is an altered state with additional network connections
and honeypots.
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ACyDS works by deceptively setting the network view for a system via altering the

network entities or network topology views. This is achieved with the use of Software-

Defined Networking (SDN) along with OpenFlow to correctly manage the traffic in the

network. ACyDS leverages SDN controllers, SDN switches, and other components to

create the individual deceptive network views for systems. It is recommended the reader

reference [26] for an in-depth breakdown of the incredible ACyDS tool.

4.6.3 Honeypots and Network Tools

Honeypots are used ubiquitously in cybersecurity as a means of identifying adversary

attacks and learning about adversary behavior. Although I do not talk about the use of

honeypots extensively in this chapter, they can be incorporated into the deception model

along with their behaviors. Additionally, software applications have been developed which

can mimic network personalities of host systems to increase the perceived number of host

machines on a network to an adversary. HoneyD [66] establishes virtual network daemons

that listen for requests sent to certain IP addresses on a defender’s network and can

answer these requests for the virtualized machines. HoneyD provides the ability to set

the network topology, host machines and each the machine’s configuration on a network.

This provides the network administrator with the ability to fake additional services on

the real hosts while also emulating additional honeypots that may appear the same as

the real host systems. Using an approach of this type creates vastly more uncertainty for

an adversary and forces them to expend significant effort in order to identify real versus

fake systems on a network. Figure 4.8 gives an example of the how HoneyD can be used

within a network.
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Figure 4.8: The HoneyD server initializes network daemons to respond to pings and scans
for various IP addresses not used by a network.

Beyond HoneyD, another recent tool which has been developed to identify adversarial

network reconnaissance in Project Nova3. This application works by first analyzing a de-

fender’s network through the use of nmap and then developing a deceptive ‘haystack’ that

is deployed using HoneyD. The haystack is essentially a set of virtual systems to create in

addition to the current real systems operating on a network to increase the difficulty to

an adversary learning about systems on the network. In addition to increasing the effort

expended by an adversary, the haystack is useful in helping determine adversarial nodes

that have been compromised in a network which are being used for reconnaissance or at-

tacking efforts. The CDG model can be leveraged with the use of HoneyD or inside of an

application like Project Nova to determine the network state to show and autonomously

change the views showed to the adversary.

3http://www.novanetworksecurity.com/index.html
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4.6.4 Leveraging the CDG Model

The technical approaches presented in this section highlight much of the current state-of-

the-art in developing network technologies to fool adversarial reconnaissance efforts. The

CDG model represents a high-level approach to reasoning about the deception schemes

a network administrator can employ when given an enterprise network environment and

available technical deception tools. One question that arises for a network administra-

tor from this research is, “Why respond at all?” It turns out that many organization’s

enterprise networks must be open to outside users through the DMZ portion of their

network. These situations require systems on the network to respond to requests for

connections and scanning activity which is part of their function on the network. Indeed,

the CDG model is particularly useful as a tool to protect the perimeter of an organiza-

tion’s network, but it is general enough to also capture reconnaissance activities in the

organization’s intranet. In order to gain a concrete understanding of the applicability of

CDGs, it is useful to go through an example similar to the example network in Section

4.2.

Consider an example scenario where the network administrator has 4 systems, e.g.,

acting as webservers in this scenario, on the network which have an operating system and a

webserver software. For the systems, assume systems k1 and k2 have the Windows Server

2012 OS with k3 and k4 having the Ubuntu Linux 12.04 (Linux 3.2.x Distribution) OS.

Assume all are running Apache webserver, with k1 running version 2.2, k2 and k3 running

version 2.3, and k4 running version 2.4. The TCs for these systems are then as follows:

k1 = {[os] WS2012, [web] Apache2.2}, k2 = {[os] WS2012, [web] Apache2.3}, k3 =
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{[os] Linux3.2.x, [web] Apache2.3} and k4 = {[os] Linux3.2.x, [web] Apache2.4}. For

this scenario the technical approach presented in [1] is considered which alters outgoing

packets to obfuscate the OS and applications for a system.

Assume the network administrator has developed several obfuscation personas for the

operating systems which allows them to make an OS of a system to appear as Windows

Server 2008, Windows Server 2012, Linux 2.6.x, and Linux 3.2.x. Additionally, the net-

work administrator can obfuscate the webserver version of Apache to appear as 2.2, 2.3

or 2.4. The combination of all obfuscation personas make up the set of OCs available for

the CDG model to optimize given constraints on which personas can be used for a given

system, e.g., Windows Server 2012 can only be obfuscated as Windows Server 2008.

A possible deception scheme for the network administrator - from optimizing

the CDG model - is deploying the following personas for the systems: k1 =

{[os] WS2008, [web] Apache2.2}, k2 = {[os] WS2008, [web] Apache2.2}, k3 =

{[os] Linux2.6.x, [web] Apache2.4} and k4 = {[os] Linux2.6.x, [web] Apache2.4}. In

this scheme, k1 and k2 are made to appear the same and in a similar way k3 and k4 are

made to appear the same. From here the network administrator only needs to tell the

OS and service obfuscator to alter packets to make each system appear as the desired

persona. Switching to new personas is also easy as it only requires changing the attached

personas in the network switch (kernel module in Figure 4.6) responsible for altering the

packets sent out from systems on the network, i.e., one could have k1 and k2 have Apache

2.3 as their webserver without much overhead.

As mentioned in Section 4.6.1, the deception is not always transparent to legitimate

users. Presenting false personas for systems requires the alteration of all outgoing packets
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in some cases (given a passive network scanner), and hence, latency can become an issue

along with reductions in the data transfer speed caused from altering values such as the

Maximum Segment Size (MSS) or Window Size (WS). It is recommended the reader refer

to [1] for more in-depth details and analysis of the cost to a legitimate user from their

technical deception approach.

4.7 Chapter Summary

In this chapter, I study the problem of a network administrator should respond to scan

requests from an adversary attempting to infiltrate her network. I show that computing

the optimal defender strategy against a powerful adversary is NP-hard and provide two

main techniques, a MILP approach and a bisection algorithmic approach, to solve for

the defender’s optimal strategy against a powerful adversary. Additionally, a greedy

algorithm is provided which quickly finds good defender strategies and performs well

empirically. I then show that computing the optimal strategy against a naive attacker

is still NP-hard given a budget constraint. Extensive experimental analysis is given

demonstrating the effectiveness of the approaches. Finally, a section covering technical

deception approaches shows applications and tools that could be used in leveraging the

CDG model and algorithms to generate deceptive network views in real-world networks.
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Chapter 5

Cyber-alert Allocation Games

5.1 Problem Domain

While many organizations face the challenge of cyber alert allocation, this chapter high-

lights a scenario developed in consultation with experts at the United States Air Force

(USAF). The USAF relies on extensive global cyber systems to support its missions,

which are monitored by IDPS to prevent attacks on the network by intelligent adver-

saries. The Air Force Cyber defense unit (AFCYBER) is responsible for investigating

and resolving alerts generated by these IDPS 1. Due to the global scale of USAF com-

puter systems, millions of alerts are generated every day, associated with different types

of events. Prescreening of the alerts eliminates a large fraction of insignificant events,

but thousands remain to be investigated. Any of these remaining alerts could indicate a

malicious attack, but a large fraction are false positives.

Two primary features are used to prioritize the most critical alerts to investigate.

First, each alert has a risk classification (e.g., high, medium, low) based on the type of

event detected by the IDPS. Second, each alert has an origin location within the global

124th Air Force - AFCYBER: http://www.24af.af.mil
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Figure 5.1: To protect against cyber intrusions, enterprise networks deploy Intrusion
Detection and Prevention Systems across their network that work at both a host and
network level. The alerts generated are given a risk classification and aggregated into a
central repository called a SIEM. The network administrator then must determine how
to allocate the alerts to analysts for investigation and remediation if necessary.

network (e.g., a specific host, system); some locations (e.g., headquarters) are more critical

to operations.

The AFCYBER has a limited number of Incident Response Team (IRT) cyber analysts

who investigate significant alerts after prescreening 2. Each analyst has different areas of

expertise, and may therefore be more effective and/or faster at investigating certain types

of incidents. The USAF also must protect against an adaptive adversary who can observe

strategies through beaconing and other techniques. The problem AFCYBER faces is an

excellent example of the central analyst assignment problem covered in this section in the

real world.

In this chapter, I will discuss the Cyber-alert Allocation Game (CAG) model which

captures the assignment problem a network administrator is faced with in this domain.

2688th Cyberspace Wing: http://www.24af.af.mil/Units/688th-Cyberspace-Wing

66



This model helps prioritize the resolution of alerts by accounting for a strategic adversary

and constraints on the cyber analysts investigating the alerts. Next, the CAG is com-

putationally analyzed and techniques are developed to solve for the defender’s optimal

assignment policy. Finally, experiments are shown which demonstrate the benefit of the

game theoretic approach versus ad-hoc assignment policies while the scalability of the

algorithms is also analyzed.

5.2 Cyber-alert Allocation Games

The Cyber-alert Allocation Game (CAG) is modeled as a (zero-sum) Stackelberg game

played between the defender (e.g., AFCYBER) and an adversary (e.g., hacker). The

defender commits to a mixed strategy to assign alerts to cyber analysts. A worst-case

assumption is made such that the attacker moves with complete knowledge of the de-

fender’s strategy and plays a best-response attack strategy [43]. However, in a zero-sum

game the optimal strategy for the defender is the same as the Nash equilibrium (i.e., when

the attacker moves simultaneously) [88], so the order of the moves is not consequential in

the model.

Systems and Alerts: The defender responds to alerts originating from a set of systems

k ∈ K. A “system” in this model could represent any level of abstraction, ranging from

a specific server to a complete network. IDPS for each system generate alerts of different

types, a ∈ A. The alert types correspond to levels of severity (e.g., high, medium, and

low), reflecting the likelihood of a malicious event. The combination of the alert type and

the origin system is represented as an alert category, c ∈ C, where c = (k, a). The alerts
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in a given category are not differentiable, so the defender must investigate all alerts within

a category with the same probability. The total number of alerts for a given category c

is denoted by Nc. It is assumed that both the defender and attacker know the typical

value of Nc from historical averages (similar to [33]).

Attack Methodologies: Attackers can choose from many attack methodologies. These

fall into high-level categories such as denial of service attacks, malware, web exploitation,

or social engineering. These broad classes of attacks are represented as attack methods

m ∈ M . For every attack method there is a corresponding probability distribution βma

which represents the probability that the IDPS generates an alert of type a for an attack

method m. For example, if the attacker chooses m = DoS the corresponding alert

probabilities could be βDoSHigh = .8, βDoSMedium = .15 and βDoSLow = .05.

Cybersecurity Analysts: Cybersecurity analysts R are assigned to investigate alerts.

The time required for an analyst to resolve an alert type a varies, and is represented by

T ra . Intuitively, T ra represents the portion of a time period that an analyst needs to resolve

an alert of type a. A time period may be a shift, an hour or other fixed scheduling period.

For example, if an analyst needs half a time period to resolve a, then T ra = 0.5. In the

model: T ra ≤ 1, ∀ a ∈ A, i.e., an analyst can address multiple alerts within a time period.

In addition to T ra , the effectiveness of an analyst against an attack method, representing

her expertise, is captured via a parameter Erm.

Defender Strategies: A pure strategy P for the defender is a non-negative matrix of

integers of size |C| × |R|. Each c,r entry is the number of alerts in category c assigned to

be investigated by cyber analyst r, denoted by Pc,r. The set of all pure strategies P̂ is all
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(a) Pure Strategy (b) Marginal Strategy

Figure 5.2: CAG Strategies for the defender.

allocations that satisfy the following constraints; Ca denotes all categories with the alert

type a:

∑
a∈A

∑
c∈Ca

T raPc,r ≤ 1 ∀r ∈ R (5.1)

∑
r∈R

Pc,r ≤ Nc ∀c ∈ C (5.2)

Pc,r are integers (5.3)

Inequality (5.1) ensures that each analyst is assigned a valid number of alerts, while

inequality 5.2 ensures the number of alerts assigned are not more than the total in a

category.

Example CAG. Consider a CAG with two systems K = {k1, k2}, two alert levels A =

{a1, a2}, and two analysts r = {r1, r2}. There are four alert categories C = {c1, c2, c3, c4},

where c1 = (k1, a1), c2 = (k1, a2), c3 = (k2, a1) and c4 = (k2, a2). For the alert categories

we have Nc1 = 3, Nc2 = 2, Nc3 = 0, and Nc4 = 1. For r1, assume T r1a1
= 1 and T r1a2

= 0.5;
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For r2, assume T r2a1
= 0.4 and T r2a2

= 0.2. The analyst capacity constraint (Inequality

(5.1)) for r1 is instantiated as follows (the other columns are similar):

Pc1,r1 + 0.5 · Pc2,r1 + Pc3,r1 + 0.5 · Pc4,r1 ≤ 1

For c1 the alert capacity constraint (Inequality (5.2)) we have (the other rows are similar):

Pc1,r1 + Pc1,r2 ≤ 3

An example of a pure strategy P is given in Figure 5.2(a). The dashed boxes in Fig-

ure 5.2(a) represent the set of variables in the analyst capacity constraints, i.e. con-

straints of type (5.1). An example marginal strategy is shown in Figure 5.2(b). This

drops constraint (5.3), but satisfies constraints (5.1) and (5.2).

Define a mixed strategy q over pure strategies P ∈ P̂ (
∑

P∈P̂ qP = 1, 0 ≤ qP ≤ 1).

From the mixed strategy one can calculate the marginal (expected) number of alerts

of category c assigned to each analyst r, denoted by nc,r =
∑

P qPPc,r. The marginal

allocation is denoted by n with component nc,r representing the expected number of

alerts in category c assigned to analyst r. The adversary plays a best response to the

defender’s marginal strategy n which amounts to choosing a system k to attack and an

attack method m.

Utilities Since the alerts in a category are indistinguishable they are all investigated

with the same probability nc,r/Nc, which is the probability that an alert in category

c is investigated by analyst r. The probability of detecting an attack of type m that
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results in an alert of type c is calculated as: xc,m =
∑

r∈RE
r
mnc,r/Nc. The payoffs for

the defender depend on the system k that is attacked, the attack method m, and if the

adversary is detected (or undetected) during investigation. This is denoted by Udδ,c and

Uuδ,c, respectively, where c refers to the category (k, a) and δ is the defender. A CAG is

formulated as a zero-sum game, hence the payoffs for the adversary (θ) are Udθ,c = −Udδ,c

and Uuθ,c = −Uuδ,c. If the adversary chooses k, m, and given βma , the defender’s utility is:

Us =
∑
a∈A

βma [xc,m ∗ Udδ,c + (1− xc,m)Uuδ,c] (5.4)

Bayesian Game It is possible to extend the CAG game formulation to allow for vary-

ing adversary types. The motivation behind this extension is to handle the situation

where a defender may be protecting against adversaries that may value targets in the

network differently, e.g. a nation-state versus script-kiddie. In this case, denote the

set of adversary types as Θ and it is assumed the defender knows a prior z over the

chance of encountering the varying adversary types. Define the utilities for adversary

type θ as Udδ,c(θ) and Uuδ,c(θ). The defender’s utility given θ, k, m and βma is then

Us,θ =
∑

a∈A β
m
a [xc,m ∗ Udδ,c(θ) + (1 − xc,m)Uuδ,c(θ)]. Although the bayesian formulation

can easily be handled, for clarity the rest of the analysis is completed without considering

the adversary types.
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5.3 Defender’s Optimal Strategy

The defender’s optimal mixed strategy (maximin strategy) can be computed a linear

program, denoted as MixedStrategyLP :

max
n,v

v (5.5)

s.t. v ≤ Us ∀k ∈ K,∀m ∈M (5.6)

xc,m =
∑

r∈RE
r
m
nc,r
Nc

∀c ∈ C,∀m ∈M (5.7)

nc,r =
∑
P∈P̂

qPPc,r ∀c ∈ C,∀r ∈ R (5.8)

∑
P∈P̂

qP = 1, qP ≥ 0 (5.9)

This LP requires exponentially many pure strategies P ∈ P̂ . The objective function in

Equation 5.5 maximizes the defender’s utility, v. Equation 5.6, which uses Equation (5.4),

ensures the adversary selects a best response over all m ∈ M and k ∈ K. Equation 5.7

calculates the detection probabilities x from the marginal strategy n, which is computed

by Equation 5.8. Equation 5.9 ensures the mixed strategy is valid.

Computing the maximin mixed strategy for the defender was shown to be NP-hard

in the case of TSGs [22]. The computational hardness arises from the underlying team

formation of applying a group of screening resources to screen incoming passengers. How-

ever, in CAGs there are not teams of analysts, the defender only needs to assign the alerts

to individual analysts. Thus, one might hope that this could simplify the problem and

admit a polynomial time algorithm. Unfortunately, this turns out not to be the case.
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Specifically, in Theorem 5.1 it is shown that the problem is still NP-hard, where the

hardness arises from a different domain feature, i.e., the time values, T ra , for the analysts.

Theorem 5.1 Computing the defender maximin strategy is weakly NP-hard when there

is only one resource, and is strongly NP-hard with multiple resources.

Proof 5.1 From [85], it is shown that the computational complexity of computing mini-

max equilibrium is equivalent to that of finding the best response. Here, I show that the

best response problem in CSGs is weakly NP-hard even when there is only one resource

via a reduction from the Knapsack problem and becomes strongly NP-hard when there

are multiple resources via a reduction from the Generalized Assignment Problem (GAP).

This, together will the results of [85], yields the claimed conclusion. First, the weak NP-

hardness is proven when there is a single resource. In the knapsack problem, we have N

items each with a weight wi and value vi ∀i ∈ N , and aim to pick items of maximum

possible value subject to a weight-capacity budget B.

Now create a CSG instance with 1 system k1, 1 attack method m1, and one resource r1.

Set Er1m1
= 1.0 and Lr1 = 1. Also, N alert levels are created, thus |A| = |C| = N . For each

alert level a ∈ A, set T r1ai = wi/B ≤ 1. Each category ci ∈ C also corresponds to ai since

there is only one system. Set Uds,ci = vi and Uus,ci = 0. Also set qm1
a1

= . . . = qm1
aN

= 1/|N |.

Further, set Nci = 1 ∀i ∈ N , i.e., each category has precisely one alert. The adversary

only has one choice k1,m1. In this constructed instance, the defender’s best response

is a pure strategy that picks alerts of the maximum value but subject to total time limit

constraint. Let ni ∈ {0, 1} denote whether the resource resolves category ci, the best

response problem then solves the following optimization program:
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max
n

∑N
i=1 nivi (5.10)

s.t.
N∑
i=1

ni · wi/B ≤ 1 (5.11)

ni ∈ {0, 1} ∀i = 1, ..., N (5.12)

It is easy to see that this is precisely the Knapsack problem described above, yielding

the weak NP-hardness. To prove that the problem is strongly NP-hard with multiple

resources, the reduction is from the following Generalized Assignment Problem (GAP), a

well-known NP-hard problem: given R machines and A jobs, assign job a to machine r

which costs T ra time units and achieves utility Era; machine R has a limit of 1 time unit.

The goal is to assign these jobs to machines to maximize the total utility subject to each

machine’s time capacity. It is easy to verify that this corresponds to the best response

problem of a particular CSG as follows: one system, R resources, alert set A; |A| attack

methods with method ma triggering alert a with probability 1. Trivial details are omitted

here.

In some special cases, it is possible to compute the optimal marginal strategy in

polynomial time. Specifically, if all T ra for a given analyst r are identical ∀a ∈ A, then the

optimal marginal strategy can be found with an LP which is stated in Proposition 5.1.

This result is discussed further in Section 5.4.

Proposition 5.1 When T rai = T raj ∀ai, aj ∈ A for each resource, then there is a polyno-

mial time algorithm for computing the maximin strategy.
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Proof 5.2 When all T ra for a given analyst r are equal, constraint:∑
a∈A

∑
c ∈ CaT ranc,r ≤ 1 can be converted into

∑
a∈A

∑
c ∈ Canc,r ≤ 1

T ra
. WLOG,

1
T ra
→ b 1

T ra
c as any marginal assignment over b 1

T ra
c will not be implementable. This

happens as all pure strategies have integer assignments. Hence, for all constraints of

type (5.16) a new constraint
∑
c ∈ Canc,r ≤ b 1

T ra
c is introduced. This new set of analyst

capacity constraints forms a hierarchy H2 and therefore, the set of constraints form a

bihierarchy. The defender’s optimal marginal strategy n can be found by solving the

MSLP.

5.3.1 Defender’s Optimal Marginal Strategy

In the security games literature, two approaches are commonly used to handle scale-

up: marginal strategies [43, 50] and column generation [37]. A marginal strategy based

approach is adopted which finds the defender’s marginal strategy n and does not need

to explicitly enumerate the exponential number of pure strategies. A relaxed version

of LP (5.5)∼(5.9) in given in LP (5.13)∼(5.17). LP (5.13)∼(5.17) is similar to LP

(5.5)∼(5.9) except that equations (5.8) and (5.9) are replaced with equations (5.16)

and (5.17) to model the relaxed marginal space. Recall that marginal strategies sat-

isfy constraints (5.1)∼(5.2) (which lead to Equations 5.16 and 5.17) but drop constraint
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(5.3). The optimal marginal strategy n for the defender can then be found by solving the

following MarginalStrategyLP 3 (MSLP):

max
n,v

v (5.13)

s.t.v ≤ Us ∀k ∈ K,∀m ∈M (5.14)

xc,m =
∑

r∈RE
r
m
nc,r
Nc

∀c ∈ C,∀m ∈M (5.15)

∑
a∈A

∑
c∈Ca T

r
anc,r ≤ 1 ∀r ∈ R (5.16)

∑
r∈R nc,r ≤ Nc, nc,r ≥ 0 ∀r ∈ R,∀c ∈ C (5.17)

Though MarginalStrategyLP computes the optimal marginal strategy n, it may not

correspond to any valid mixed strategy q, i.e., there may not exist a corresponding mixed

strategy q such that n =
∑

P∈P̂ qPP ,
∑

p∈P̂ qP = 1. Marginal strategies of this type are

called non-implementable. However, when T ra have a particular structure, one can show

the marginal strategy returned is the optimal for the defender. The intuition is that when

T ra = 1
wa

where wa ∈ Z+, the extreme points of the marginal polytope are all integer.

In these cases, the defender’s optimal implementable marginal strategy can be efficiently

computed using the MSLP.

Theorem 5.2 For any feasible marginal strategy n to MSLP, there is a corresponding

mixed strategy q that implements n whenever T ra = 1
wa

where wa ∈ Z+, ∀r ∈ R,∀a ∈ A

and Nc ≥
∑

r∈R
1
T ra

, ∀c ∈ C for a given CAG.

3Note for the bayesian formulation, the objective function would be
∑
θ∈Θ zθvθ while the second

constraint becomes vs,θ ≤ Us,θ ∀k ∈ K,∀m ∈M,∀θ ∈ Θ
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Proof 5.3 Let Q be the polytope defined by constraints 5.16 and 5.17. Notice that since

Nc ≥
∑

r∈R
1
T ra

, constraint 5.17 is trivially satisfied, where
∑

r∈R nc,r ≤ Nc. Now, be-

cause 5.16 is independent across r ∈ R, Q can be written as Q = Q1 ×Q2 × . . .×Qr|R|,

where Qr = {nc,r|
∑

a∈A
∑

c∈Ca T
r
anc,r ≤ 1, nc,r ≥ 0}.

To show any feasible marginal strategy n from the MSLP has a valid mixed strategy q

it needs to be shown that the extreme points of Q belong to ∆P̂ . Using a result from [20]

it is known that n ∈ Q is an extreme point iff nr ∈ Q is an extreme point of Qr, ∀r ∈ R.

Hence, it only needs to be shown that the extreme points of Qr ∈ ∆P̂ .

Take an arbitrary point extreme point of Qr, then |C| linearly independent constraints

must be active. Since,
∑

a∈A
∑

c∈Ca T
r
anc,r = 1, |C|-1 of the nc,r ≥ 0 constraints must be

active meaning |C|-1 entries of nc,r = 0 for a given analyst r. Hence, nc,r > 0 for only

one entry and given
∑

a∈A
∑

c∈Ca T
r
anc,r = 1 implies that nc,r = wa. As this is integer,

this point is also a pure strategy. Therefore, Qr ∈ ∆P̂ and by extension Q ∈ ∆P̂ . In a

similar way, one can argue the opposite direction. If MarginalStrategyLP has a valid

solution, then a corresponding mixed strategy can be found.

The intuition behind Theorem 5.2 is that when the T ra = 1
wa

and wa ∈ Z+, the

extreme points of the defender’s strategy space become integer. This can be seen from

the maximum number of alerts each resource is able to resolve. Whenever, T ra = 1
wa

the

number of alerts of a given type a resource can solve will be wa, which corresponds to

an integer assignment. Hence, the defender’s marginal strategy space is the same as the

defender’s mixed strategy space when these conditions are true and the MSLP returns

the optimal marginal strategy for the defender.
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5.4 CAG Algorithmic Approach

The problem of non-implementability of marginals in security games has been studied in

previous research [50, 22], but the non-implementability arose because of spatio-temporal

resource constraints and constraints from combining resources into teams. For CDGs,

non-implementability arises from the presence of the T ra coefficients (an example is dis-

cussed later). In this section, an algorithm is presented that takes the initial constraints

on a CAG and converts them to ensure the implementability of the marginal strategy.

To that end, [23] presents a useful approach, as they define a special condition on the

constraints on the marginals called a bihierarchy. A bihierarchy captures a sufficient con-

dition needed to guarantee the implementability of the defender’s marginal strategy n.

Unfortunately, constraints on CAGs rarely satisfy the conditions for a bihierarchy and

must be converted to achieve the bihierarchy condition.

Definitions and Notation The marginal assignments n for the defender form a

|C|×|R| matrix. The assignment constraints on the defender’s marginal strategy, namely

Equations 5.16 and 5.17, are a summation of nc,r over a set S ⊂ |C|×|R| with an integral

upper bound. For example, based on Equation 5.17, {{c1, r1}, {c1, r2}} forms a constraint

subset for the example CAG. The collection of all such S form a constraint structure H

when all coefficients in the constraints are unitary, as they are in Equation 5.17.

A marginal strategy n is said to be implementable with respect to H if there exists a

distribution (a.k.a., mixed strategy) q such that n =
∑

P∈P̂ qPP . A constraint structure

H is said to be a hierarchy if, for any two constraint sets in H, we have that either one

is a subset of the other or they are disjoint. More concretely, we have the following:
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∀S1, S2 ∈ H, S1 ⊂ S2, S2 ⊂ S1 or S1∩S2 = ∅. H is said to be a bihierarchy if there exists

hierarchies H1 and H2, such that H = H1 ∪H2 and H1 ∩H2 = ∅.

For any CAG, the row constraints
∑

r∈R nc,r ≤ Nc form a hierarchy H1. How-

ever, the column constraints, one for each resource r ∈ R, do not form a hierarchy:∑
a∈A

∑
c∈Ca T

r
anc,r ≤ 1. As mentioned earlier, the culprit lies in the T ra coefficients, as

they can be non-unitary, and to achieve a hierarchy H2 on the column constraints, and

thus give us a bihierarchy, all T ra coefficients must be removed.

5.4.1 Constraint Conversion

The T ra coefficients admits possibly non-implementable marginal strategies to be returned.

For instance, in Figure 5.2(b) the marginal strategy is non-implementable, because it

is impossible to get nc1,r2 = 2.5 by mixing pure assignments. This is because con-

straints (5.1) and (5.3), force the relevant pure strategy Pc1,r2 ≤ b1/0.4c = 2. The

column constraints can be converted, namely:
∑

a∈A
∑

c∈Ca T
r
anc,r ≤ 1 into a hierarchy

by removing the T ra coefficients. The conversion can be completed by grouping together

all nc,r which have the same T ra and introducing a new constraint on these sets of nc,r.

Specifically, each column constraint (equation 5.16) is replaced with |A| constraints:

∑
c∈Ca

nc,r ≤ LCar (5.18)

This conversion must be done for all analysts r ∈ R for the column constraints to form

a hierarchy H2. LCar gives an upper bound on the number of alerts of type a that
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Figure 5.3: Conversion of Column Constraints on CAG

an analyst can solve. The choices of LCar must satisfy the original capacity constraint,

namely:
∑

a∈A T
r
aL

Ca
r ≤ 1 and LCar ∈ Z.

Conversion Example This example refers to the example CAG where the marginal

strategy is given in Figure 5.3. The column constraints must be converted to a hierarchy.

This conversion is shown for r1 (as r2 is converted in the same manner). Initially, for r1

we have the following constraint:

T r1a1
nc1,r1 + T r1a2

nc2,r1 + T r1a1
nc3,r1 + T r1a2

nc4,r1 ≤ 1

The T ra coefficients can be removed by grouping together all nc,r which share T ra and

introducing two new constraints like (5.18). This leads to two new constraints:

nc1,r1 + nc3,r1 ≤ L
Ca1
r1 nc2,r1 + nc4,r1 ≤ L

Ca2
r1

These new constraints are shown for r1 in Figure 5.3 on the right of the arrow. Next,

the LCar variables must be set. One possible combination is H2 = {nc1,r1 + nc3,r1 ≤

0, nc2,r1 + nc4,r1 ≤ 2} (H2 also includes constraints on r2 which are not shown). This
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satisfies the original the original analyst capacity constraints as: L
Ca1
r1 + 0.5 · LCa2

r1 ≤ 1.

However, there is another choice for LCar , H2 = {nc1,r1 + nc3,r1 ≤ 1, nc2,r1 + nc4,r1 ≤ 0}.

Given either of the two hierarchies H2, the constraint structure is now a bihierarchy. The

original marginals shown in Figure 5.3 do not satisfy these new constraints; but solving

the MSLP with these additional constraints in H2 is guaranteed to give an implementable

marginal.

Rounding T ra Values In the conversion process, a hierarchy H2 is created on the

column constraints by introducing |A| LCar values for each resource. The conversion

process then allows for combinatorially many configurations of the LCar values which

satisfy the original capacity constraints for a resource, i.e. Constraint (5.16). To alleviate

this search, an algorithm could take advantage of Theorem 5.2 and round each T ra to

the nearest 1
wa

value which is greater than T ra where wa ∈ Z+. The marginal strategy n

returned for this modified CAG is then guaranteed to be implementable. However, as is

shown next this can lead to a 1
2 loss for the defender in the worst case.

Counter Example Consider a CAG with one system K = {k1}, two alert levels

A = {a1, a2}, and one analyst r = {r1}. There are two alert categories C = {c1, c2},

where c1 = (k1, a1) and c2 = (k1, a2). For the alert categories we have Nc1 = 1 and

Nc2 = 1. For r1, assume T r1a1
= 0.5 + ε and T r1a2

= 0.5− ε. If one rounds the T ra values up

to the nearest 1
wa

we would have the following: T r1a1
= 1 and T r1a2

= 0.5.

Now assume the adversary has one attack method m1 with Er1m1
= 1 and where

βm1
a1

= 0.5 + ε and βm1
a2

= 0.5 − ε. Assume Udδ,c1 = Udδ,c2 and Uuδ,c1 = Uuδ,c2 where

Udδ,c1 > Uuδ,c1 ≥ 0. The adversary has one choice and hence, chooses to use m1 to attack

system k1. The modified CAG would then assign the alert in c1 to r1 and receive a utility
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of v
′

= (0.5− ε)Uuδ + (0.5 + ε)Udδ . In the unmodified CAG, however, the defender would

be able to assign both alerts to r1 and therefore, achieve a utility v∗ = Udδ . In this case,

the worst possible loss from the modification of the CAG happens when Uuδ = 0. This

results in the following:

v
′

v∗
=

(0.5− ε)Uuδ + (0.5 + ε)Udδ
Udδ

≤
(0.5 + ε)Udδ

Udδ

In the worst case, v
′

= (0.5 + ε)v∗. Hence, rounding the T ra values means the defender

can lose up to 1
2 of the optimal utility. This amount of loss is not acceptable in cyber

security domains which have highly sensitive targets and therefore, algorithms must be

devised which provide better solutions that mitigate this loss.

5.4.2 Branch-and-Bound Search

So far, it has seen that a marginal strategy n for a CAG output from the MSLP may be

non-implementable. The goal is to ensure that the marginal strategy output by MSLP

is implementable by adding new column constraints, i.e., by realizing a bihierarchy. The

addition of new constraints as outlined above gives us a bihierarchy, but there are multiple

ways to set the values of LCar variables (as shown in the above example), creating a choice

of what bihierarchy to create. Indeed, one may need to search through the combinatori-

ally many ways to convert the constraints of CAG to a bihierarchy. Previous work [22]

proposed the Marginal Guided Algorithm (MGA) for creating bihierarchies, but MGA

does not apply to CAGs as it does not deal with the non-unitary coefficients present in

CAGs.
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Here a novel branch-and-bound search is proposed: out of the set of constraints that

could be added to MSLP, find the best that would give the defender the optimal utility v∗.

At the root node, are the original constraints (13) and (14); running MSLP potentially

yields a non-implementable marginal strategy n. Then branches are created from this

root, where at each level in the tree, new constraints are added for an analyst r, and the

children are expanded with the following rules:

1. Substitute
∑

a∈A
∑

c∈Ca T
r
anc,r ≤ 1 with |A| constraints:

∑
c∈Ca nc,r ≤ LCar for all

a ∈ A. The |A| new constraints form a set H2(r). A branch is created for all

combinations of LCar which satisfy
∑

a∈A T
r
a ∗ LCar ≤ 1.

2. Solve the MarginalStrategyLP at each node with the modified constraints.

Thus, at each level of the tree, the capacity constraint of some analysts have been

substituted, and for these, we have constraints of type (5.18), but for others, we still have

constraint (5.16). This set of constraints does not form a hierarchy H2 as T ra coefficients

are present in some analyst constraints. Still, each intermediate node gives an upper

bound on the defender’s utility v which is stated in Proposition 5.2, as each conversion

from (5.16) to (5.18) introduces new constraints on the defender’s strategy space.

Proposition 5.2 Each intermediate node in the tree gives an upper bound on the de-

fender’s utility v for all subsequent conversions for the remaining analyst capacity con-

straints.

Proof 5.4 In an intermediate node there are two types of column constraints present:

(1)
∑

a∈A
∑

c∈Ca T
r
anc,r ≤ 1 and (2)

∑
a∈A nc,r ≤ LCar . At the next level of the tree
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a constraint of the first type is replaced with constraints of the second type. These new

constraints restrict the defender’s marginal strategy space and hence, the defender’s utility

v will either stay the same or decrease.

A leaf in the search tree has column constraints only of the form:
∑

a∈A nc,r ≤ LCar .

Hence, they form a hierarchy H2 as all nc,r have unitary coefficients and an integer upper

bound. At a leaf, the MSLP can be solved with the resulting bihierarchical constraints to

find a lower bound on the defender’s utility v. Combining this with Proposition 5.2 gives

the components needed for a branch-and-bound search tree which returns the optimal

bihierarchy for the defender.

5.4.2.1 Heuristic Search

The full branch-and-bound procedure struggles with large CAG. To find good bihierar-

chies, one can take advantage of the optimal marginal strategy n∗ returned from MSLP

at an intermediate node to reduce the amount of branching done. The intuition for this

strategy, is that the optimal bihierarchy either contains, or is near, n∗. For example, in the

conversion done in Figure 5.3, the LCar values can be set close to n. Set L
Ca1
r2 = b1/.4c = 2,

while the leftover capacity for r2 is used to set L
Ca2
r2 = 1. L

Ca1
r2 could be set to another

value, but our choice must stay close to n∗.

For the heuristic search, the following rules are used to expand child nodes which

must set the LCar values for an analyst r: (1) LCar = dnCa,re, (2) LCar = bnCa,rc or (3)

LCar = b1−
∑
a∈A T

r
a ∗L

Ca
r

T ra
c, where nCa,r =

∑
c∈Ca nc,r. The third rule is used whenever an

LCar value cannot be set to the roof or floor of n∗, and is set to be the max value given the

leftover analyst capacity. These choices are done in an attempt to capture the optimal
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marginal strategy n∗. The set of all valid combinations of the LCar values using the above

rules which satisfy
∑

a∈A T
r
aL

Ca
r ≤ 1 constitute the search space at each intermediate

node. These rules then significantly reduce the branching at intermediate nodes in the

search tree.

\

H1

H2

(a) Individual Bihierarchies

\

H1

H2

(b) Convex Hull

Figure 5.4: Geometric view of the defender’s strategy space.

5.4.2.2 Convex Hull Extension

The above searches return a set of good bihierarchies for obtaining a high value of v∗ for

the defender when solving MSLP, as each leaf contains a bihierarchy Hi. Each bihierarchy

Hi contains a portion of the defender’s mixed strategy space (due to new constraints).
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Thus, taking a convex hull over these bihierarchies increases the size of the defender’s

strategy space and hence, will only improve the defender’s utility. In Figure 5.4 a geomet-

ric representation of the defender’s strategy space is shown. Individual points represent

the defender’s pure strategies and the region contained in the convex hull of these points

is the defender’s mixed strategy space, while the outer region represents the defender’s

relaxed marginal strategy space. Figure 5.4(a) shows how individual bihierarchies cap-

ture portions of the defender’s mixed strategy space represented by the shaded regions

enclosed by the dashed lines. Figure 5.4(b) shows that by taking the convex hull of the

two bihierarchies H1 and H2 the size of the defender’s strategy space can be increased

without generating any new bihierarchies. Note, as each bihierarchy is implementable,

the convex hull will also be implementable [22].

To take the convex hull, first notice each bihierarchy Hi is a set of linear constraints

and can be written as Din ≤ bi for matrix Di and vector bi. Hence, by definition

n(Hi) = {n|Din ≤ bi}. Using a result from [11] that represents the convex hull using

linear constraints, one can write: conv(n(H1), . . . ,n(Hl)) = {n|
∑

i ni, Dini ≤ λibi, λi ≥

0,
∑

i λi = 1}. This allows for the convex hull of the bihierarchies to be computed

efficiently using an LP similar to MSLP.

In terms of the convex hull there are two options available: (1) Take the convex

hull of all bihierarchies or (2) build the convex hull iteratively. In some cases, the set

of bihierarchies available to the defender can be very large and hence, optimizing over

all bihierarchies is not feasible. To alleviate this issue, the convex hull can be built

iteratively. This is done by first sorting the bihierarchies by the defender utility v. Next,

the convex hull of the top two bihierarchies is taken which gives a utility v
′
to the defender.
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Bihierarchies are added to the convex hull while the utility v
′

returned increases by at

least some ε, and stops otherwise.

5.5 Evaluation

The CAG model and solution algorithms are evaluated with experiments inspired by the

operations of the AFCYBER. The game payoffs are set to be zero-sum, i.e. Uuδ,c = −Uuθ,c,

and the defender’s payoffs are randomly generated with Uuδ,c uniformly distributed in

[−1,−10]. The rest of the game payoffs, Udδ,c and Udθ,c, are set to be zero. Each experiment

is averaged over 30 randomly generated game instances.

Experimental Results

 Runtime Comparisons: Full 1, Full 2, Heur 1, Heur 2
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Figure 5.5: Experimental Results for CAG instances.
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5.5.1 Full vs Heuristic Search

Whether the heuristic approach of staying close to n∗ would yield the right solution

quality-speed tradeoff remains to be seen. To test this, the performance of the full

branch-and-bound search (Full) is compared to the heuristic search (Heur). For this

experiment two variations of the full search are tested: Full-1 which uses the full convex

hull and Full-2 which uses the iterative convex hull. The Heuristic search the same two

variations are tested, labeled as Heur-1 and Heur-2. Each instance has 20 systems, 3

attack methods, and 3 alert types.
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Figure 5.6: Allocation Approach Comparison.

In Figure 5.5(a) the number of resources are varied on the x-axis and the runtime in

seconds is shown on the y-axis. As can be seen the runtime of the full search explodes

exponentially as the number of resources is increased. However, the average runtime of

the heuristic approach is under 1 second in all cases and provides up to a 100x runtime

improvement for 5 resources. In Figure 5.5(b) the number of resources are on the x-

axis while the y-axis shows the defender’s expected utility. This graph shows that all

variations perform similarly, with the heuristic suffering less than 1% solution in defender
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utility compared to the full search for all game sizes. Hence, these results show that the

heuristic significantly improves runtime without sacrificing solution quality.
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Figure 5.7: Scaling Number of Systems

5.5.2 Solving large CAG

Another important feature of real-world domains are the larger number of cybersecu-

rity analysts available to investigate alerts. Accordingly, the next experiment tests the

scalability of the heuristic approach to large CAG instances. The parameters for these

experiments are 100 systems, 10 attack methods, and 3 alert levels.

In Figure 5.5(c) the runtime results are shown with the number of analysts on the

x-axis and the runtime in seconds on the y-axis. For example, Heur-1 takes an average

of 40 seconds to solve a CAG with 10 analysts. This graph shows the heuristic runs in

under a minute, even as the number of analysts is increased from 6 to 14. In Figure 5.5(d)

the solution quality results are shown with the number of analysts on the x-axis and the

defender’s expected utility on the y-axis. The solution quality is compared to the (po-

tentially non-implementable) MSLP solution. This graph highlights that the heuristic
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approach achieves a utility close to the theoretical optimal value. Therefore, this experi-

ment shows that game theoretic approaches scale to large CAG without sacrificing much

solution quality.

In the next experiment, the number of systems that have to be protected are varied.

For this experiment the defender has 5 cyber experts to assign. Figure 5.7 shows the

runtime and solution quality results. In Figure 5.7(a) the number of systems are varied

on the x-axis and the runtime in seconds is shown on the y-axis. For instance, for 50

systems Heur-1 takes an average of 1.78 seconds to finish running. This graph shows Heur-

1 and Heur-2 show no issues in scaling to a larger number of systems. In Figure 5.7(b)

the x-axis shows the number of systems while the y-axis gives the defender’s expected

utility. The solution quality is again compared to the MSLP solution. In all cases, the

heuristic approaches suffer only a small loss in defender expected utility compared to the

MSLP value. As can be seen from the results, the heuristic approaches scale to CAG

with a larger number of systems without sacrificing much in the way of solution quality.

5.5.3 Allocation Approach

The last experiment aim to show that the game theoretic apporach for CAGs outperform

approaches used in practice. In addition to the heuristic approach, a greedy approach

which investigates the highest priority alerts from the most critical bases first and a

random approach for the allocation are used for comparison. The parameters for this

experiment are 20 systems, 5 attack methods, and 10 analysts. In Figure 5.6(a) the

solution quality results are shown with the number of alerts on the x-axis and defender’s

utility on the y-axis. For example, with 4 alert types the heuristics achieve a utility of
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-7.52 while the greedy and randomized allocations give -9.09 and -9.65, respectively. This

difference is statistically significant (p < 0.05). In Figure 5.6(b), a solution comparison for

a specific CAG instance is shown. This graph gives intuition for why the game theoretic

approach performs so well. The greedy and random approaches tend to overprotect some

systems (system 4) while leaving others without adequate protection (system 2).

5.6 Chapter Summary

In this paper I address the pressing problem in cyber security operations of how to

allocate cyber alerts to a limited number of analysts. The Cyber-alert Allocation Game

(CAG) is introduced to analyze this problem and I show computing optimal strategies

for the defender is NP-hard. I then give special cases when the optimal strategy for a

CAG is efficiently computable. To solve CAG, a novel approach is presented to address

implementability issues in computing the defender’s optimal marginal strategy. Finally,

I give heuristics to solve large CAGs, and give empirical evaluation of the CAG model

and solution algorithms.
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Chapter 6

General-sum Threat Screening Games

6.1 Problem Domain

Extending the CAG and TSG models to general-sum domains is important for real-world

applicability of these models as security domains commonly have non-symmetric payoffs

between defenders and adversaries. In this chapter, I investigate Bayesian general-sum

Threat Screening Games (TSG) and present an approach to solve these games which has

additional applicability to the CAG model presented in Chapter 5. It is suggested for

the reader to familiarize themselves of the details of the TSG model which is given in

the background section. To highlight the usefullness of modeling general-sum payoffs,

consider that for an adversary attacking an airport he may receive a positive payoff even

when getting caught as he gains notoriety for his attack. The defender, however, would

not receive any payoff given that she is only able to stop the attack and no damage oc-

curs. In this chapter, I present an approach that handles the computational complexities
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arising from solving TSGs with non zero-sum payoffs which leverages a hierarchical de-

composition method for handling the adversary action tree and uses MGA [22] to compute

approximate marginal strategies for the defender.

6.2 Approach

While it has been shown that Bayesian Stackelberg games are hard to solve [27], it is

interesting to observe that Bayesian general-sum TSGs are hard to solve even in the

marginal strategy space as is shown next. This result shows that finding the optimal

marginal strategy n for Bayesian general-sum TSGs is fundamentally more complex than

the zero-sum case which can be solved in polynomial time as an LP. Thus, it is not

surprising that the solution approaches used in [22] are not directly applicable to the

general-sum case.

Theorem 6.1 Finding the optimal solution in Bayesian general-sum TSGs is NP-hard

even in the relaxed marginal strategy space.

Proof 6.1 The reduction is given from the knapsack problem to the TSG problem. As-

sume n items with weights wi and value vi with a sack of capacity K. Wlog, assume wi

and K are integers. Construct a game with n adversary types |Θ| = n. Each type of

adversary has two flights to board: f0, f1. Thus, C = {(θi, fj) | 0 ≤ i ≤ n, j ∈ {0, 1}}.

Choose the other parameters of the game as follows: two resources r1,r2 with capacities

Lr1 = K and Lr2 = ∞. There have two teams t1 = {r1} and t2 = {r2}. There is only

one attack method m1. For this game Et1m1
= 1 and Et2m1

= 0, i.e., t2 is not effective at
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all at detecting m1. The number of screenees for each screenee category N(θi,f0) = wi and

N(θi,f1) = 1 for all θi ∈ Θ. Each type θi occurs with probability vi∑
θi
vi

.

The utilities for the screener are Uds,(θi,f0) = 0, Uus,(θi,f0) = 0, ∀ θi and Uds,(θi,f1) =

2, Uus,(θi,f1) = 1, ∀ θi. Thus, the screener strictly prefers the adversary of every type to

choose f1. The utilities for the adversary are set as follows: UdΘ,(θi,f0) = 1, UuΘ,(θi,f0) = 2, ∀

θi and UdΘ,(θi,f1) = 0, UuΘ,(θi,f1) = 1, ∀ θi. Thus, the adversary will choose (θi, f1) only when

the probability of detection x(θi,f0) = 1, x(θi,f1) = 0 (breaking ties in favor of the screener).

This happens only when all of the screenees N(θi,f0) = wi are screened by t1. Thus,

we have from the capacity constraints that
∑

θi chooses f1
wi ≤ K. Therefore, for the

choice of f1 by adversary of type θi, the screener earns vi∑
θi
vi

and otherwise the screener

earns 0. Given, the optimization problem maximizes this utility:
∑

θi chooses f1

vi∑
θi
vi

,

the optimization provides a solution for the knapsack problem.

The resulting TSG instance from the knapsack problem has two flights, two resources,

two teams, and as many adversary types as the number of items n in the knapsack problem.

The screenee types assigned to t1 gives the knapsack solution. Therefore, the reduction

from the knapsack problem is overall polynomial in the number of items n.

The optimal marginal strategy for a Bayesian general-sum TSG can be obtained by

solving the mixed integer linear program MarginalStrategyMILP, provided below.
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max
n,s,x,a

]quad
∑
θ∈Θ

zθsθ (6.1)

s.t. sθ − Us(aθ,wc,m) ≤ (1− aθ,wc,m) · Z ∀θ, w, c,m (6.2)

0 ≤ kθ − Uθ(aθ,wc,m) ≤ (1− aθ,wc,m) · Z ∀θ, w, c,m (6.3)

xwc,m =
∑
t∈T

Etm
nwc,t
Nw
c

∀w, c,m (6.4)

∑
t∈T

Itr
∑
c∈C

nwc,t ≤ Lwr ∀w, r (6.5)

∑
t∈T

nwc,t = Nw
c ∀w, c (6.6)

nwc,t ≥ 0 ∀w, c, t (6.7)

aθ,wc,m ∈ {0, 1} ∀θ, w, c,m (6.8)∑
w,c,m

aθ,wc,m = 1 ∀θ (6.9)

Equations (6.8) and (6.9) force each adversary type θ to choose a pure strategy.

Equation (6.1) is the objective function which maximizes the screener expected utility as

a weighted summation of screener expected utility against adversary type θ, sθ, multiplied

by the probability of encountering adversary type θ, zθ. Equation 6.2 defines the screener’s

expected payoff against each adversary type, contingent on the choice of pure strategies

by the adversary types. The constraint places an upper bound of Us(a
θ,w
c,m) on sθ, but only

if aθ,wc,m = 1, as Z denotes an arbitrarily large constant. For all other pure strategies of

adversary type θ, the RHS is arbitrarily large. Similarly, Equation (6.3) places an upper

bound of Uθ(a
θ,w
c,m) on the utility of adversary type θ, kθ, for aθ,wc,m = 1. Additionally,

95



Equation (6.3) also lower bounds kθ by the largest Uθ(a
θ,w
c,m) over all aθ,wc,m. Taken together

these upper and lower bounds ensure that the pure strategy selected by adversary type θ

is a best response to the screener marginal strategy n. Equations (6.5) and (6.7) requires

that n satisfies the resource type capacity constraints and screenee category assignment

constraints.

Even though MarginalStrategyMILP represents a NP-hard problem, solving it does

not necessarily produce an implementable marginal screener strategy, i.e., the marginal

strategy may not map to a probability distribution over pure strategies. The issue of

implementability was addressed in [22] for TSGs by introducing the Marginal Guided

Algorithm (MGA), which uses the (potentially non-implementable) marginal strategy

to additionally restrict the constraints of a TSG to obtain a provably implementable

marginal strategy though it can possibly lose solution quality in the process.

6.3 GATE: Solving Bayesian General-Sum TSG

Despite operating in the marginal screener strategy space, solving the MarginalStrate-

gyMILP is computationally expensive due to the presence of the integer variables that

encode the adversary strategy space. Therefore, to solve Bayesian general-sum TSGs

a clever algorithmic is needed to explore the adversary strategy space. An example of

the adversary strategy space for two adversary types and two actions per type is shown

in Figure 6.1(a). The leaf nodes in this tree represent all possible joint pure strategy

combinations for the two adversary types.
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(b) Hierarchical Adversary Type Tree – Binary Partitioning (a) Two Adversary Type Game Tree 

[*,*] 

[1,*] [2,*] 

[1,1] [1,2] [2,1] [2,2] 

Type 1 

Type 2 

 

{1, 2} {3, 4} 

{4} {1} {2} {3} 

Branch & Guide 

Figure 6.1: Bayesian Adversary Strategy Space

As mentioned previously a standard algorithmic approach that could be used to solve

Bayesian general-sum TSGs is Multiple LPs [27]. This technique exploits the fact that, by

fixing the joint adversary pure strategy, the underlying optimization problem is converted

from a MILP to an LP. Thus, an LP can be solved for each leaf node in the adversary

strategy tree to obtain the best marginal screener strategy which induces that joint ad-

versary pure strategy as a best response. The marginal strategy with the highest screener

utility is returned as the solution for the TSG. However, the number of joint adversary

pure strategies is exponential in the number of adversary types Θ and thus Multiple LPs

is not scalable for large problem instances. Therefore, the General-sum Algorithm for

Threat screening game Equilibria (GATE) is proposed and in this section an intuitive,

high level description is provided. In Section 6.4 a detailed algorithm is given as the ex-

perimental results show GATE does not scale leading to the need for heuristics to further

speed up computation.
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6.3.1 Hierarchical Type Trees

At a high level GATE seeks to exploit the structure of TSGs and reduce the number of

joint adversary pure strategies that need to be evaluated. GATE achieves this reduction

by building off intuition from the HBSA algorithm [39], which involves constructing a

hierarchical type tree. Such a tree decomposes the game with each node in the tree corre-

sponding to a restricted game over a subset of adversary types. The idea is to solve these

smaller, restricted games to efficiently obtain (1) infeasibility information to eliminate

large sets of joint adversary pure strategies, and (2) utility upper bound information that

can be used to terminate the evaluation of joint adversary pure strategies.

GATE operates on restricted TSGs, where TSG(Θ
′
) is defined to be a TSG with a

subset of adversary types Θ
′ ⊂ Θ. It is important to note that, despite not including

all adversary types, TSG(Θ
′
) does not ignore the screenee categories associated with

adversary types Θ\Θ
′
. Indeed, TSG(Θ

′
) must still satisfy the constraint that all screenees

in each category must be assigned to a screening team type, i.e., Equation 6.6. By

continuing to enforce these constraints, the upper bounds generated will be tighter as the

screener cannot focus all the screening resources on just a subset of screenee categories,

helping to improve the ability of GATE to prune out joint adversary pure strategies.

The subsets of adversary types are decomposed such that each level in the hierarchical

type tree forms a partition over Θ satisfying Θ
′
i∩Θ

′
j = ∅, ∀i,∀j, i 6= j as well as ∪iΘ

′
i = Θ.

Additionally, the set of adversary types in each parent node is the union of the sets of

adversary types of all of its children, with the root node of the hierarchical type tree

corresponding to the full problem. Figure 6.1(b) shows an example of a hierarchical tree

98



structure with full binary partitioning for a game with four adversary types. The root

node is the parent to two restricted games with two adversary types, each of which is a

parent to two restricted games for individual adversary types.

The evaluation of the hierarchical tree starts at the leaf nodes and works up the tree

such that all child nodes are evaluated before the parent nodes are evaluated. Every node

is processed by evaluating the pure strategies of the restricted game and propagating

up only the feasible pure strategies (i.e., pure strategies inducible as an adversary best

response). [39] proved that if a pure strategy aθ′ can never be a best response for adver-

sary type θ′ in a restricted game TSG(Θ′) with Θ′ = {θ′} then any joint pure strategy

containing aθ′ can never be a best response in any TSG(Θ′′) with Θ′ ⊂ Θ′′. Thus, at a

given node, it is only necessary to consider joint pure strategies in the cross product of

the sets of feasible pure strategies passed up from the child nodes.

For each pure strategy to be propagated, the corresponding utility with respect to

the restricted game is also passed up. [39] also proved that it is possible to upper bound

the screener utility for joint adversary pure strategy aΘ in TSG(Θ) by
∑

θ∈Θ zθβ(aθ)

where zθ is the normalized probability of adversary type θ in TSG(Θ′) and β(aθ) is the

upper bound on the screener utility for adversary pure strategy aθ in the restricted game

TSG({θ}). These upper bounds can be used to determine the order to evaluate joint

pure strategies as well as when it no longer necessary to evaluate joint pure strategies.

This propagation of pure strategies and upper bounds continues until the root node is

solved to obtain the best solution for the game.

Example Consider a game with four adversary types Θ = {θ1, θ2, θ3, θ4}, like in

Figure 6.1(b), where each adversary type has two actions available, a1
θi
, a2
θi

. The full
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game is broken down into the restricted games and the leaf nodes in the hierarchical tree

are solved first. Suppose that after all of the leaf nodes are solved we get the following

action sets for the adversaries: θ1 = {a1
θ1
}, θ2 = {a1

θ2
, a1
θ2
}, θ3 = {a1

θ3
}, θ4 = {a1

θ4
} (as the

other actions are found to be infeasible). Then, in the node {θ1, θ2} we evaluate [a1
θ1

,a2
θ2

]

and [a1
θ1

,a1
θ2

] while for node {θ3, θ4} we evaluate [a2
θ3

,a1
θ4

]. Now, at the root node (Θ)

one only has to evaluate two joint adversary pure strategies (i.e., [a1
θ1

,a1
θ2

,a2
θ3

,a1
θ4

] and

[a1
θ1

,a2
θ2

,a2
θ3

,a1
θ4

]) instead of 16 (cross product of all adversary type strategy sets) in order

to find the optimal strategy for the game.

6.3.2 Advantages of GATE

As mentioned earlier, security games techniques do not apply to TSGs directly, and thus,

HBSA is not well suited for this problem. In particular, HBSA utilizes a Branch-and-

Price framework [14] which requires running column generation (given the large number

of defender strategies in complex domains) to evaluate every single adversary joint pure

strategy in the hierarchical type tree. While Branch-and-Price is a general approach

frequently used for Bayesian Stackelberg games, column generation has been shown to

be incapable of scaling for large-scale TSGs even in the zero-sum case due to the massive

number of screener pure strategies [22]. Thus, having to repeatedly run column generation

for the Bayesian general-sum TSGs is a non-starter.

To efficiently evaluate the joint adversary pure strategies in the nodes of the hierarchi-

cal tree, Branch-and-Guideis introduced, which combines branch-and-bound search with

MGA to simultaneously mitigate the challenges of both scalability and implementability

when solving Bayesian general-sum TSGs. Branch-and-Guide may be run at the root
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node of the hierarchical type tree, so that given a large of joint adversary pure strategies,

a large portion of them can be pruned using upper-bounds, speeding up the computa-

tion. Furthermore, Branch-and-Guide exploits the fact that for a fixed joint adversary

pure strategy, an implementable marginal screener strategy can be obtained quickly (even

if it not necessarily optimal) and thus can avoid having to rely on column generation.

An example of the adversary strategy tree explored in Branch-and-Guide is shown in

Figure 6.2, with the size and ordering of the tree based on the feasible joint adversary pure

strategies and corresponding upper bounds propagated up by the child nodes. Branches

to the left fix the joint adversary pure strategy, converting MarginalStrategyMILP into a

linear program which can be solved efficiently. However, the resulting marginal strategy

may not be implementable and thus MGA is run on the marginal while ensuring that

the selected joint adversary pure strategy is still a best response. This two-step process

produces an implementable marginal strategy that gives a lower bound on the overall so-

lution quality. Branches to the right represent the upper bound on the screener utility for

the next best joint adversary pure strategy which is calculated using the solution quality

information passed up from the child nodes. If the screener utility for the best solution

found thus far is higher than the upper bound than the next best joint adversary pure

strategy, then the execution of Branch-and-Guide can be terminated without exploring

the remaining joint adversary pure strategies.
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MGA Node 

Upper Bound Node 

           Lower Bound 1: 
First Leaf: at1 = 1, arest = 0 

         Lower Bound 2: 
Second Leaf: at1 = 0, at2 = 1,  
                    arest = 0 

       Upper Bound 1: 
  First Node: aall ϵ [0,1] 

       Upper Bound 2: 
  Second Node: at1 = 0, arest ϵ [0,1] 

Upper Bound |a| 

         UB1  UB2  …  UB|a| 

LB1, … , LB|a|: Possibly Not Ordered  

      Lower Bound |a|: 
Last leaf: a|a| = 1, arest = 0 

Figure 6.2: Branch-and-Guide Tree

6.4 Scaling Up GATE

While GATE incorporates state-of-the-art techniques to solve MarginalStrategyMILP, it

fails to scale up to real world problem sizes for TSGs (see comparison in Evaluation).

Thus, intuitive heuristics are employed that further narrows down the search space for

GATE, thereby enabling up to 10X run time improvement with only 5-10% solution

quality loss. There are two distinct steps in GATE where additional heuristics can help:

the processing step at the leafs of the hierarchical type tree and the processing step at

the intermediate and root nodes. In this section GATE-H (GATE with heuristics) is

presented first formally and then the heuristics used to speed up the computation are

described.

6.4.1 GATE-H: GATE with Heuristics

GATE-H solves TSGs efficiently by limiting both the number of adversary pure strategies

passed up the hierarchical adversary type tree from restricted games and by limiting the
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number of adversary strategies evaluated in the individual nodes. Each node in the

hierarchical tree is solved using Algorithm 3, beginning at the leaf nodes. The feasible

Algorithm 3: GATE− H− NODE(Θ,Ai
Θ,B

i,Us,UΘ,K)

//AiΘ: Pruned feasible pure strategy set for all adversary types

1. A
′′

:= all-Joint-Adversary-Pure-Strategies()

2. B
′
(aΘ) := getBound(aΘ, B

i) ∀aΘ ∈
∏

ΘA
i
Θ

3. sort(A
′′
, B
′
(aΘ)) //sort aΘ in descending order of B

′
(aΘ)

4. aΘ := [A1
Θ(1), A2

Θ(1), ..., A
|Θ|
Θ (1)]

5. r∗, r
′

= −∞ //Save best and iterative solutions
repeat

6. (feasible, n, r) := MGA(aΘ)
if feasible then

7. A
′

:= A
′ ∪ aΘ

if r > r∗ then
8a. r∗ := r
8b. n∗ := n

9. B
′
(aΘ) := r

else

10. A
′′

:= A
′′\aΘ

11. Every K iterations

if r
′

= r∗ 6= −∞ then
12. break

else

13. r
′

:= r∗

14. aΘ := getNextStrategy(aΘ, r
∗, AiΘ, B

i)
until aΘ = NULL

return (n∗, r∗, A
′
, B
′
)

adversary pure strategy set, denoted as A
′
, is passed up to the parent nodes as each

child is solved. Notice that not all strategies need be evaluated at a given node for the

computation to terminate as either the Branch-and-Guide heuristic or K cutoff heuristic,

both introduced later in this section, can end the computation early.

When solving a given node in GATE-H the adversary set (Θ) is given and the

screener’s and adversary’s utilities (Us and UΘ, respectively), with the feasible strategies
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(AiΘ) and bound information (Bi) is acquired from the children of that node as shown

in Algorithm 3. In the case of solving a leaf node in the tree all of that adversary type’s

strategies are enumerated with bound information given by solving an upper bound LP,

described in Section 6.4.2. After constructing the joint adversary pure strategy set (Line

1), the set is ordered by their upper bound values (Line 3) and each strategy is evaluated

one by one (main loop starts after Line 5). Heuristics are used inside of this loop, leading

to GATE-H.

Algorithm 4: getNextStrategy(aΘ, r
∗,Ai

Θ,B
i)

for i = |Θ| to 1 Step-1 do
j := index-of(aΘ,AiΘ)
//Set each adversary type strategy equal to left most leaf

aiΘ := [A1
Θ(1), ..., A

|Θ|−1
Θ (1), A

|Θ|
Θ (j + 1)]

if r∗ < getBound(aΘ, B) then
return aΘ

return NULL

The first of the two heuristics used is the Branch-and-Guide approach (Line 14 -

getNextStrategy()) which ends the computation early if the value of the current best

strategy is greater than the next highest upper bound. The second heuristic, discussed

in more detail in Section 6.3, is the K cutoff (Line 11) which ends the computation early

if the current best solution is not improving after K iterations.

Algorithm 4 describes the getNextStrategy function in detail. Essentially the function

builds the next strategy to be evaluated by iterating through all of the adversary types

and grabbing the highest valued strategy in their respective pure strategy lists.
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6.4.2 Tuning Leaf Node Computation

At the leaf nodes in the hierarchical type tree the restricted game for each adversary type

is solved. For GATE to be exact, all feasible adversary strategies from each leaf node must

be returned. Returning a portion of the feasible pure strategies gives a heuristic approach,

which may run well in practice but is not guaranteed to be optimal. Nonetheless, in some

cases even for optimality it might suffice for us to return only some promising strategies.

Below a special condition is highlighted under which it is optimal to just consider one

adversary strategy at each leaf in the hierarchical tree.

Lemma 6.1 Let nθ represent the optimal allocation against type θ at the leaf. Let nθ[Cθ]

be the part of the allocation that is assigned to screenees in screenee category Cθ. If the

strategy n formed by putting together all nθ[Cθ]: n =
∑

θ nθ[Cθ] is feasible then n is the

optimal defender strategy and the single adversary best response for each single type is

the adversary best response in the overall game.

Proof 6.2 (Proof Sketch) First, note that the strategy n achieves the payoff
∑

θ zθs
∗
θ,

where s∗θ is the defender utility in the restricted game with just the type θ. Also, clearly s∗θ

is an upper bound on the defender utility for the restricted game. By the result from [39],

the upper bound on the defender utility is
∑

θ zθs
∗
θ which is achieved by n.

Branch-and-Guide can be used as described earlier to return fewer promising adver-

sary strategies, but the question that arises when using Branch-and-Guide at the leaf

nodes is how to compute the upper bounds for the nodes on the right of the tree (Re-

call for non-leaf nodes this upper bound is computed from the upper bounds that are

propagated up from each child). One approach to compute this upper bound is to adapt
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the ORIGAMI [43] approach; ORIGAMI is the fastest technique for solving non-Bayesian

general-sum security games without resource scheduling constraints. The underlying idea

is to solve an LP to minimize the utility of the adversary by inducing the largest pos-

sible attack set (set of targets that are equally and most attractive for the attacker)

and [43] shows this provides the optimal defender utility in games without scheduling

constraints. However, even for a TSG with a single time window and a single adversary

type, ORIGAMI may not provide the optimal solution.

Therefore, ORIGAMI cannot be applied directly to find upper bounds on the adver-

sary pure strategies at the leaf nodes. Thus, UpperBoundLP is provided, shown below,

to calculate the upper bound at the leaf nodes in the hierarchical tree.

min
n,q,s,x

kθ′ (6.10)

s.t. kθ′ ≥ x
w
c,mU

d
θ′ ,c

+ (1− xwc,m)Uu
θ′ ,c
∀w,∀c,∀m (6.11)

xwc,m =
∑

t∈T E
t
m
nwc,t
Nw
c

∀w,∀c,∀m (6.12)

∑
t∈T I

t
r

∑
c∈C n

w
c,t ≤ Lwr ∀r, ∀w (6.13)

∑
t∈T n

w
c,t ≤ Nw

c , nwc,t ≥ 0 ∀c,∀w (6.14)

The objective function (6.10) minimizes the attacker’s utility for the adversary type θ
′
.

Equation (6.11) enforces that the adversary payoff be the maximal payoff for the adversary

given a marginal strategy n. Equations (6.12)-(6.14) enforce the resource constraints

from the original game. This LP uses a slightly modified formulation when enforcing the
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capacity constraints. Namely, replace Equation (6.5) with (6.14), i.e., the constraint that

every passenger in a given category c for a time window w must be screened is relaxed.

Theorem 6.2 UpperBoundLP provides an upper bound on the screener utility dθ′ for a

non-Bayesian TSG.

Proof 6.3 By relaxing constraint (6.5) to constraint 6.14, the attack set of the adversary

can only be expanded from the original formulation. This happens as Equation 6.14 allows

for an adversary to not be screened which can only increase their utility for targets, thus

possibly increasing their attack set. Since the adversary breaks ties in the screener’s favor

this can only increase the screener’s possible utility.

The above approach serves two purposes: it enormously reduces the set of strategies

that are sent up to the parent even if all the adversary strategies are evaluated in the

Branch-and-Guide tree, as the attack set is much smaller than the set of all feasible

strategies. The running time is also reduced, given the small attack set and the efficient

LP to obtain this attack set and upper bounds.

6.4.3 Tuning Non-leaf Node Computation

Section 6.4.2 focused on reducing the number of adversary pure strategies returned from

the leaf nodes. However, another very important area to prune the search space is at the

interior nodes in the binary tree. One way to approach this problem is using Branch-

and-Guide in these nodes and stopping the search once the current best solution is better

than the next highest upper bound. This can possibly provide significant speed-ups in

terms of the computation speed of GATE but it is not quite enough. Unfortunately,
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in the experiments it turned out that most of the joint adversary pure strategies were

evaluated in the interior nodes by MGA as the stopping condition for Branch-and-Guide

was almost never met.

Thus, inspiration is taken from column generation and security games literature [76]

where column generation is stopped if the solution quality does not change much with new

columns being added. This heuristic almost always provides a very good approximation.

This same principle is adopted so that when evaluating adversary strategies in the Branch-

and-Guide approach if the current solution quality does not change over the next K

strategies then the computation can be stopped and the current solution is declared as

the final solution with the adversary strategies evaluated so far propagated to the parent.

This approach can also be adopted at the root. Here K is a parameter that can be varied,

but K = 30 is used for the experiments as it seems to work the best for this problem.

This approach serves two purposes: (1) it reduces the run time at each intermediate node

and the root node and (2) it reduces the number of adversary pure strategies propagated

up the tree.

GATE-H then allows us to solve large-scale Bayesian general-sum TSGs. Further,

empirically these heuristics maintain high solution quality while decreasing the runtime

by an order of magnitude.

6.5 Evaluation

GATE-H is evaluated using synthetic examples from the passenger screening domain

as real world data is not available. The LPs and MILPs are solved using CPLEX 12.5
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with the barrier method, as this was found to work the best, on USC’s HPC Linux cluster

limited to one Hewlett-Packard SL230 node with 2 processors. The adversary and screener

payoffs are generated uniformly at random with Uua ∈ [2, 11] and Uus ∈ [−1,−10]. For

both the adversary and the screener Ud = 0. The default values for the experiments are

6 adversary risk levels, 5 screening resource types, 10 screening teams, 2 attack methods

and 3 time windows unless otherwise specified. For all experiments the capacity resource

constraints also remain constant. All results are averaged over 20 randomly generated

game instances.

6.5.1 Scaling Up and Solution Quality

The first experiment tests the scalability of each approach and provides solution quality

information for GATE-H relative to the MarginalStrategyMILP. This experiment provides

information about the trade-off between runtime and solution quality for the heuris-

tic algorithm. The four different variations of GATE that were tested are: (1) GATE

which evaluates all adversary pure strategies in each of the restricted games and only

uses Branch-and-Guide at the root, (2) GATE-H-BG which uses the Branch-and-Guide

heuristic in all nodes, (3) GATE-H-K which uses the K = 30 cutoff in all nodes and (4)

GATE-H-BG-K which uses both Branch-and-Guide and the K cutoff in all nodes. In

Figure 6.3(a) the runtime results are shown for all of the algorithms. On the x-axis the

number of flights are varied from 60 to 120 in increments of 20. On the y-axis is the run-

time in seconds. For example, for 80 flights MarginalStrategyMILP takes almost 10,000

seconds to finish. GATE did not finish in any of the instances showing it cannot scale to
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large TSG instances. GATE-H-BG also does not perform well as it fails to beat the aver-

age runtime of the MILP over all of the instances. As can be seen GATE-H-BG-30 and

GATE-H-30 significantly reduce the runtime with an average of a 10 fold improvement

over all cases and GATE-H-BG-30 providing a 20 fold speed up at 120 flights.
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Figure 6.3: In Figure 6.3(a) is a runtime comparison between the MILP and GATE. In
Figure 6.3(b) is a solution quality comparison of the MILP and GATE.

In Figure 6.3(b) the solution quality of the MILP is compared with GATE-H-BG-30

and GATE-H-30. GATE and GATE-H-BG are not included as they did not finish in a

majority of instances making it difficult to compare the solution quality. On the x-axis

the number of flights are varied from 60 to 120 in increments of 20. On the y-axis is the

screener’s utility. For instance, for 60 flights GATE-H-BG-30 returns an average screener

utility of -0.5974. As the graph shows the average solution quality loss over these game

instances is always less than .0411 for both GATE-H-BG-30 and GATE-H-30 compared

to the MILP. These results show that both GATE-H-BG-30 and GATE-H-30 provide

good approximations for large scale TSGs.

The next experiment aimed to test the ability of GATE-H-BG-30 and GATE-H-30 to

scale up to much larger TSG instances. The results are shown in Figure 6.4. On the x-axis
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Figure 6.4: Scaling Up to Larger TSG Instances

the number of flights is increased from 160 to 220. On the y-axis the average runtime in

seconds is shown to solve each of the TSG instances. For example, GATE-H-BG-30 took

on average 2,396 seconds to solve a game with 200 flights. An interesting trend here is

that the runtime peaks at 180 flights and starts to decrease afterward. This trend could

be related to the resource saturation problem as seen in other security games [38], where

the observation is that resource optimization is easiest when the resources available are

comparatively small or equal to the number of targets and becomes difficult when this is

not the case.

6.5.2 Moving Towards Zero Sum

The last experiment aimed to test what happens to the solution quality of GATE-H-BG-

30 and GATE-H-30 as the game payoffs move toward zero-sum. For this experiment,

40 flights are used and there is one time window as the MILP does not scale in these

instances. An r-coefficient is varied from 0 to -0.9 in increments of -0.1, where r = 0 means

there is no correlation between the attacker’s and screener’s payoffs and r = −1 means the

game is zero-sum (Note: -1 is not tested as there is a specialized algorithm to deal with
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Figure 6.5: Solution Quality - Moving to Zero Sum

that case where the techniques in this chapter are not useful). In previous experiments

a correlation between the adversary’s and screener’s payoffs is not explicitly set. On

the x-axis is the r-coefficient and the y-axis shows the screener’s utility. For example,

when r = 0 the MarginalStrategyMILP returns a screener utility -0.889, GATE-H-BG-

30 returns a screener utility -0.917 and GATE-H-30 returns a solution quality of -0.931.

In this experiment an interesting trend appears. As the game moves toward zero-sum

payoffs the relative performance of both GATE-H-BG-30 and GATE-H-30 progressively

worsens. However, until the game payoffs are nearly zero-sum (r = −0.9) both GATE-

H variations do have a solution quality loss greater than 11.385%. This experiment

again shows that both GATE-H-BG-30 and GATE-H-30 provide good approximations

in general-sum TSGs. (A careful reader might notice in Figures 6.3(b) and 6.3(b) that

there are slight differences in solution quality between GATE-H-BG-30 and GATE-H-30,

however these are not statistically significant.)
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6.6 Chapter Summary

The TSG model provides an extensible and adaptable model for game-theoretic screening

in the real world. It improves upon previous models in security games that fail to capture

important properties of the screening domain, e.g., the presence of non-player screenees in

the game and complex team capacity constraints. The model also improves on work done

on threat screening, such as screening stadium patrons [68], cargo container screening [6],

and screening airport passengers [58, 57].

Previous work done on TSGs [22] focused on the bayesian zero-sum case and in this

chapter zero-sum TSGs are extended to the Bayesian general-sum case. Four contribu-

tions are provided to accomplish this task: (1) the GATE algorithm which efficiently

solves large scale Bayesian general-sum TSGs, (2) the Branch-and-Guide approach which

combines branch-and-bound search and MGA in order to efficiently solve nodes in the

hierarchical tree, (3) heuristics that speed up the computation of GATE, and (4) experi-

mental evaluation of GATE showing the scalability of the game theoretic algorithm.

Using the aforementioned contributions this chapter presents a practical approach

for solving Bayesian general-sum TSGs that scales up to problem sizes encountered in

the real world. Thus, with this research I hope to increase the applicability of TSGs by

providing techniques for solving large scale Bayesian general-sum TSGs.
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Chapter 7

Conclusion

7.1 Contributions

Protecting an organization’s cyber assets from malicious actors is one of the most sig-

nificant and pressing challenges for cybersecurity in the coming years. Previous research

completed in cybersecurity has presented numerous approaches for resolving and miti-

gating problems the defender faces throughout the phases of the Cyber Kill Chain. As

alluded to earlier, however, these approaches do not adequately consider the adversar-

ial component of cybersecurity which is crucial in devising strong protection strategies

against motivated and intelligent adversaries. My thesis explores the use of game theory in

the cybersecurity domain and resolves deficiencies in previous game theoretic approaches

for security domains to handle the complex challenges in allocation problems faced by a

network administrator. Crucially, my thesis advances the state of the art in game the-

oretic approaches and algorithms for deceiving cyber adversaries and prioritizing cyber

alert resolution which provides a network administrator with more tools to thwart cyber

adversaries.
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First, to deceive cyber adversaries I introduce the novel Cyber Deception Game model

that provides a basis for strategic deception of an intelligent and motivated adversary

conducting reconnaissance on an enterprise network. This model gives an additional tool

to the network administrator which allows them to thwart an adversary in the initial

phase - the reconnaissance phase - of the Cyber Kill Chain and increases the difficulty

of successfully breaching the defender’s network. To solve this problem, I show how to

formulate the adversary’s knowledge acquisition phase in a game framework. This gives

us a way to then strategically interact with an adversary attempting to hack our network,

and most importantly, provides a way to strategically deceive the adversary. I take (1) a

robust approach to solve this problem by making the assumption that that we are facing

a powerful adversary, e.g., a nation-state, who has distributional information about the

defender’s deceptive response scheme and (2) I consider a naive adversary, e.g., a script

kiddie, with a fixed set of preferences over the set of possible responses from systems on

the network. This initial formulation provides valuable insight into future work which will

investigate the interesting problem of varied adversarial knowledge states of the defender’s

network.

Second, for prioritizing alerts raised from IDS across a defender’s network I provide

the novel Cyber-alert Allocation Game (CAG) model. This model gives a framework for

how to randomize the resolution of alerts by cyber analysts and makes it more difficult

for a stealthy adversary’s attack to go undetected. To achieve this advance, I solve

fundamental problems in the field of game theory for threat screening. An important

previous model, the Threat Screening Game (TSG), introduced a zero-sum Stackelberg

game formulation to solve a problem where a defender must allocate a set of “screening”
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resources to detect a possible attack coming into a secure area that attempts to pose as a

regular, i.e., “non-adversarial”, object. The CAG model makes two important advances

by considering screening resources with heterogeneous screening times for the incoming

objects and allows for an attack by the adversary to appear as probability distributions

over alert types. The CDG framework provides a network administrator with a useful

tool in impeding cyber adversaries and protecting from massive breaches of sensitive user

information.

Lastly, I extend the applicability of the CAG framework to non zero-sum domains

with the introduction of the GATE algorithm. This work additionally applies to physical

security domains as it significantly improves the scalability of computing optimal SSE

equilibria in Bayesian general-sum TSGs. The GATE algorithm leverages the Marginal

Guided Algorithm (MGA) given in [22] which solves for an optimal marginal strategy

for the defender in Bayesian zero-sum TSGs. From here, I use a branch and bound

algorithmic approach and a hierarchical decomposition adversary type tree to prune a

large portion of the adversary’s strategy space and solve larger-scale Bayesian general-

sum TSGs. Importantly, GATE allows for the application of Bayesian general-sum TSG

to problems with non-symmetric payoffs between the defender and an adversary which

applies to a wide array of screening domains. Looking to future work, it is important

to solve other difficult challenges arising for varying screening domains and problems in

cybersecurity along with other threat screening domains, and my work provides significant

results to broaden the applicability of the current state-of-the-art.
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7.2 Future Work and Directions

One of the most interesting areas for future work beyond my thesis lies in the application

of the deceptive techniques to several other domains in cybersecurity. In this thesis, I

explored the use of deception for thwarting adversaries in the reconnaissance phase of a

cyber attack. These ideas, however, could be extended to conceal the true features of

a network to adversaries who may have already compromised systems in the defender’s

enterprise network. In this situation, the adversary would leverage the compromised nodes

to complete further recon of the defender’s network to identify machines which may be

hidden from the outside. Deception here then could be used to alter the network views [26]

which are observed through network reconnaissance conducted from the compromised

nodes. In this way, the defender increases the uncertainty throughout all phases of an

adversary’s attack from recon to moving throughout the defender’s network to identify

important systems to compromise and subnets in the enterprise network.

In the future, it will also be important to better quantify the advantage gained by the

defender utilizing deceptive algorithms and techniques. This can be achieved through the

development of a test-bed network scenario where different deceptive algorithms can be

tested against human players. To this end, there has been some initial ground work on

developing a network scenario with a realistic network recon experience using the Cyber-

VAN test-bed [25]. This environment makes it easier as well to study how an adversary

plays the game of network reconnaisance. With this information, future research can

learn strategies employed by cyber adversaries during reconnaissance and gives better
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insight into quantifying the informational gain for adversaries from network recon and

attacks.

Beyond network defense, another interesting area of application lies in applying de-

ceptive principles to mitigate social engineering attacks which represents an area of sig-

nificant importance for cybersecurity defenses. Organizations that suffer from targeted

social engineering attacks could leverage the use of deception to make it difficult for an

adversary to ascertain the true employees within an organization. This allows a defender

to recognize when a particular department, e.g., financial department, is under attack

from an adversary’s campaign and mount a better defense to protect against breaches by

sending out timely warnings to its employees.

My work on cyber alert allocation is a crucial first step in applying game theory to real

world cyber security settings, but there remain significant challenges which need to be

addressed in future work. Firstly, I assume the time to resolve an alert is known exactly,

but in the real world there is uncertainty for how long it would take to resolve an alert.

Second, the CAG model assumes that attacks show up as known alert categories, but it

is possible that in the real-world some attacks may show up as “unknown” categories.

The question then is how to assign these alerts to analysts given we do not know which

expert may have an expertise in dealing with this type of attack. Lastly, in CAG’s there

is not an overflow of alerts from one time period to the next. Overflow of passengers for

screening has been explored in the context of TSGs [56], but in the context of cybersecu-

rity, overflow also includes the possibility of unexpected alerts flooding the system along

with the expected alerts. In the real-world resolving alerts in a timely manner is crucially

important to limit the possible damage from a network intrusion.
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