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Abstract

In the presence of an intelligent adversary, game theoretic models such as security games,

have proven to be effective tools for mitigating risks from exploitable gaps in protection

and security protocols, as they model the strategic interaction between an adversary and

defender, and allow the defender to plan the use of scarce or limited resources in the face

of such an adversary. However, standard security game models have limited expressiv-

ity in the types of planning they allow the defender to perform, as they look only at the

deployment and allocation of a fixed set of security resources. This ignores two very

important planning problems which concern the strategic design of the security system

and resources to deploy as well as the usability and implementation of the security proto-

cols. When these problems appear in real world systems, significant losses in utility and

efficiency of security protocols can occur if they are not dealt with in a principled way.

To address these limitations, in this thesis I introduce a new hierarchical structure of

planning problems for security games, dividing the problem into three levels of planning

(i) Strategic Planning, which considers long term planning horizons, and decisions related

to game design which constrain the possible defender strategies, (ii) Tactical Planning,

which considers shorter term horizons, dealing with the deployment of resources, and

xi



selection of defender strategies subject to strategic level constraints and (iii) Operational

Planning, dealing with implementation of strategies in real world setting.

First, focusing on Strategic Planning, I address the design problem of selecting a set of

resource and schedule types. I introduce a new yet fundamental problem, the Simultaneous

Optimization of Resource Teams and Tactics (SORT) which models the coupled problem

of both strategic and tactical planning, optimizing over both game design with respect

to selection of resource types, as well as their deployment actual in the field. I provide

algorithms for efficiently solving the SORT problem, which use hierarchical relaxations

of the optimization problem to compute these strategic level investment decisions. I show

that this more expressive model allows the defender to perform more fine grained deci-

sion making that results in significant gains in utility. Second, motivated by the relevance

and hardness of security games with resource heterogeneity, I also address challenges in

tactical planning by providing a framework for computing adaptive strategies with het-

erogeneous resources. Lastly, I look at the problem of operational planning, which has

never been formally studied in the security game literature. I propose a new solution con-

cept of operationalizable strategies, which randomize over an optimally chosen subset of

pure strategies whose cardinality is selected by the defender. I show hardness of comput-

ing such operationalizable strategies and provide an algorithm for computing ε-optimal

equilibria which are operationalizable.

In all of these problems, I am motivated by real world challenges, and developing

solution methods that are usable in the real world. As such, much of this work has been

in collaboration with organizations such as Panthera, WWF and other non-governmental

organizations (NGOs), to help protect the national parks and wildlife against deforestation

and poaching, and the TSA, to protect critical infrastructure such as our airports from

xii



terrorist attacks. Because of this, in addressing these three levels of planning, I develop

solutions which are not only novel and academically interesting, but also deployable with

a real world impact.
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Introduction and Background
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Chapter 1

Introduction

It is a well known principle that there is no such thing as absolute security

[Jim Breithaupt, 2014]. Limited availability of resources that may be deployed within

a security protocol, due to either constraints on budget, time or capacity, mean that is is

impossible to defend and protect against every risk. Indeed, when these resources are

scarce, it becomes even more crucial to carefully plan their proper use in order to avoid

resource waste. Thus the problem of resource allocation is a well studied planning prob-

lem in the security literature. However, static solutions to this problem which maintain the

allocation of resources constant over time are highly predictable and thus severely subop-

timal in the face of adversaries conducting surveillance of the defense protocol in place.

Game-theoretic models, in particular security games, were proposed as a means to miti-

gate this predictability against strategic adversaries [Tambe, 2011, Korzhyk et al., 2010a,

Yin et al., 2015, Balcan et al., 2015, Basilico et al., 2009] as they model the dynamic inter-

actions of an adversary with the security system. Over the past decade, these models have

continued to grow in sophistication and realism, incorporating uncertainty, complex adver-

sary behavior models, spatio-temporal constraints and other extensions to better model real

world problems. As this area of research continues to evolve, security agencies have begun

adopting these more sophisticated game-theoretic defense strategies leading to many real

world deployments and field tests of these models, among which are large organizations

2



such as the United States Coast Guard [Shieh et al., 2012a], the Transportation Security

Administration [Brown et al., 2016], and the Los Angeles airport [Pita et al., 2008a].

However, all of the past work in this area has focused on a small subset of the plan-

ning problem; namely how to optimally deploy a given fixed team of resources. While

this allows an organization to optimize over the tactical deployment of their resources i.e.

their assignment to targets to be protected, it ignores other higher and lower level aspects

of the problem which often influence the choice of tactical resource allocation. Concerns

related to the higher level strategic planning problem of resource management, such as the

purchasing of resources, as well as lower level operational planning, relating to the actual

implementation of security protocols, are not captured by past work in security games.

The resource allocation problems considered in previous work is limiting in that it only

considers (i) an assumed prior set of fixed resources, with no optimization made over the

resource types, or cost benefit analysis (ii) where those resources are mainly homoge-

nous and (iii) coordination is scarce. Operational planning on the other hand has never

been formally studied in the security game literature. While prior work has considered

implementability of solutions with respect to constraint satisfaction, this does not model

the problem of operationalizing these strategies, where proper execution may fail due to

errors or unforeseen constraints.

The planning problems form a hierarchy where strategic level design decisions con-

strain the possible space of tactical level deployment decision, which must then be oper-

ationalized in the security system. This notion of using hierarchical levels of decision

making and planning is common practice in both business and military organizations,

3



used in key management problems such as risk management and supply chain manage-

ment [Bilge Bilgen, 2004, Al-Mashari et al., 2003, Farahanim Misni, 2017], where typi-

cally analysis is done on these three levels, strategic, tactical and operational. This type

of planning decomposition allows organizations to more effectively analyze the effects of

their decisions on multiple levels, allowing them to define long term goals, plan invest-

ments as well as day to day operations of their organization.

While the semantics of these types of planning can vary depending on the type of

organization, in general they deal with similar time frames and scopes of decision making

[Ballou, 1973]. Strategic planning, in general, looks at long term goals of an organization,

and as such deals with decisions or commitments that will persist over long periods of

time. These types of decisions are generally related to resource management and include

investment planning or choice of particular infrastructure. Tactical planning, influenced

by the decisions made in the strategic plan, define how an oraganization manages existing

units, personnel and equipment. Lastly operational planning deals with ensuring that the

routine activities of an organization are executed properly i.e. ensuring that the tactical

plans are properly implemented. Examples of this include designing work flows and

tasks to reduce error and improve speed or aligning staff incentive structures with risk

objectives to avoid reckless behaviors. As an example of hierarchical planning in the real

world, Table 1.1 shows an instantiation of these three levels of planning with respect to

supply chain management.
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Longer Time Scale

Strategic
Planning

• Defining Policy

• Allocation of Funds

• Portfolio Optimization

• Aquisitions and Mergers

How many warehouses are
needed?
Where should they be located?
What regions should each
warehouse serve?

Shorter Time Scale

Tactical
Planning

• Resource Deployment

• Supply and Demand
Management

• Transportation
Planning

What items should be stocked
in what locations?
How much storage capacity
should there be?

Day to Day Activities

Operational
Planning

• Production
Management

• Order Fulfillment

How should individual jobs be
scheduled in the warehouse?

Table 1.1: Example of Strategic, Tactical and Operational Planning in supply chain man-
agement [Miller, 2016].
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1.1 Problem Statement

Given the growing adoption of the security game model as a framework for real world

security system, it is important to ensure that these models are as effective and efficient

as possible; and so, given the ubiquitous use of hierarchical planning structure in other

real world systems, this thesis not only formalizes the notion of hierarchical planning for

security games, but also provides solution methods for solving these complex planning

problems. The goal is to ensure that the security game model is both practical and prof-

itable, meeting the security needs of real world organizations as well as being usable by

real world systems. Thus the problem my thesis aims to address is how to efficiently allo-

cate resources in security games, while considering strategic, tactical, and operational

considerations simultaneously.

1.1.1 Hierarchical Planning in Security Games

Looking at the security game framework there exists a similar hierarchy of strategic, tacti-

cal and operational planning problems. To date, security game literature focuses solely on

the tactical planning problem. This is due to the focus of these models being the allocation

of a fixed set of homogeneous security resources. However, it is often the case that an

organization interested in optimizing their defense system not only has flexibility in how

they allocate their security resources, but in design decisions as well. In security games,

these design decisions correspond to choosing what types of security resources should be

used as well as how to form teams among these resources. Parallels may be draw between

these design decision and the strategic planning problem of portfolio optimization in eco-

nomics, where the choice of a set of resources to invest in forms a portfolio with a return

6



value determined by their tactical deployment. In contrast to previous work in security

games, this optimization over a portfolio of security resources deals with high level strate-

gic decisions on the management of non-security resources such as money and time rather

than the deployment of physical resources. This strategic planning is particularly chal-

lenging given that the expected value of the investment of non-security resources requires

computing the actual deployment of security resources in the field. In this thesis, I pro-

vide a formal model of this problem, which I refer to as the Simultaneous Optimization of

Resource Teams and Tactics (SORT) as a new fundamental research problem in security

games that combines strategic and tactical decision making [McCarthy et al., 2016b].

A major difficulty in addressing this new question comes from the fact that the tactical

problem is already computationally challenging to solve, making it difficult to evaluate the

effectiveness of any strategic level decision. While considering only the tactical decision

problem is sufficient for many domains, there are many more in which both this and the

strategic decision problem are critical components of the security problem. A current

major motivation is the domain of environmental crime, and environmental sustainability,

where the security game framework is being applied to secure large conservation areas

for the protection of forests, fish and wildlife [Haskell et al., 2014a, Yang et al., 2014a,

Fang et al., 2015]. Unfortunately these areas are most often found in developing countries,

where budgets for security are often very limited, making it crucial to allocate not only

the security resources efficiently but to also allocate the limited funds for these security

resources efficiently.

The tactical planning problem on the other hand is the classic problem considered in

the security game literature: how to best deploy a set of resources. While there has been

much work in developing rich models for tactical planning, there has been little work in
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the types of models which would benefit the most from additional strategic and operational

planning; in particular models where there is resource heterogeneity. This is an important

problem as many prominent classes of games, such as the Network Security Games (NSG)

which are used to model the problems in green security and environmental crime currently

do not model resource heterogeneity, meaning that contributions to the area of tactical

planning are also needed in order to solve the SORT problem.

Lastly, operational planning in security games refers to the operationalization or

implementation of security protocols in practice, and provides a way to explicitly reason

about the usability of a system. The goal of operational planning should be to minimize

user error and facilitate proper implementation and usability of security protocols. While

usability concerns have always been present in deployed security games, these have often

been addressed in an ad-hoc fashion, and not explicitly discussed in the literature. To

date, there has been no formalization of the notion of usability in security games and no

investigation on how to compute strategies which adhere to a notion of usability. This is

problematic as improper implementation of strategies, either due to user error or unfore-

seen constraints can significantly impact the efficiency and effectiveness of a system.

1.1.2 Contributions

To address these limitations in this work, I formalize the hierarchical planning problems

for security games and make contributions in the three areas of strategic, tactical and oper-

ational planning for security games. First, my work formalizes the strategic planning

problem with the SORT model to combine strategic and tactical decision making. I pro-

vide an efficient algorithm for solving this problem which uses a hierarchical approach

to abstract the security game at varying levels of detail, providing bounds on the value
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of different teams of resources to speed up the search for the optimal team. This work

is done in collaboration with conservation criminologists as well and NGOs engaged in

forest protection in Madagascar where we worked to construct accurate game models to

evaluate the solution approaches. I also look at strategic planning in the multistage setting,

where the availability or budget for non-security resources may vary with time, and where

strategic level decision may be conditioned on past and learned information. While these

types of problems can be modeled as a type of stochastic control processes, these models

are often not scalable and so in this work I provide a fast scalable Partially Observable

Markov Decision Process (POMDP) formulation to address this challenge. This work also

uses abstractions to build an ensemble of virtually distributed POMDP (VD-POMDP)

agents, where individual policies for different sub-agents are planned separately and their

sparse interactions are only resolved at execution time to determine the joint strategic level

decisions and tactical deployments in each round.

To address limitation in tactical planning, my work builds on the past work in secu-

rity games by addressing a space of tactical planning problems which has not been well

studied: that of dealing with heterogeneous resource allocation, i.e. how to optimize the

formation and assignment of teams of resources. These are the types of tactical planning

problems that must be solved in the SORT problem, and thus form an important set of

problems to consider in the context of hierarchical planning. There are several challenges

associated with incorporating heterogeneous resources into these games, (i) scheduling

constraints become more complicated to deal with and (ii) resources may be combined

into a combinatorial number of teams. I address these challenges in two different classes

of games, Network Security Games (NSG) and Threat Screening Games (TSG). In the

first class, resources are constrained by the underlying graph structure, where the strategy
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spaces then are combinatorial. This problem is made even more difficult with heteroge-

neous resources as the strategy space is then the product space of each of the allowed

paths for each of the individual resources. To address this, I provide a novel and efficient

double oracle formulation for computing exact and approximate equilibria to these games.

The second class of games deal with the problem of dynamically allocating screening

resources of different efficacies (e.g., magnetic or X-ray imaging) at checkpoints (e.g., at

airports). The scheduling constraints in these games are due to there being limited capac-

ity on the use of each of the resources, so that assigning too many items to one team may

affect the use of another team if they share a resource. Complexities arise in these types

of games as there is also uncertainty in the deployment of the team of resource. With

threat screening, arrival times of the items to be screened may be uncertain. Past work

in threat screening operated under the strong assumption of perfect knowledge in arrival

times, which severely impedes the implementability and performance of this approach.

Addressing this challenge is difficult, as it requires reasoning about all the possible real-

izations of the uncertainty and coming up with an optimal plan for each of those scenarios,

one which appropriately balances the tradeoffs between throughput efficiency and screen-

ing effectiveness. To address this, I introduce a novel framework for dynamic allocation

of heterogenous screening resources known as Robust Threat Screening Games (RTSG)

that explicitly accounts for uncertainty in the screenee arrival times, as well as the cou-

pling of capacity constraints in time[McCarthy et al., 2017]. I provide a tractable solution

approach using compact linear decision rules combined with robust reformulation and

constraint randomization. I performed extensive experiments which showcase that my

approach outperforms (i) exact solution methods in terms of tractability, while incurring
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only a very minor loss in optimality, and (ii) methods that ignore uncertainty in terms of

both feasibility and optimality.

Lastly, with respect to operational planning, I look at how to improve the execution of

the strategic and tactical plans by formalizing the notion of usability of the computed equi-

librium strategy solutions of security games. This work is the first to look at operational

planning in security games, and I propose a new game theoretic solution concept of opera-

tionalizable strategies which have desirable properties with respect to usability. I introduce

the Price of Usability, which measures how the effectiveness of strategies degrade due to

usability constraints, and provide analysis with on the Price of Usability for various types

of games. To address this new problem of computing operationalizable strategies, I pro-

vide an approximate method for computing ε-equilibria with operationalizable strategies

as well as a scalable heuristic method.

1.1.3 Thesis Overview

The structure of the remainder of the thesis will be as follows: Chapter 2 discusses back-

ground material for security games and for the specific classes of games which are relevant

to this thesis. I will also discuss related work in the literature as it pertains to team for-

mation and usability. In Chapter 3, I formalize the strategic planning problem for security

games and provide example domains where the problem is particularly relevant. Chap-

ter 4 discusses the strategic planning problem in the multistage setting and looks at how

the sort problem may be addressed with decision theoretic models. Chapter 5 focuses on

tactical planning in security games and what types of tactical problems induce a need for

hierarchical planning. Chapter 6 formalizes operational planning in security games, first

discussing why usability concerns are so important to address and then formalizes what it
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means to have strategies which are usability compliant. Chapter 7 summarizes the thesis

and discusses potential directions for future works.
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Chapter 2

Background and Related Work

2.1 Game Theory & Security Games

Over the past decade, game-theoretic approaches, in particular security games, have

become a major computational paradigm for security resource allocation [Tambe, 2011,

Korzhyk et al., 2010a]. There are several sub-area of security games relevant to this the-

sis, which are described in the following sections.

2.1.1 Stackelberg Security Game (SSG)

The standard security game model is a Stackelberg Security Game; it is a two player game

played between a leader (known as the defender) and a follower (known as the adversary).

There are a set of target V under the defenders protection; the adversary chooses one target

out of this set to attack. In order to protect the targets from the adversary, the defender has

a limited set of resourcesR which may be deployed to thwart an attack. In order to protect

a target, the defender must assign a resource to that target. Typically, |R| < |V|, i.e. the

defender resources are limited so there are not enough resources to cover all the targets.

The defender actions, being assignments of all resources r ∈ R to targets, are known as

pure strategies, so that the defender strategy space is the set of all possible assignments

of resources to targets. The adversary actions correspond to a choice of target v ∈ V to

attack, so that the adversary pure strategy space is equal to V .
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Each target has a particular value to the each of the players, and so there is an associated

reward and penalty received by each player in the event of a successful or unsuccessful

attack. If the adversary chooses to attack a target v which is uncovered by the defender,

the adversary receives a payoff of Rta and the defender receives a penalty of Pd,v. If on

the other hand the target is protected by a resource the adversary receives a penalty of Pa,v

and the defender receives a reward of Rd,v, where Rd,v > Pd,v and Ra,v > Pd,v.

While each player’s strategy set is the set of all pure strategies for that player, both

players may choose to play mixed strategies which are probability distributions over pure

strategies. In Stackelberg Security Games the assumption is that the adversary may choose

their strategy after observing the defender’s strategy, the leader (defender) commits to

playing a mixed strategy and the follower (adversary) observes this mixed strategy and

responds. Optimal solutions to these games are typically mixed strategy solutions for the

leader, as it is important to randomize over the assignments of resources to targets in order

to remain unpredictable to the adversary.

The standard security game model assumes that each player is utility maximiz-

ing. The adversary will then choose a target among the set. The solution for such a

game is known as a Stackelberg Equilibrium (SE) , of which there are two kinds: the

Strong Stackelberg Equilibrium (SSE) and the Weak Stackelberg Equilibrium (WSE)

[Leitmann, 1978, Breton et al., 1988]. The difference in these two types of equilibrian are

in how the adversary breaks ties when there are multiple targets with the same utility; the

adversary is then indifferent to which of the targets among these they choose to attack. The

SSE assumes that the adversary breaks ties in favor of the defender and chooses the one

that is optimal for the defender, while WSE assumes that the adversary chooses the worst

one for the defender. The SSE is guaranteed to always exists, and can be induced by the
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defender by deviating from the optimal strategy by infinitesimally small amounts in order

to increase the utility of the desired target for the adversary [Stengel and Zamir, 2004].

2.1.2 Network Security Games (NSG)

Network Security Games are an important class of security games due to the complex

scheduling constraints that are often present in these games. A Network security game

(also known as a pursuit evasion game) is a game played on a graphG(N,E). This may be

used to represent any type of network, ranging from physical networks like transportation

networks or airline networks, non-physical networks such as computer systems or social

networks, and even abstract networks such as attack graphs. The key feature here is that

the actions of one or more of the players in the game are constrained by the network.

There are a set of targets corresponding to some subset of nodes in the graph V ⊂ N . All

players move along edges in the graph and thus their strategy spaces correspond to the set

paths on the graph. A huge challenge in solving network security games is scalability;

because players are choosing paths in the network, the space of actions or pure strategies

of the defender or attacker can be combinatorially large, and grows exponentially with

the size of the network, making these problems extremely computationally challenging.

NSG appear in many domains, such as allocation of police checkpoints to roads in the city

[Jain et al., 2011, Jain et al., 2013], scheduling air marshals on-board international flights

[Tsai et al., 2009], and computing patrols routes for park rangers.

There are several important subclasses of NSG, all which differ in how each of the

players in the game are restricted by the graph structure.

One subclass of network security games where the adversary is mobile and the

defender resources are static, is the so-called Interdiction Games. This corresponds to
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problems such as sensor placement when the goal of the defender is to collect informa-

tion, or checkpoint placement when the goal of the defender is to interdict, while on the

other hand the attacker is choosing a path. This problem has been studied in a variety

of domains; notably it has been used to model the problem of placing checkpoints in

urban road networks (specifically for Mumbai)[Jain et al., 2011, Jain et al., 2013] where

the adversary is attempting to traverse a path through the city to reach nodes correspond-

ing to valuable targets to attack and the defender can choose edges in the network on which

to place checkpoints. In the realm of security, it has also been used to model drug traffic

networks [Wood, 1993], planning air strikes [P.M. Ghare and Turner, 1971] and prevent-

ing nuclear smuggling [Morton et al., 2007].

Network security games where the attacker is stationary and the defender(s) are mobile

are known as search games [Isaacs, 1965, Gal, 1980, Alpern and Gal, 2003]. These types

of games often occur in the domain of green security and Green Security Games (GSG)

which model key features in domains related to environmental sustainability, conser-

vation and wildlife protection. In these domains several of the following challenges

may be present: bounded rationality in the adversary decision making, frequent and

repeated attacks, and complex spatio-temporal constraints. A common problem in this

domain is planning patrol routes for rangers in conservation areas who are trying to

detect animal snares placed by poachers looking to trap elephants, rhinos or other valu-

able species [Fang et al., 2017, Fang et al., 2016, Ford et al., 2014a, Nguyen et al., 2016b,

Yang et al., 2014b].
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Finally, when both defenders and attackers are mobile, we have network security

games referred to as Hider-Seeker Games or Patrolling Games. These games are typi-

cally the most challenging to solve, as both players are restricted by the graph structure

and thus the strategy spaces for both players are typically combinatorial in size.

While there has been much past work in solving these types of games, all of the existing

work has looked only at the tactical allocation problem, assuming either a single defender

or a fixed set of homogeneous defender resources. When considering higher level planning

problems, like strategic level planning, this class of games is particularly interesting due

to the complex scheduling constraints that the network imposes on the problem. Addition-

ally many real world constraints can be modeled using networks and so NSG represent

a broad class of games. Cyber security has received a large amount of attention in the

NSG literature as the computer networks form the underying network structure of the

game [Lelarge and Bolot, 2008, Preciado et al., 2014, Roy et al., 2012, Omic et al., 2009,

Zhu and Basar, 2015, Vaněk et al., 2012]. Additionally, physical security problems form

an important domain for NSG, as many problems with spatio-temporal constraints can be

modeled as a network problem. Examples from interdiction, search and patrolling games

previously discussed include domains such as protecting flight networks, to transportation

networks in cities, wildlife protection, as well as the protection of critical infrastructure

such as ports and ferries [Fang et al., 2013a].

2.1.3 Threat Screening Games (TSGs)

While the notion of teams and resource heterogeneity is missing from the large body of

work in security games, Threat Screening Games are class of games related which explic-

itly model heterogenous teams of resources in a game theoretic setting. First introduced
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by [Brown et al., 2016], Threat Screening Games (TSG) are Stackelberg games played

between a leader (defender) and a follower (adversary). The defender operates a series

of checkpoints wherein she must screen a set of incoming passengers with known arrival

times using screening resources of different efficacies. The adversary disguises themselves

as one of the passengers and attempts to bypass the defender’s screening; the defender

must then determine an optimal screening strategy (dynamic assignment of resources to

screenees) to catch the adversary while simultaneously ensuring efficient throughput of

passengers through the checkpoints. Optimizing the defender (mixed) strategy by means

of the TSG captures the strategic behavior of attackers and thus yields more effective

screening strategies. TSGs are inspired by previous research in security games where a

defender protects a set of targets from a strategic adversary. However, TSGs differ signifi-

cantly because they (i) do not have an explicitly modeled set of targets; (ii) include a large

number of non-player screenees that must be screened while a single adversary attempts

to pass through undetected; and (iii) encompass screening resources with differing effica-

cies and capacities that are combined to work in teams. These key differences make TSGs

more appropriate for screening settings.

An important feature of TSG that is relevant to this thesis is the fact that there are

heterogeneous screening resources which can be combined together to form teams. Het-

erogeneity in resources gives us more more flexibility and increases the size of the decision

space when we consider higher level planning problems like strategic planning. Existing

work in TSG have not explored this additional planning space, assuming that the teams of

resources are a fixed given prior.
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Additionally, even within the tactical planning problem that TSG’s consider, there are

significant limitations. Despite promising results, previous work in TSG fails in its mis-

sion to realistically model real-world settings as it relies on the strong assumption of per-

fect fore-knowledge of screenee arrival times (e.g., arrival times of passengers at airports).

Addressing this challenge is difficult, as it requires reasoning about all the possible real-

izations of the uncertainty and coming up with an optimal plan for each of those scenarios.

The importance of this is discussed further in later section, where in my work I address

these significant limitations in the tactical deployment problem and provide efficient solu-

tion methods for dealing with this uncertainty.

2.2 Decision Theory and POMDP

Decision theory deals with planning in a non adversarial, non-reactive or adaptive world,

where other agents do not respond to the actions taken by the planner. Markov Deci-

sion Processes (MDP) and Partially Observable Markov Decision Processes (POMDP)

are decision theoretic models used for making decisions in stochastic environments under

uncertainty. These models can be useful from a security perspective as they are very

expressive and deal with problems of sequential decision making by considering the long

term effects of each of the decisions and actions which are taken. As such they are well

suited to model the SORT problem for non adversarial settings, and can integrate rea-

soning on long term strategic scales as well as shorter term tactical scales. Formally, an

MDP model is a tuple (S,A, T,R) with state space S, action space A, state transition

function T , and reward function R, where the goal of the MDP agent is to maximize the

long term reward they receive from interacting with their environment. POMDP models
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are similar except that the agent is not able to fully observe their environment. Instead

they get observations about the environment and maintain a belief over the state space.

The POMDP model is then also a tuple (S,A, T,O,Ω, R) with an additional observa-

tion space Ω, observation probabilities O. The solutions to these models are policies for

choosing actions which depend on the current state or belief state of the agent. These

models integrate strategic planning into the decision problem by reasoning about the

long term effects of any actions. MDP’s have been used to represent defender strate-

gies in security games [Jain et al., 2013, Shieh et al., 2014, Feng et al., 2017]. However,

when defender resources are heterogenous this can cause the state space of the MDP

to grow very large. Additionally, when resources have the ability to perform informa-

tion gathering actions, the strategies then need to be modeled as POMDP’s. This occurs

very frequently in domains such a cybersecurity where the defender has many sensors

and detectors that can be deployed to determine when and where an attack is happen-

ing. However, it is known that offline POMDP solving is intractable for large prob-

lems [Gerkey and Mataric, 2003, Madani et al., 1999, Papadimitriou and Tsitsiklis, 1987]

and thus, in this thesis, we focus on speeding up the offline POMDP solving by

performing a series of abstractions of the original POMDP. Our technique of solv-

ing the POMDP is inspired by conflict resolution techniques in solving distributed

POMDP [Nair and Tambe, 2005, Jung and Tambe, 2003] and distributed POMDPs with

sparse interactions [Varakantham et al., 2009, Velagapudi et al., 2011].
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2.3 Team Formation

An important part of strategic planning for security games is the problem of resource

and team selection. While there has not been any work which addresses this problem

for security games, there is significant research which has been done in team formation

for multiagent systems, [Liemhetcharat and Veloso, 2012, Hunsberger and Grosz, 2000]

with applications in network configuration [Gaston and desJardins, 2005], fantasy foot-

ball [Matthews et al., 2012] and multi-objective coalition [Cho et al., 2013]). The problem

of how to allocate agents to specific roles to maximize performance has been studied for

mission rehearsal and RoboCupRescue [Nair and Tambe, 2005]. Other research has con-

sidered how to lead an ad-hoc team to the optimal joint action [Agmon and Stone, 2012],

automatically configuring a network of agents [Gaston and desJardins, 2005], and agents

cooperating in a board game [Obata et al., 2011]. There has also been some work on team

formation in adversarial settings, though not specifically on security games. Team for-

mation has been used to beat human players in fantasy football [Matthews et al., 2012],

and build teams of diverse agents to improve performance of a Goplaying agent

[Marcolino et al., 2014]. Multi-objective optimization for a coalition and how trust affects

the success or failure of a mission in a tactical game is also studied in [Cho et al., 2013].

However, that work fails to security resource allocation at the tactical level.

There has also been some work in coordinating teams of heterogeneous defender

resources. [Shieh et al., 2013] looks at the problem of centralized planning of multiple

defender resources which conduct joint activities to protect a set of targets from an attack.

This work is improved in [Shieh et al., 2014] in which the defender’s pure strategies are

represented as Dec-MDPs that allows for a defender to directly optimize for coordination
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among resources given uncertainty. In regards to understanding and characterizing the cost

of miscoordination in games with multiple defenders [Jiang et al., 2013, Hota et al., 2016]

provides basic research that analyzes the trade-off between centralized and decentralized

scheduling of defender resources. We plan to build on these works and conduct basic

research that quantifies the cost of miscoordination in a decentralized game with multiple

defenders that have uncertainty in the execution of their protection actions.

2.4 Usability

While usability concerns have always been present in the deployment of security game

models, when these issues materialize in practice they are usually dealt with in an ad hoc

manner due to there being a lack of a principled way of reasoning about these issues.

While there exists a wealth of literature on the root causes of these usability issues, there

is no existing security game literature which integrates these models explicitly in the opti-

mization and planning problems. However, there are several areas of related research that

looks at usability in other contexts. We focus here in particular on Cognitive Load The-

ory which studies how tasks can be designed to reduce working memory load in order to

optimize performance.

Cognitive Load Theory

In practice, many security systems are operated by people, which becomes important to

consider when we are looking at how to design an effective system. Cognitive load theory

broadly studies how human brains store and retain information, and has found success in

providing guidelines for the best way to present information and design tasks in order to
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maximize performance and successful completion of these tasks. As such, we can rely on

it to inform our design of security protocols, or in the case of systems built off of game

theoretic models, mixed strategy solutions, as these are often executed by people. Studies

have found that increased cognitive load negatively impacts the likelihood of successful

completion of a task, as it increases the risk of user error. Identifying and decreasing

the sources of cognitive load in any system then becomes an important component in

ensuring the successful execution of a task. While there can be many sources of cognitive

load, an important source is task complexity as it has been shown to not only increase

the cognitive load on an individual due to limited memory [Hogg, 2007], but individuals

under high cognitive load are more likely to perform poorly at complex tasks [Paas, 1992,

Cooper and Sweller, 1987]. Additionally, it has also been reported that a heavy cognitive

load can also increase stereotyping [Biernat et al., 2003], which can raise important ethical

issues, e.g., in the airport passenger screening domain.

Simple Mixed Strategies

For many real world security domains, such as threat screening at airports

[Brown et al., 2016, Schlenker et al., 2016, McCarthy et al., 2017] or planning federal air

marshal schedules[Jain et al., 2010b], the corresponding security game models often have

strategy spaces which grow exponentially with the number of resources to be allocated.

Within these potential strategies the number that may be used in an optimal solution may

also be extremely large, resulting in mixed strategies with extremely large supports. Addi-

tionally each of these strategies may be composed of a large number of complex tasks.

Both of these place extra cognitive load on the individuals required to be familiar enough
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with this large variety of security protocols (ie. pure strategies) to execute them all prop-

erly.

The notion of small support mixed strategies has appeared in the literature, where

in [Lipton et al., 2003] the authors prove the existence of ε-optimal strategies, when

only a subset of all pure strategies is used. Similarly in [Arieli and Babichenko, 2017],

the authors prove the existence of an approximate equilibrium for multi-player games

while using a limited number of pure strategies. However, none of this work pro-

vides methods for computing such equilibria in practice. To the best of our knowledge,

[Paruchuri et al., 2007] is the only paper that explicitly discussed limiting the number of

pure strategies in security games; although they only handled small games (100s pure

strategies), and they did not consider the impact of such restriction on solution quality.
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Part II

Strategic Planning
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Chapter 3

Strategic Planning in Security Games

In the following section, I present the strategic planning problem in the context of security

and game theory. I provide a formal definition of strategic planning for security games,

discussing how it differs from the tactical planning problem and how these two problems

are related. I will also discuss domains in which it becomes necessary to consider the

strategic planning problem, in particular, those in which the strategic planning problem is

difficult to solve in practice.

Security games are game theoretic models used to address the problem of resource

allocation and resource management in the face of an intelligent and adaptive adversary.

Strategic planning refers to the subset of planning problems that deals with long term

and high level decisions in an organization. In order to understand what this means for

security games, we look at the types of decisions which need to be made when discussing

security. A key difference in strategic vs tactical planning is then in the types of resources

that they manage. When discussing security, we can divide up the resources into security

resources and design resources where the key difference in these types of resources is

how they interact with the adversary. Security resources, being the focus of most of the

existing work in security games, are resources which have direct interaction with the

adversary, being assigned to protect targets in the game. These resources directly impact

the probability of success of any attack and thus directly impact the defender’s expected
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utility, and thus directly affect the objective of the problem. However, the availability or

use of these security resources are often constrained by other resources, such as a budget

or the availability of staff. Since in most of the existing work in security games these

resources are fixed and given as a part of the game design or game structure, I refer to

these resources as design resources. Design resources do not directly interact with the

adversary, but rather with the security resources, and thus generally form the basis for the

constraints structure of the game.

For security games, strategic planning then refers to planning the use of the design

resources while tactical planning refers to planning, the use of security resources. While

these two planning problems both deal with types of decisions, they are highly related.

When it comes to the question of strategic planning if we want to determine what an

optimal plan for the design resources are, we need to look at how the design resources

affect the security resources, i.e how does the strategic plan affect the space of possible

tactical plans, and which strategic plan allows us to execute the best tactical plan? This

thesis provides a formal model of this problem, which I refer to as the Simultaneous

Optimization of Resource Teams and Tactics (SORT) and describe in the next section,

as a new fundamental research problem in security games that combines strategic and

tactical decision making.
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3.1 Simultaneous Optimization of Resource Teams and

Tactics

Recall that in security games we look to compute a mixed strategy p ∈ P distribution over

pure strategies q ∈ Q corresponding to a Stackelberg equilibrium given a payoff structure

{Rd,Pd,Ra,Pa} and an adversary.

Each pure strategy will correspond to an allocation of a set of (possibly heterogenous)

security resources. Abstractly, let xir represent the tactical allocation of security resource

r in pure strategy i. Each resource deployed in pure strategy is subject to a set of design

constraints Gr so that xir ∈ Gr ∀i. A mixed strategy, being a distribution of a subset of all

the pure strategies, is constrained by the design constraints of the problem: we can only

randomize over pure strategies which all satisfy the set of design constraints Gr.

P :=


p ∈ Rn :

pi ≥ 0 ∀i = 1, ..., |Q|

xir ∈ Gr if pi > 0 ∀i = 1, ..., |Q|, r ∈ R
|Q|∑
i=1

pi = 1


.

The strategic planning problem allows us to make decisions that modify the design

constraints of the problem by changing the use of the design resources. Let D be the set

of all design resources and let yd be the strategic planning variables, corresponding to the

allocation of design resource d ∈ D. Since randomization only occurs over the security

resources, these variables are not indexed by i and thus must be constant across all pure

strategies. The set of constraints on the resources now becomes a function of these new
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variables Gr(y).

Optimizing the strategic plan requires us to consider both the strategic and tactical plan

simultaneously, as ultimately the objective we are attempting to optimize is the game value

F (x) which is explicitly determined by the tactical allocation variables.

Example 1. Take as an example the problem of choosing how many resources r among a

set R to purchase, given a budget B and cost per resource br. The set of r ∈ R chosen

resource types are combined into a team t indexed in the set t ∈ T of possible teams. This

set T has cardinality combinatorial in the number of resource types. The set of resources

in team t is given by R(t). There is one design resource here, being the budget B, and

strategic decision variables here model the allocation of this budget to each resource of

type r, determining the number that will be purchased. We then want to assign these

resources to a set targets V . The tactical allocation is then a vector of binary variables

indicating wether a resource of type r is allocated to target v, then denoted xir,v so that∑
v∈V

xr,v ≤ yr. Here Gr(yr) = {0 . . . yr}. The mixed strategy space can then be expressed

as the following:

P :=


p ∈ Rn :

pi ≥ 0 ∀i = 1, ..., |Q|
|Q|∑
i=1

pi = 1

pi
∑
v∈V

xr,v ≤ yr ∀i = 1, ..., |Q|, r ∈ R∑
r∈R

yrbr ≤ B


.

29



Where the first two constraints enforce that the mixed strategy is a probability distribu-

tion, and the last two constraints enforce that each of the pure strategies in the support of

the mixed strategy are consistent with the design constraints G(y). The expected defender

utility Ud(p) is a function of the mixed strategy p.

Let F (t) be the optimal objective value of the underlying game played with team t.

F (t) =: max
p∈P

Ud(p) :
∑
r∈R(t)

1 = yr



The SORT problem can be formulated as:

max
t⊂T

F (t) :
∑
r∈R(t)

br ≤ B



Theorem 1. The SORT problem is NP-Hard even if we can evaluate F (t) in constant time.

Proof. The proof is constructed using a reduction to Knapsack

Construct an instance of the SORT problem from Example 1 as follows. Given a set

of resources ri ∈ R, each with a cost bi ∈ B, we want to choose a set or resources S ⊂ R

which maximizes the game value function F(S), and which has a total cost less than B.

max
S∈R

{
F (S) :

∑
i∈S

bi ≤ B

}
(3.1)
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Knapsack: Given a set of n items with non-negative weights wi, and values vi, is there a

subset of items with total weight at most W, such that the corresponding value is at least

V?

max

{
n∑
i

vixi :
n∑
i

wi ≤ W

}
We reduce the Knapsack problem to the team formation problem in the following way:

we set the total number of resources equal to the number of items in the knapsack |R| = n,

with a budget equal to the knapsack capacity B = W and the cost of each resource equal

to the cost of each item bi = wi. Additionally, let each resource cover a disjoint number

of edges equal to the value of each item Li = vi.

t1 t2 t3 tn

s

We then construct the game graph using a single source and a number of targets equal

to the sum of all the item values |T | =
∑

i vi, with the value of each target being uniform

and equal to the total number of targets τi = |T |. Because the resource can cover dis-

joint edges, each resource can then cover Li = vi targets. Because each of the targets

are identical maxi-min strategy for the attacker and defender will always be a uniform

distribution over the single edge paths to each of the targets. The game value of any

game with |T | targets will then be proportional to the number of edges E the defender

can cover F (S) = −
∑

p xiai −
(

1
p
× E

p

)
p2. Because of the way the resource coverages

were constructed, the total number of edges that can be covered by a team will be equal
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to the total value of all the items in the knapsack and the game value can be written as

F (S) =
∑n

i viri.

The solution to the SORT problem will be equal to the maximum value of objects

which can be placed in the knapsack since, both problems are then maximizing the same

objective function, with the same constraints. The solution to the Knapsack problem is

therefore the solution to the SORT problem, and vice-versa.

3.1.1 Examples of SORT in the Real World

The problem of simultaneously optimizing strategy and tactics is a problem that arises in

many domains. While not limited to this example, it describes two very common decision

problems faced in both economics and security. First, given a fixed budget to invest in a set

of heterogeneous resources, each with different costs and capabilities, what is the optimal

investment into these resources? And once the portfolio of resources has been decided,

how should those resources be combined into teams and deployed for optimal efficiency

in the field?

In domains related to health and social services, we have the problem of deciding what

goods and services to provide to different populations of people. For example, there are

many different types of counseling services, such as behavioral therapy, cognitive therapy,

family therapy, relationship counseling, etc. with a limit to the number of types of ser-

vices which may be offered due to budget or staff constraints. Here the strategic problem

is deciding how much of each type of services to offer, while the tactical decision corre-

sponds to determining who among the population should be given which combination of

services.
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Looking at security domains, we can consider the problem of deciding how many

security personnel to hire and how much equipment should be purchased. This problem

presents itself in many domains where theres are different types of resources available or

different types of attacks which may occur; one such domain is the problem of screening

for threats. Take the problems of passenger screening at airports where there are many

different types of resources available to screen passengers such as x-ray machines, walk

through metal detectors, k-9 dogs, patdowns, etc. and many different types of threats that

might come through screening such as knives, explosives, guns, etc. and each resource

may be more or less efficient at detecting different threats. The strategic problem here is

deciding how many of each resource should be used and when to schedule operators for

them throughout the day, while the tactical problem is deciding how many of each type of

passenger to screen with each resource.

Another important domain is that of environmental crime, and environmental sustain-

ability, where the security game framework is being applied to determine the best way

to allocate the security resources available in order to secure large conservation areas

for the protection of forests, fish and wildlife [Haskell et al., 2014b, Yang et al., 2014a,

Fang et al., 2015]. One reason this domain is so relevant is that, unfortunately, these areas

are most often found in developing countries, where budgets for protecting forests are

often very limited, making it crucial to not only allocate resources efficiently but also the

limited funds for these security resources. Indeed, many of the organizations tasked with

protecting these large areas are faced with questions that are difficult to answer as research

in these areas is extremely limited. Questions such as how many rangers to hire? What

types of patrols (night patrols, day patrols) are most effective? Would this area benefit from
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the use of UAV’s? Knowing the answers to these questions is critical for the protection of

these conservation areas, however organizations are mainly left to rely on intuition.

In the same way that tactical decision support is needed to optimize the deployment

of limited resources to protect these large conservation areas, there is clearly a great need

for strategic decision support at the management level to optimize the investment of a

limited budge into many security resources. These domains are particularly relevant to the

SORT problem as there often does not exist any security infrastructure in place, meaning

that much or this strategic planning remains to be done, thus there is a real need for this

investment planning in order to develop and implement a security system in these areas.

3.2 Motivating Domain and Game Model

Because of the particular relevance of these types of domains to the SORT problem

as well as their important societal impact, in this thesis I will focus on environmen-

tal security as a motivating domain for the SORT problem, keeping in mind that the

results and techniques are widely applicable to other security domains as well. In

particular I will focus on the problem of preventing deforestation and securing pro-

tected forest areas from illegal logging. These are a major problem for many develop-

ing countries; The economic and environmental impact are severe, costing up to USD

$30 billion annually and threatening ancient forests and critical habitats for wildlife.

As a result, improving the protection of forests is of great concern for many coun-

tries [WWF, 2015, Dhital et al., 2015, Thomas F. Allnutt, 2013].
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Unfortunately in developing countries, budgets for protecting forests are often very

limited, making it crucial to allocate these resources efficiently. In order to protect these

areas, security resources can be deployed in order to interdict the traversal of illegal log-

gers on the network of roads and rivers around the forest area. However, we must first

choose the right security team for interdiction. This can be challenging as there are often

many different organizations that may be involved — from local volunteers, to police, to

NGO personnel — as well as different kinds of equipment which may be used — ground

vehicles, UAVS — each differing in their interdiction effectiveness (individual or jointly

with others), and with varying costs of deployment. This results in a very large number

of resource teams and allocation strategies per team with varying effectiveness that could

be deployed within a given budget. The challenge here is to simultaneously select the best

team of security resources and the best allocation of these resources.

This work is done in collaboration with both partners in conservation criminology

as well as the non-governmental organization Alliance Voahary Gasy [AVG, ], working

to protect the endagered forests in Madgascar, where valuable hardwood trees such as

rosewood and ebony are being illegally harvested at an alarming rate. There is broad

interest in improving forest protection via patrolling from different groups, not only AVG

but the Madagascar National Parks, local police and community volunteers. However,

there is very limited coordination among these groups and, as a result, there is limited

attention paid at the strategic level to optimize the selection of the right team of resources

from among these groups, and the tactical level to optimally allocate the resulting team’s

resources. Our model is designed to address these problems.
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Figure 3.1: Illegal logging in progress in at risk area of Madagascar, provided by the
Alliance Voahary Gasy.

3.2.1 SORT for Network Security Games

We now describe our model of the SORT for the illegal logging domain. At the tactical

level, the decision of how optimally to allocate a team is a network security game. We

model the physical space using a graph G = (N,E), consisting of source nodes s ∈ S ⊂ N ,

target nodes v ∈ V ⊂ N , and intermediate nodes. The attacker (illegal loggers) acts by

traversing a path from a source si to a target node vi. For illegal logging, the si may be

attacker’s originating villages and vi may be areas containing valuable trees. Each target

node ti has a payoff value that is domain dependent. Based on the research of collaborating

domain experts in Madagascar, these depend on the density of valuable trees in a particular

area, and the distance to the coast (for export) and local villages.

The choice to model the problem as a network arises from both discussion with

local domain experts as well as past experiences in modeling these types of problems
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sj tj
sk tk

Figure 3.2: Pure strategies for the Defender (bold line) and Attacker (dashed line going
from s to t).

[Fang et al., 2016], where due to the difficult terrain and dense forest area, movement in

constrained to an underlying ridge-line, river and road network.

Previously models in NSGs assume a defender limited to homogenous resources with

no probability of failure, no joint effectiveness and the ability to only cover a single

edge [Jain et al., 2013, Okamoto et al., 2012]. This is insufficient to capture the complex-

ities present in the illegal logging domain, and so we present a new model of the defender

for green NSGs.

The status quo for monitoring these protected areas is to conduct patrols. Therefore

we allow the defender to conduct patrols in the network to interdict the attacker by placing

resources on edges of the graph, as shown in Figure 3.2. The defender has a set of R

resource types r each of which can conduct a patrol along Lr connected edges. Multiple

environmental factors can cause a resource to fail in detecting an attacker, such as limited

visibility or collusion with the adversaries. We model this using an interdiction probability

Pr for each resource type. The defender has a total budget B; each resource type has a

cost br, and a team consists of mr resources of type r ∈ R. Multiple resources placed

on a single edge results in a higher probability of detecting the attacker, which models

coordination among resources.

A defender pure strategy Xi is an allocation of all resources in a given team to a set of

edges of the graph, satisfying the connectedness and length constraints for each resource.

An attacker pure strategy Aj is any path starting at a source node sj and ending at a target
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node vj . Figure 3.2 shows three attacker pure strategies. Although these strategies take

the shortest path from source to target, it is not a requirement in the game. The allocation

of one resource of size Lr = 2 is show, which intersects paths i and j. The attacker

and defender can play mixed strategies a and x, i.e., probability distributions over pure

strategies. The probability of detecting an attacker on edge e if the defender follows a pure

strategy Xi, allocating mr,e number of resources of type r to edge e is given in Equation

3.2.

P (e,Xi) = 1−
∏
r∈R

(1− Pr)mr,e (3.2)

G(N,E) Graph representing security domain
Gc Compact Graph representing security domain
τ(ti) Payoff of the ith target vi
R Set of defender resource types
Lr Number of edges covered by resource type r
br Cost of resource type r
Pr Detection probability of resource type r
B Total budget for the team
mr Number of defender resources of type r

X = {Xi} Set of defender pure strategies
x = {xi} Defender’s mixed strategy over X
A = {Aj} Set of attacker pure strategies
a = {aj} Attacker’s mixed strategy over A
Ud(Xi, a) Defender utility playing Xi against a
Ua(x, Aj) Attacker utility playing Aj against x

Table 3.1: Notation and Game Description
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The total probability that a defender pure strategy Xi protects against an attacker pure

strategy Aj is given by the probability intersection function in Equation 3.3, where we

take the product over all the edges in the attack path.

P (Xi, Aj) = 1−
∏
e∈Aj

(1− P (e,Xi)) (3.3)

The attacker obtains a payoff of τ(vi) if he successful in reaching a target, and a payoff

of zero he is caught. We assume a zero sum model, so the defender receives a penalty

opposite of the attacker’s payoff. For this zero-sum game, the optimal defender mixed

strategy is the well-known minimax strategy. The game value is denoted F (t), and is

function of a team of resources t composed of some set of resourcesR(t).

The strategic aspect of the SORT problem can be formulated as the optimization prob-

lem in Equation 3.4, where the utility F (t) is maximized subject to budgetary constraints.

max
t∈T

F (t) :
∑
r∈R(t)

br ≤ B

 (3.4)

3.3 Solution Approach

3.3.1 FORTIFY: The Hierarchical Search

In NSGs F (t) is computationally difficult to calculate, because it requires finding the opti-

mal tactical allocation to assess the utility of a given team t. Since there are an exponen-

tially many possible teams, the sequential approach of evaluating F (t) exactly for every
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team and picking the best one is impractical. Instead, in our approach to SORT, we inte-

grate the analysis of the strategic and tactical aspects of the problem to search the space

of teams much more efficiently. We use fast methods to quickly evaluate upper bounds on

the utilities for specific teams. Using these bounds we select the most promising team to

evaluate in more detail, iteratively tightening the bounds as the search progresses until the

optimal team is identified.

Algorithm 1: FORTIFY
1: procedure FORTIFY(B,R)
2: T B ← getTeams(B,R), T Bc = ∅, T Br = ∅, T B∗ = ∅
3: for each t ∈ TB:
4: t.value← Compact Layer(t)
5: T Bc ← T Bc ∪ {t}
6: repeat:
7: tmax← arg maxt.value(T Bc ,T Br ,T B∗ )
8: if (tmax ∈ T B∗ ) return tmax
9: else: t.value← NextLayer(tmax)

10: T BNextLayer ← T BNextLayer ∪ {tmax}

FORTIFY uses a three layer hierarchical representation NSG to evaluate the perfor-

mance of teams at different levels of detail. Starting from the full representation of the

game, each layer abstracts away additional details to approximate the game value F (t).

We call the bottom later without any abstraction the Optimal Layer, the Reduced Layer is

in the middle, and the Compact Layer is the most abstract.

FORTIFY is described in Algorithm 1 and Figure 3.3. Initially (line 1), we enumerate

all teams TB, that maximally saturate the cost budget B (so that no additional resources can

be added to the team). Each team t ∈ TB proceeds through the layers of the hierarchy by

being promoted to the next layer; the first team to make it through all layers is the optimal
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Figure 3.3: Flowchart for the Compact Search Algorithm. T B is the initial set of teams.
T Bc , T Br and T∗ are the sets of teams which have passed through the compact, reduced and
optimal layers. After all teams pass through the compact layer one team (with max value)
is promoted at each step.

team. When a team is promoted to a new layer, it is evaluated to compute a tighter upper

bound on the value based on the abstraction specified for that layer.

At the start of the algorithm we have no information on the team values, so each team

is evaluated and ordered based on the Compact Layer (line 2-3). Next, the team with the

highest bound is promoted to the Reduced Layer (line 9). This team can then be again

promoted to the Optimal Layer or another team can be promoted to the Reduced Layer.

The next team to be promoted is always the one with the highest current upper bound on

the value, regardless of which layer it is in. When a team is evaluated in the Optimal Layer

we know the true value of the team, so if this value is higher than the upper bounds on all

remaining teams this team must be optimal (line 8), and the algorithm terminates.

3.3.2 Tactical Planning: Optimal Layer

We first introduce the optimal layer of FORTIFY in order to explain how the tactical

deployment problem of the full NSG is solved. This step is computationally expensive

as there are an exponential number of attacker and defender strategies and explicitly
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enumerating them all in computer memory is infeasible. Incremental strategy gener-

ation addresses the first challenge, allowing us to obtain the optimal defender mixed

strategy without enumerating all pure strategies [McMahan et al., 2003]. This approach

decomposes the problem into (1) master MiniMax linear program (LP) and (2) oracles

for the defender and attacker which incrementally generate pure strategies to add to the

current strategy space via a separate optimization problem. The master LP computes a

solution restricted to the set of pure strategies generated by the oracles. The steps are

shown in Algorithm 2. The formulation for the MiniMax LP standard, but we provide

new formulations for both oracles. The key novelty in our formulations is that the model

complexities require us to not only handle heterogeneous resource types and coordination

of multiple resources, but failure probabilities on edges imply that we have a non-linear

optimization problem to solve in both oracles. We address this by constraining the

variables to be binary valued, and we take advantage of efficient constraint programming

methods in commercial tools like CPLEX.

Algorithm 2: Optimal Layer
1: procedure OPT(t)
2: Initialize X, A
3: do:
4: (U∗d ,x, a)←MiniMax(X, A)
5: X← DefenderOracle(a)
6: X← X ∪ { X }
7: Aj ← LinearAttackerOracle(x)
8: if Ua(x, Aj) - Ua(x, a) ≤ ε then
9: Aj ← AttackerOracle(x)

10: A← A ∪ { Aj }
11: until convergence then return (U∗d ,x)
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Minimax Linear Program: The game value is computed (line 3) by solving for the min-

imax strategy using a LP formulation (3.5). The inputs are the current set of attacker and

defender pure strategies, A and X and the outputs are the game utility U∗d , and mixed

strategies, x and a. Ud(x, Aj) is the defender utility playing x against the pure strategy Aj .

max
U∗d ,x

U∗d s.t. U∗d ≤ Ud(x, Aj) ∀j = 1 . . . |A| (3.5)

Defender Oracle: The defender oracle returns the best response strategy Xi to add to the

MiniMax LP. The objective is to maximize the utility expressed in Equation (3.6), given

an input distribution a over the current attacker strategies A, where aj the probability of

attacker taking path Aj .

Ud(Xi, a) = −
∑

j
aj(1− P (Xi, Aj))τ(vj) (3.6)

A pure strategy implies a single allocation of the given team’s resources. Resources

are allocated by setting the binary decision variables λrm,e ∈ {0, 1} which corresponds to

the mth resource of type r being allocated to edge e. Our contributions formalize the

constraints needed to accommodate arbitrary path coverage as well as failure probability.

Path constraints are enforced with
∑

e
λrm,e = Lr and in Equations (3.7-3.8). Equation

(3.7) ensures every allocated edge is connected to at least one other edge. Since the number

of nodes in any path of length Lr should be Lr + 1, Equation (3.8) counts the number of

nodes which are either a source or target of allocated edges, making sure not to double

count nodes which belong to multiple edges. λrn,m ∈ {0, 1} and equals 1 if a node n is the

source or target of any allocated edge λre,m = 1.
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λrm,e ≤
∑

e1∈in(ns)

λrm,e1 +
∑

e2∈out(nt)

λrm,e2
ns←source(e)
nt←target(e) if Lr ≥ 1 (3.7)

λrm,e ≤ λrm,n s.t. n← source(e)
∨ target(e)

∑
n

λrm,n = Lr + 1 (3.8)

Attacker Oracle: The attacker oracle computes a best response strategy Aj which max-

imizes his utility (Equation ??), playing against the defender mixed strategy x. An opti-

mization problem in the form of (??-??) is solved for each target tj; the best path for each

target is computed and the target with the highest utility is chosen. The decision variables

γe ∈ {0, 1} are binary and correspond to edges e ∈ Aj .

Aj :=


γe :

∑
e∈out(s)

γe = 1
∑

e∈in(v∗)

γe = 1

∑
e∈in(n)

γe =
∑

e∈out(n)

γe ∀n ∈ N, n 6= s, v

γe ∈ {0, 1} ∀e ∈ E


,

max
γ

∑
i

xi(1− P (Xi, γ))τ(vj)

s.t. P (Xi, γ) = 1−
∏

e∈E
γe(1− P (e,Xi))

γe ∈ Aj

Exactly solving the Attacker Oracle is computationally expensive. Therefore, in line

6, we introduce a new Linear Attacker Oracle approximation to quickly generate an

approximate best response. Here the probability intersection function is approximated

with an additive linear function, P (Xi, Aj) =
∑
e∈Aj

P (e,Xi) so we can write the oracle as

an LP. (In the attacker oracle, the value of P (e,Xi) does not need to be approximated,

as it does not depend on attacker’s decision variables, but rather on defender’s variables
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and thus is calculated outside the attacker oracle.) In the event that the approximation

steps fail to generate a strategy that increases the oracle’s expected utility (line 7), the

oracle computes the optimal solution as a final step (line 8) to ensure that the algorithm

converges to the true game value.

3.3.3 Compact Layer

The compact layer uses an abstract representation of the game model which reduces the

problem in two ways: (1) the attacker is restricted to using only a subset of possible paths,

(2) the defender chooses to allocate resources directly to attacker paths rather than edges

in the graph.

Algorithm 3: Compact Graph
1: procedure COMPACTGRAPH(G(N,E))
2: for each si ∈ N , vj ∈ N :
3: {Ej} ← mincut(si,vj)
4: for each e ∈ Ej:
5: Ac ←ShortestPath(si, e, tj)
6: Ac ← Ac ∪ {Ac}
7: N c ← N c∪ newNode(Ac)
8: for each Aci ∈ Ac, Acj ∈ Ac:
9: wi,j ← D(i, j)

10: Gc ← newEdge(i, j, wi,j)
11: return Gc

Formally, the compact layer constructs a new graph Gc(N c, Ec) in Algorithm 3, where

the attacker paths are represented by nodes N c of the graph. We describe this using an

example, transforming part of the graph from Figure 3.2 into it’s compact representation

in Figure 3.4. To choose the subset of attacker paths, for each source-target pair of nodes
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we (1) calculate the min-cut for each target, and (2) find the shortest possible paths from

source to target that go through each of the min-cut edges (lines 1-6). The three attacker

paths Ai, Aj and Ak in Figure 3.2 are among several calculated from the min-cut of the

graph. These three paths become nodes i, j, and k respectively, in part of the new compact

graph. In order for a resource to cover paths i and j it’s path coverage Lr must be at least

as large as the minimum separation distance between the paths, plus any edges required

to intersect the paths. We define this as D(i, j), which for the example in Figure 3.2 is 3.

Edges are added between any nodes i and j with weightD(i, j), equal to the Lr required to

cover both corresponding paths. These distances are calculated using Dijkstra’s algorithm,

and no edges are added between two nodes if the distance is greater than the largest path

coverage of any defender resource.The defender can choose to cover any subset of nodes

inGc with a resource of type r as long as the induced subgraph has the property that (1) the

subgraph is fully connected and (2) all edges have weight less than Lr. For example, the

three paths in Figure 3.4 (i-j-k) can be all covered by a resource of size 4. If the defender

has a resource of size 3, she can only cover paths (i-j) or (j-k).

i j k
3

4

3

Figure 3.4: Compact Graph

The compact layer solves this abstract representation of the game for a single team.

The problem is decomposed into master MiniMax and a single Defender Oracle. There is

no oracle for the attacker, as the attacker’s strategy space is enumerated using the compact
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graph and fixed at the start of the algorithm. The game value is calculated using Algo-

rithm 4. The compact graph and subset of attacker paths are first generated (line 1). The

attacker’s mixed strategy is initialized with a uniform distribution (line 2). The compact

defender oracle continuously adds strategies to the master LP until the defender’s value

cannot be improved. Convergence occurs when the oracle can no longer find any strategy

to add that will improve the defender’s utility (line 7).

Compact Defender Oracle The same objective function (Equation 3.6) is maximized,

however the constraints are modified to reflect the compact game representation. P (Xi, Aj)

is linearly approximated by Equation 3.9 and is capped at 1. Here, we want to conser-

vatively over-estimate the defender’s interdiction probability to ensure that the compact

layer returns an upper bound. Therefore, when a defender resource covers a node in Gc,

we assume that the corresponding attacker path is interdicted by the entire entire patrol of

length Lk of that resource. The probability of catching the attacker on the compact graph

is set to (1− (1− Pk)Lk)).The defender chooses to allocate the mth resource of type k to a

node nj corresponding to attacker path Aj by setting the decision variables ηkj,m ∈ {0, 1}.

P (Xi, Aj) =
∑

P c
kη

k
j,m D(i, j)ηki,mη

k
j,m ≤ Lk (3.9)

Lemma 1 Playing against the same attacker strategy, the Optimal Defender Oracle’s

strategy space is a subset of the Compact Defender Oracle strategy space.

Proof. The strategy space of an oracle is defined by set of feasible assignments of

values for their decision variables which determine the values which can be achieved for

their utility function, where the best response strategy is the strategy which maximizes
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Algorithm 4: Compact Layer
1: procedure COMPACTLAYER(t)
2: Gc ← CompactGraph(G(N,E))
3: Initialize mixed strategy a← Uniform(Ac)
4: do:
5: Xc

i ← CompactDefenderOracle(a)
6: Xc ← Xc ∪ {Xc

i }
7: (x, a)←MiniMax(Xc,Ac)
8: until convergence Ud(Xc

i , a) - Ud(x, a) ≤ ε
9: return Ud(x, a)

this function. Assume that the he set of feasible assignments in the Defender Oracle

strategy space is smaller, and contained within the strategy space of the Compact Oracle.

When the oracles are asked to compute a best response, one of two things can happen:

Since the unrestricted strategy space always contains the restricted strategy space (1)

either both oracles will return the best response if it exists in the restricted strategy

space or (2) if the best response exists outside the restricted strategy space the restricted

oracle will return a suboptimal strategy while the unrestricted oracle will return the best

response. In the first case both oracles achieve the same utility, while in the second the

restricted oracle will achieve a lower utility. The same logic can be applied to the Attacker

Oracle playing with a full strategy space and when restricted to use only the min-cut paths.

We now compare the game values played in the Optimal Layer (Defender Oracle vs

Attacker Oracle), the Reduced Layer (Defender Oracle vs Restricted Attacker Oracle) and

the Compact Layer (Compact Oracle vs Restricted Attacker). By the previous statement,

it is obvious that the utility of Reduced Layer, the Defender Oracle playing against the

restricted Attacker Oracle will be greater than the Optimal Layer, if it were playing against
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the unrestricted attacker oracle. Similarly, the Compact Layer, will always achieve a better

utility than the Reduced Layer. Since all oracles are still best response oracles (always

selecting the best available strategy in their strategy space), even though they may play

different strategies, the game played with the compact layer will always converge to a

greater value than the optimal layer.

Theorem 2. If the Compact Oracle strategy space contains the full strategy space of the

DefenderOracle, then the game value of the Compact Layer will always upper bound the

true game value.

Proof. We show any optimal strategy can be represented in the compact strategy space.

The true number of resources of type k which can cover pathAj is the sum of all resources

Nk
S assigned to cover any subset of paths S which include pathAj , making sure not to dou-

ble count. The compact representation only considers pairwise distances between paths,

and approximates any terms where |Si| > 2 as the number of pairs of paths {a, b} which

can be reached from path j.

∑
D(Si)≤Lk

Nk
Si

s.t. j ∈ S → Nk
j +

∑
a6=b 6=j

D(j,a),D(j,b),D(a,b)≤Lk

Nk
a,b (3.10)

LHS: Each Nk
Si

belongs to Si,the set of i attacker paths which can be covered by a

resource of size Lk. The sum then counts the size of the union
⋃∞
i=3 Si. RHS: Each

pairwise assignment Nk
{a,b} belongs to S{a,b}, the set of pairwise attacker paths Aa and

Ab which satisfy the condition D(j, a) ∧ D(j, b) ∧ D(a, b) ≤ Lk. The distance functions

D are constructed to use the minimum distance needed to cover a set of paths so that

D(S) ≤ D(S′) if S ⊆ S′. Therefore if S ′ can be covered by a path of size Lk so can S. This
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means that any pair of attacker paths in
⋃∞
i=3 Si must also be in the set Sa,b Any assignment

of resources on the LHS can be represented on the RHS, therefore any strategy (coverage

of paths) which is feasible in the defender oracle strategy space must be feasible in the

compact oracle’s strategy space.

3.3.4 Reduced Layer

Algorithm 5: Reduced Layer
1: procedure REDUCEDTLAYER(t)
2: Initialize mixed strategy a← CompactLayer(Ac)
3: do:
4: Xc

i ← DefenderOracle(a)
5: Xc ← Xc ∪ {Xc

i }
6: (x, a)←MiniMax(Xc,Ac)
7: until convergence Ud(Xc

i , a) - Ud(x, a) ≤ ε
8: return Ud(x, a)

The Reduced Layer uses the same restricted strategy space for the attacker as the

Compact Layer. However, the defender uses the original, unrestricted strategy space to

allocate resources. While the reduced layer is more difficult to solve than the compact

layer, it allows us to iteratively tighten the upper bounds and avoid more computation

in the Optimal Layer. The evaluation of teams in this layer follows Algorithm 3. We

additionally reduce the computation effort spent in this layer by warm starting the

attacker’s mixed strategy with the solution from the compact layer.
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Figure 3.5: Runtime scalability comparing FORTIFY against Sequential and No-Compact
method. (a) Λ1 teams on a G5,20,5,5 graph. (b) Λ2 teams on a G4,4,4,4 graph. (c) Λ1 teams
on a R70,5,5,0.1 graph. (d) Λ2 teams on a R25,4,4,0.1 graph.

3.4 Evaluation

We present four sets of experimental results: (1) We evaluate the scalability and runtime

performance of FORTIFY on several classes of random graphs. We benchmark with a

sequential search which sequentially evaluates enumerated teams with cost saturating the

budget. (2) We also evaluate the impact of the initial compact layer on the runtime by com-

paring the runtimes of FORTIFY with and without the compact layer. (3) We investigate

the benefit of optimizing team composition as well as the diversity of optimal teams and
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(4) we demonstrate that FORTIFY can scale up to the real world by testing performance on

a case study of Madagascar using real graph data. All values are averaged over 20 trials.

The experiments were run on a Linux cluster with HP-SL250, 2.4 GHz, dual-processor

machines. We use the following graphs:

(1) Grid graphs Labeled Gw,h,s,t consist of a grid with width w, height h, sources s,

targets t and nearest neighbor connections between nodes. We define start and end points

for the attacker, with sources located at one end and targets at another.

(2) Geometric graphs provide a good approximation of real road net-

works [Eppstein and Goodrich, 2008] allowing us to model the networks of villages

and rivers in forest regions. n nodes are distributed randomly in a plane and are connected

based on their distance which determines the density d of the graph. We label them

Rn,s,t,d.

3.4.1 Scalability

We first evaluate the performance of FORTIFY using two sets of resource types, and target

values of 50. Each set contains 4 resource types, with varying costs of b = {5, 6, 7, 8}. The

first set of resource types R1 have varied path coverages L1 = {1, 2, 3, 4} and constant

detection probability P 1 = {1, 1, 1, 1} while the second set R2 has constant path coverage

L2 = {2, 2, 2, 2} and varied detection probabilities P 2 = {0.5, 0.6, 0.7, 0.8}. Experiments

that did not terminate in 3 hrs were cutoff and are shown as missing bars. Figure 5.4 show

the runtimes for our algorithms run on both graph types for both R1 and R2 teams. The

budget varies on the x-axis and the runtime is shown on the y-axis in log scale. FORTIFY

consistently outperform the sequential method; on both the grid and geometric graphs.

FORTIFY performs particularly well on the grid graphs, and scaling past budgets of 25
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Figure 3.6: Team optimization comparison. Teams have 6 resource types, and vary both
edge coverage L={2, 2, 5, 3, 3, 6}, and detection probability P={0.7, 0.9, 0.7, 0.6, 0.6, 0.6}
with costs b={5, 8, 10, 5, 8, 10}.

while all instances of the sequential search were cut off. We observe a peak in the runtime

for teams with perfect detection probability in 5.4 (a) and (C) around a budget of 20-25,

which is due to the deployment vs saturation phenomenon which occurs in these types of

network models [Jain et al., 2012a].

Removing the Compact Layer: We also compare the performance of FORTIFY with

and without the compact layer in Figure 5.4. It is apparent that this layer is crucial to the

performance of the algorithm, particularly for the grid graphs in parts (a-b) as FORTIFY

without the compact layer performs almost as poorly as the sequential method. In fact,

removing the compact layer can cause FORTIFY to perform worse than the sequential

method for small budgets due to the overhead required for the approximation.

3.4.2 Team Composition

We demonstrate the value of optimizing over team composition by looking at the loss in

game value incurred by allocating all of the budget to a random set of resources. Here

we do this by randomly selecting resources until there is no more remaining budget. This

is done 30 times, so that we are averaging over a set of 30 randomly chosen teams. The
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B Runtime(s) GV
10 203 -266
15 388 -256
20 653 -239
25 1308 -230
30 1742 -220
35 2504 -216
40 3675 -204

Table 3.2: Runtime on Madagascar Graph

teams and resources are pre-processes so that there are no obviously dominant resources

(i.e. resource which has a high coverage and lower cost) and no obviously dominant teams

(no teams which are subsets of other teams, and not teams with a total higher cost and

lower coverage). Games are played on G4,4,4,4 and R25,4,4,0.1 graphs with target values

of 50. The results are shown in Figure 3.6 with budget on the x-axis and game value on

the y-axis. As expected, the game value decreases with budget as we form larger teams,

however the relative benefit increases as well, with almost a 300% loss in solution quality

at budgets of 25 without our team optimization algorithm. This is due to the increase in the

space of possible teams which can be formed, making it more likely to form a suboptimal

team.

3.4.3 Real World : Madagascar National Parks

We demonstrate the ability of FORTIFY to scale up to real world domains, evaluating the

performance on a network constructed from GIS data of at-risk forest areas in Madagascar.

We present the following model which was built working closely with domain experts from

AVG.

54



The area is 78 139 ha large and situated between the Marimbona river in the south and

the Simianona river in the north. The communities in this area are Ambahoabe d?Antenina

and d?Andapafito. The Madagascar National Police (MNP) forest guards earn 8.000Ar per

day when doing the patrols and they patrols 20 days per month. The equipment of these

forest guards is a kind of camping equipment. In each sector there is a little cabin etc.,

a sector has an average size of 26.000ha, so each forest guard has to survey an area of

about 3.700ha. Usually during a patrol mission on average they travel 20 km a day. They

usually follow their habitual routes, but of course if they get specific information, they

change their route for investigations. Additionally the MNP is establishing a partnership

system with the neighboring communities to improve the surveillance in the most retracted

areas. These local community park agents shall help to improve surveillance of the park

in the areas surrounding there villages and they are supposed to work 5 days per month.

They get paid 5.000 Ariary per day and MNP supports them in developing micro projects

for improving their revenues. While these volunteers can detect any illegal activity, they

cannot arrest loggers like the forest guard [Dr. Georg Jaster Private Communications].

Graph: Figure 3.1 shows the road and river networks used by the patrolling officers,

as well as the known routes taken by groups of illegal loggers. We used this to build the

nodes and edges of our network. Edges correspond to distances of 7-10 km. 10 target

locations were chosen by clustering prominent forest areas. 11 villages in the surrounding

area were chosen as sources. We have data on locations of different types of trees, which

can be seen in Figure 3.7. Several domain experts identified their corresponding risk level

and level of attractiveness for logging, based on the size of the forest, the ease of access

and the value of the trees. Using this information we assigned values ranging from 100 to

300 to each of the targets.
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Figure 3.7: Geographical distribution of some species of Diospyros trees in Madagascar
with a wide distribution (Diospyros haplostylis, Diospyros gracilipes) and restricted distri-
bution (Diospyros aculeata). Tree locations are shown in red, while green areas correspond
to conservation areas [UNFCCC, 2016].

Resources: Communal policemen and local volunteers conduct patrols in the forest.

A typical patrol covers 20 km in a day and patroller can conduct two types of patrols, a

short patrol covering 2 edges and a long patrol covering 3 edges. Based on expert input,

we assign the detection probability for communal police as 0.9 for short patrols and 0.8

for long patrols; and for volunteers, 0.7 for short patrols and 0.6 for long patrols. The

lower probabilities for volunteers are because they must call backup for interdiction, which

may allow the adversary to escape. Thus, in total we have 4 resource types available

L = {2, 3, 2, 3}, P = {0.7, 0.6, 0.9, 0.8}. The costs are proportional to the salaries patrollers

receive for a day of patrolling b = {5, 5, 8, 8}.

Experiment: The runtime experiments are shown in Table 3.2 for increasing budgets.

Data is averaged over 20 runs. FORTIFY can scale up to real world networks, able to
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Figure 3.8: Team optimization on Madagascar Graph

handle both the large graph size and number of source and target nodes, even for large

budgets. The value of performing this optimization is shown in Figure 3.8 with the solution

quality (game value) on the y-axis and budget on the x-axis, where we compare the optimal

game value to the average value achieved by randomly allocating our total budget. Here

again we preprocessed the resources and teams so that there were no obviously dominating

teams or resources, and we average this over a set of 30 teams. We also compared to two

other heuristics that may be used to select teams, where we compared to a team made of

all the cheapest resources with the highest detection probability, and the most expensive

resource with the highest detection probability. The comparison agains the most expensive

resource represents the current status quo for patrolling, as it is currently only the forest

guard that patrol. Here again we see significant utility gains when strategically optimizing

the resources in the team.
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3.5 Chapter Summary

In this chapter I present a fundamentally new problem in Security Games– SORT– which

addresses the strategic planning challenge of optimal investment and deployment of secu-

rity resource teams. I provide a formal definition of this problem as well as analysis and

hardness results of solving this problem for general security games. Motivated by the ris-

ing challenges in environmental sustainability I address this challenge for a broad class of

games known as Network Security Games using the threat of illegal logging in Madagas-

car as a motivating domain where we must work with a limited budget to coordinate and

deploy teams of resources. I extend the model of NSG to include teams of heterogenous

resources, and provide a novel double oracle formulating for solving the underlying tac-

tical deployment problem. I also develop FORTIFY, a scalable branch and bound style

solution approach for solving the SORT problem, which uses hierarchical abstractions of

the game in order to compute the optimal strategic design parameters, here being teams of

resources, for the game. This method is fast and scalable, with the ability to both model

and solve real world problem instances. Thus FORTIFY provides a valuable tool for AVG,

and other environmental protection agencies.
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Chapter 4

Multistage Strategic Planning

In this section I describe the extension of the problem to the multistage setting. We are

motivated here by domains where we are tasked with making repeated strategic level deci-

sion and where due to changing domain features, it becomes necessary to re-evaluate and

adapt to new information. This may to due to fluctuations in time dependent processes or

the realization of uncertain parameters in the problem. As such the optimal strategy is then

a policy, an adaptive strategy determined not only by their interactions with the adversary,

but also conditioned on the realization of the uncertain parameters and changing features

of the problem.

We can extend the problem of strategic planning and the SORT problem to the

multistage setting, where here the design variables may vary with time so that yd,w

corresponds to the allocation of design resource d ∈ D at time period w and the set of

constraints on the resources may not now change with time Gr(yw).

Example 2. Consider again the problem of choosing a subset of resources to purchase

given budgetary constraints, but where the budget for investment in these resource comes

in installments, so that in each time period w we are asked to make investment decisions

given a budget Bw. Resource costs may also change over time so that the use of each

resource costs bk,t, and we want to determine what the optimal investment strategy should
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be in each time period, given that our decisions now may affect the utility of future invest-

ments. Additionally we may condition our decision on the realization of unknown variables

ξ from previous time periods. The multistage SORT problem can be formulated as:

max
t∈T

E[F (t, ξ)] :
∑
r∈R(t)

br,w ≤ Bw∀ w


Where the expectation operator E[]̇ is taken with respect to the underlying probability

distribution for ξ.

4.1 Examples of Multistage SORT in the Real World

While the green security game model described in Chapter 1 may also be formulated as

a multistage game, the time scale over which each deployment of the resources occurs .

When games move at a much quicker pace it becomes much more important to consider

multistage models. Since the environment in such games changes much more rapidly we

may want to design strategies which adapt to information about the environment, and so

multistage models become more appropriate for such settings.

Such problems arise frequently in cyber-security where the time scale of events is

much shorter than in physical security. In network security a big challenge is the problem

of active sensing in a computer network, where the defender observes a stream of suspi-

cious alerts (or absence of alerts), and is tasked with inferring if an attack is taking place,

and determining the best response policy. In this domain, the defender may have many

kinds of security resources available to monitor network traffic, where such resources have

varied efficiencies at detecting attacks. Resources may not only miss attacks, but may
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falsely identify legitimate network use as an attack, thus information from these resources

is inherently noisy and the deployment of each resource does not provide a high con-

fidence estimate about the security state [Sommer and Paxson, 2010][FarnHam, 2013].

Thus, the defender needs to come up with a sequential plan of actions while dealing

with uncertainty in the network and in the alerts, and must weigh the cost of deploying

detectors to increase their knowledge with the potential loss due to successful attacks as

well as the cost of misclassifying legitimate network use. This problem of active sensing

is common to a number of cyber security problems; here I focus on the challenge of

detecting and addressing advanced persistent threats (APTs), with particular focus on

data exfiltration over DNS queries. I developed a decision-theoretic planning model to

reason about noisy observations in order to dynamically allocate security resources such

as sensors and determine whether or not the suspicious activity is malicious, and compute

the best response policy.

More specifically, I provide a novel Virtually Distributed Partially Observable

Markov Decision Process (VD-POMDP) formulation to address the challenge

[McCarthy et al., 2016a], where the efficiency of the formulation is based on two

key contributions: (i) the problem is decomposed in a way that allows for individual

sub-POMDPs with sparse interactions to be created. Individual policies for different

sub-POMDPs are planned separately and their sparse interactions are only resolved

at execution time to determine the joint actions to perform; (ii) The abstraction in

planning step allows for large speedups and scalability, after which a fast MILP is used to

implement the abstraction while resolving any interactions. This allows us to determine

optimal sensing strategies, leveraging information from many noisy detectors, and subject
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to constraints imposed by network topology, forwarding rules and performance costs

on the frequency, scope and efficiency of sensing we can perform. I provide conditions

under which our methods are guaranteed to result in the optimal joint policy, and provide

empirical evidence to show that the final policy still performs well when these conditions

are not satisfied. I also provide experimental evaluation of our model in a real network

testbed, where I demonstrate the ability to correctly identify real attacks.

4.2 Motivating Domain

Advanced persistent threats can be one of the most harmful attacks for any organization

with a cyber presence, as well as one of the most difficult attacks to defend against. While

the end goal of such attacks may be diverse, it is often the case that intent of an attack is

the theft of sensitive data, threatening the loss of competitive advantage and trade secrets

as well as the leaking of confidential documents, and endangerment of national security

[Trend Labs, 2013, Intel Security, 2015]. These attacks are sophisticated in nature and

often targeted to the vulnerabilities of a particular system. They operate quietly, over long

periods of time and actively attempt to cover their tracks and remain undetected. A recent

trend in these attacks has relied on exploiting Domain Name System (DNS) queries in

order to provide channels through which exfiltration can occur [Seth Bromberger, 2011,

FarnHam, 2013].These DNS based exfiltration techniques have been used in well-known

families of malware; e.g., FrameworkPOS, which was used in the Home Depot data breach

involving 56 million credit and debit card information [Rascagneres, 2016].
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At a high level, DNS exfiltration involves an attacker-controlled malware inside an

organization’s network, an external malicious domain controlled by the attacker, and a

DNS server authoritative for the domain that is also controlled by the same attacker. The

malware leaks sensitive data by transmitting the data via DNS queries for the domain;

these queries traverse the DNS hierarchy to reach the attacker controlled DNS server.

Attackers can discretely transfer small amounts of data over long periods of time dis-

guised as legitimate user generated DNS queries. Detecting and protecting against such

an attack is extremely difficult as the exfiltration attempts are often lost in the high vol-

ume of DNS query traffic and any suspicious activity will not be immediately obvious. In

both academia and industry, multiple detectors have been proposed to detect DNS exfiltra-

tion. However, because of the sophisticated and covert nature of these attacks, detectors

designed to protect against these kinds of attacks either often miss attacks or are plagued

by high false positive rates, misclassifying legitimate traffic as suspicious, and potentially

overwhelming a network administrator with suspicious activity alerts; these issues have

been identified with machine learning based detectors [Sommer and Paxson, 2010], pat-

tern matching based detectors [FarnHam, 2013] and information content measuring detec-

tor [Paxson et al., 2013].

We focus on the problem of rapidly determining malicious domains that could be

potentially exfiltrating data, and then deciding whether to block traffic or not. In our

problem, the defender observes a stream of suspicious DNS based exfiltration alerts (or

absence of alerts), and is tasked with inferring which of the domains being queried are

malicious, and determining the best response (block traffic or not) policy. Unfortunately,

as stated earlier, detectors are inherently noisy and each single alert does not provide a

high confidence estimate about the security state. Thus, the defender needs to come up
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with a sequential plan of actions while dealing with uncertainty in the network and in the

alerts, and must weight the cost of deploying detectors to increase their knowledge about

malicious domains with the potential loss due to successful attacks as well as the cost of

misclassifying legitimate network use. This problem of active sensing is common to a

number of cyber security problems; here we focus on the challenge of data exfiltration

over DNS queries.

4.2.1 DNS Exfiltration

Sensitive data exfiltration from corporations, governments, and individuals is on the rise

and has led to loss of money, reputation, privacy, and national security. For example,

attackers stole 100 million credit card and debit card information via breaches at Target and

Home Depot [Sidel, 2014]; a cluster of breaches at LinkedIn, Tumblr, and other popular

web services led to 642 million stolen passwords [Gooding, 2016]; and the United States

Office of Personnel Management (OPM) data breach resulted in 21.5 million records,

including security clearance and fingerprint information, being stolen [Barrett, 2015].

In the early days, exflitration happened over well known data transfer protocols

such as email, File Transfer Protocol (FTP), and Hypertext Transfer Protocol (HTTP)

[Trend Labs, 2013]. The seriousness of the problem has led to several “data loss pre-

vention (DLP)” products from the security industry [Symantec, 2017, McAfee, ] as

well as academic research for monitoring these protocols [Borders and Prakash, 2004,

Hart et al., 2011]. These solutions monitor email, FTP, and other well known protocols

for sensitive data transmission by using keyword matching, regular expression matching,

and supervised learning.

64



The increased monitoring of the protocols has forced attackers to come up with inge-

nious ways of data exfiltration. One such technique used very successfully in recent years

is exfiltration over DNS queries [Seth Bromberger, 2011, ?]. Since DNS is fundamen-

tal to all Internet communication, even the most security conscious organizations allow

DNS queries through their firewall. As illustrated in Figure 4.1, an adversary establishes

a malicious domain, evil.com, and infects a client in an organization with malware. To

exfiltrate a data file, the malware breaks the file into blocks, b1, b2, · · ·, bn, and issues a

sequence of DNS queries, b1.evil.com, b2.evil.com, · · ·, bn.evil.com. If their responses are

not cached, the organization’s DNS server will forward them to the nameserver authorita-

tive for evil.com; at this point, the adversary controlling the authoritative nameserver can

reconstruct the data file from the sequence of blocks.

Malware infected
device

Organization’s 
DNS server

b1.evil.com
b2.evil.com
b3.evil.com
……
bn.evil.com

Authoritative Name 
Server for evil.com

1

F
I
R
E
W
A
L
L

b1.evil.com
b2.evil.com
b3.evil.com
……
bn.evil.com

Figure 4.1: Data exfiltration over DNS.

The data transmission is covert and can be accomplished by various means such as a

particular sub-domain query meaning bit 1 and another sub-domain query meaning bit 0,

or even the timing between queries can leak information. By compressing the data at the

client, and by varying query lengths and the time interval between successive queries an

adversary can adjust the bandwidth of the communication channel. The adversary could

choose to transfer data as quickly as possible (long and rapid domain queries) or slowly

(short queries spaced apart in time), depending on the intent behind the attack. To further
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hide exfiltration activity, the data blocks can be encrypted by the client before the queries

are issued, and decrypted by the adversary. Further, the adversary can encode instructions

within its responses to establish a two-way communication tunnel.

Hence building a reliable DNS exfiltration detector is extremely challenging. A recent

work on building a detector for DNS exfiltration using measurement of information con-

tent of a DNS channel provides techniques that we use to build the low level detector in our

problem setting [Paxson et al., 2013]. Apart from this work in academia, there has been

some work in the industry that use various heuristics to build low level detectors for DNS

exfiltration [FarnHam, 2013]; examples of such heuristics are lengths of DNS queries and

responses, sizes of query and response packets, entropy of DNS queries, total volume of

DNS queries from a device, and total volume of DNS traffic to a domain. As far as we

know, we are the first to build a cost based sequential planning tool that uses the imperfect

low level detectors to determine if a domain is involved in exfiltrating data over DNS.

There has been a large amount of work on how to deal with and make decision

under uncertainty. Problems such as ours can be well modeled using Partially Observ-

able Markov Decision Process (POMDP) to capture the dynamics of real-world sequential

decision making processes, and allow us to reason about uncertainty and compute optimal

policies in these types of environments. However a major drawback to these models is

that they are unable to scale to solve any problem instances of reasonable size. In order

to be successful in the cyber domain, such a models needs to be able to handle extremely

large problem instances, as networks are often extremely complex, with lots of moving

parts. Additionally, due to the salient nature of network states, we need to be able to make

decisions in real time in order to observe and quickly react to a potential threat.
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To address this challenge we make the following key contributions: (1) We provide

a formal model of the DNS data exfiltration problem. We propose a new decision mak-

ing framework using partially observable markov decision processes (POMDPs). (2) We

address the scalability issued faced when dealing with large networks by proposing a series

of abstractions of the original POMDP. These include using abstract action and observation

space. (3) Another step in the abstraction is a new paradigm for solving these models by

factoring the POMDP into several sub-POMDPs and solving each individual sub-POMDP

separately offline; this is motivated by previous work in distributed POMDPs with sparse

interactions. We provide techniques for policy aggregation to be performed at runtime

in order to combine the abstract optimal actions from each sub-POMDP to determine the

final joint action. We denote this model as a virtually distributed POMDP (VD-POMDP).

We provide conditions under which our methods are guaranteed to result in the optimal

joint policy, and provide empirical evidence to show that the final policy still performs

well when these conditions do not hold. (4) Finally we provide experimental evaluation of

our model in a real network testbed, where we demonstrate the ability to correctly identify

real attacks.

4.3 Planning Model

The local computer network can represented as a graph G(N,E), where the nodes N

correspond to the set of hosts in the network, with edges E if communication between the

hosts is allowed. Each node n has a particular value vn corresponding to the value of data

stored at that computer. At any point in time t each node has a variable traffic volume of

requests wtn passing through it. We assume there are D domains, where for tractability we
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G(N,E) graph representing network
vn value of data at the nth node
v[d] average value of the set of channels to the dth domain
wn volume of traffic at the nth node
w[d] total volume of the set of channels to the dth domain
d the dth domain
Xd true {0, 1} state of the dth domain
Md estimated {0, 1} state of the dth domain
X set of all Xd random variables

ck =< n, . . . d > kth channel from node n to domain d
C[d] subset of channels ending with the dth domain
C set of all channels
τk threshold set for channel ck
an binary variable indicating if node n is sensed or not
zk binary variable indicating if channel ck is sensed or not
Ωk {0, 1} observation on kth channel
Ω[d] subset of observations for channels ending with the dth domain

Table 4.1: Notation

assumeD is the the number of domains that have ever been queried for the given computer

network. DNS queries made from internal nodes in the network are forwarded to special

nodes, either access points or internal DNS servers, and then forwarded to external servers

from these points. A channel ck over which exfiltration can occur is then a path, starting

at source node, where the query originated, traveling through several nodes in the network

and finishing at a target domain d. The total number of channels is K. We use n ∈ ck to

denote any node in the path specified by ck.

Let Xd be a random binary variable denoting whether domain d is malicious or legit-

imate. We assume that a malicious domain will always be malicious, and that legitimate

domains will not become compromised; this means that the state Xd does not change

with time. Even though legitimate domains get compromised in practice, attackers often
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d1 d2

n1 n2

src2 src4src1 src3

c1c2 c3c4

c1,c2 c3 c4

Figure 4.2: Example of a network with two domains, 4 source hosts and 4 channels.
Channels c1, c2, c3 go from sources 1, 2, and 3 to domain d1 while channel c4 goes from
source 4 to domain d2. We may consider the situation where we can only turn on one
detector at any time step, either at node n1 or n2, and choose to sense on channels {c1, c2}
or {c3,c4}. We can additionally chose thresholds τj for each channel. Each source host
has a value vn and each node n has traffic volume wn.

use new malicious domains for DNS exfiltration since an attacker needs to control both

a domain and the authoritative name server for a domain to successfully carry out exfil-

tration. In other words, legitimate domains that get compromised are rarely used in DNS

exfiltration. Hence in our model, it is reasonable to assume that domains don’t change their

states. We call the active sensing problem, the challenge of determining the values of Xd.

In order to do this we may place detectors at nodes in the network; the state of a detector

(off/on) at any node in the network is an ∈ {0, 1}. Each detector monitors all the channels

passing through that particular node, i.e., all ck : n ∈ ck. We use the binary variable zk

to indicate if channel ck is monitored. We can set discrete thresholds individually for each

channel; lower thresholds correspond to higher sensitivity to information flow out of any

particular channel. Because each channel is associated with a domain, we set a threshold

τk for each channel. We use |τ | to denote the number of discrete threshold choices avail-

able. We then get observations in the form of alerts for each channel Ωk ∈ {0, 1}. The

probability of receiving an alert for any channel is characterized by some function α(τk)
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if the channel is malicious and β(τk) if the channel is legitimate. Finally, the defender

classifies the state of domain d as malicious or legitimate, indicated by Md.

4.3.1 The POMDP Model

Our POMDP model is a tuple (S,A, T,Ω, O,R) with state space S, action space A,

state transition function T , observation space Ω, observation probabilities O and reward

function R. Additionally define the average value of the channels to domain d as

v[d] =
∑

n:n∈C[d]

vn
|C[d]|

. Below we list the details of components of POMDP model. The state

captures the true security state of every domain and the actions specify the thresholds

for monitoring each channel, the nodes to be monitored and the decision about which

domains are classified as malicious. As we assume the security state of the system does

not change, the transition function is straightforward.

States S = 〈X1, . . . XD〉

Actions A = Ac × An × Ad where 〈τ1, . . . τK〉 ∈ Ac, 〈a1 . . . aN〉 ∈ An

and 〈M1 . . .MD〉 ∈ Ad

Transision T (s′, s) =


1 iff s′ = s

0 else

Next, we obtain an observation Ωk for each channel, and as stated earlier for each

channel the probability of an alert is given by functions α and β. We state the probability

first for the observations for each domains, and then for all the observations using

independence across domains.

70



Observations

Ω = 〈Ω1 . . .ΩK〉

Observation Prob

O(Ω[d]|Xd, A) =



∏
k:k∈C[d]∧zk=1

α(τk)
Ωk(1− α(τk))

1−Ωk if Xd = 1

∏
k:k∈C[d]∧zk=1

β(τk)
Ωk(1− β(τk))

1−Ωk if Xd = 0

0 else

O(Ω|X,A) =
∏
d

O(Ω[d]|Xd, A[d])

Finally, the reward for the POMDP is given by the following equation:

R(S,A) = −

(∑
d

(
Xd(1−Md)v[d] + (1−Xd)Mdw[d]

)
+

N∑
n

anwn

)

The reward contains two cost components: the first component has two terms for each

domain that specify the penalty for mislabeling a domain and the second component is

the cost of sensing over the nodes. When a malicious domain d is labeled safe then the

defender pays a cost v[d], i.e., the average value of channels going to domain d; in the

opposite mislabeling the defender pays a cost w[d], i.e., a cost specified by loss of all

traffic going to domain d. While this POMDP model captures all relevant elements of the

problem, it is not at all tractable. Consider the input variables to this model, the number

of domains D, the number of nodes N and the number of channels k. The state space

grows as O(2D), the action space is O(2N |τ |K2D) and the observation space is O(2K).
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This full formulation is exponential in all the input variables and cannot scale to larger,

realistic network instances (we also show this experimentally in the Evaluation Section).

In order to reduce the combinatorial nature of the observation space, action space and state

space, we introduce a compact representation for the observation and action space and a

factored representation for the state space that results in splitting the POMDP into multiple

POMDPs.

4.4 POMDP Abstraction

We represent the POMDP compactly by using three transformations: (1) we use the same

threshold for very channel going to the same domain and change the action space from

sensing on nodes to sensing on channels, (2) reduce the observation space by noting that

only the number of alerts for each domain are required and not which of the channels gen-

erated these alerts and (3) factoring the whole POMDP by domains, then solve a POMDP

per domain and combine the solutions at the end. Next, we describe these transformations

in details.

Abstract Actions

We can reduce the action space by (1) enforcing that the same threshold is set for all chan-

nels going to the same domain and (2) by reasoning about which channels to sense over

instead of which nodes to sense on. The first change reduces the action space from a |τ |K

dependance to |τ |D, where |τ | is the discretization size of the threshold for the detector.

The new set of threshold actions is then Ac = 〈τ1, . . . τD〉. The second change replaces

the set of actions on nodes An with a set of actions on channels Ak = 〈sk[1] . . . sk[D]
〉,
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where sk[d] is the number of channels to be sensed out of the |C[d]| channels that end in

domain d. This changes the action space complexity from 2N to |C[d]|D. Then the action

space is given by

Actions A = Ac × Ak × Ad

where 〈τ1, . . . τD〉 ∈ Ac, 〈sk[1] . . . sk[D]
〉 ∈ Ak and 〈M1 . . .MD〉 ∈ Ad

In order to properly compute the reward we need to compute the cost of any action in

Ak. To do this we need to build a lookup table mapping each action in Ak to an action in

An, and hence obtain the cost of actions in Ak. Because we will always choose the lowest

cost way to sense on a number of channels, the action of sensing a specified number

of channels can be mapped to the set of nodes that minimizes the cost of sensing the

specified number of channels. We can compute this using the following mixed integer

linear program (MILP) mincost(〈sk[i] . . . sk[D]
〉).

min
zk,an

∑
n

anwn (4.1)

zk ≤
∑
n∈ck

an ∀k ∈ {1, . . . , K} (4.2)

∑
ck∈C[d]

zk ≥ sk[d] ∀d ∈ {1, . . . , D} (4.3)

zk ∈ {0, 1} an ∈ {0, 1} (4.4)

The mincost(〈sk[1] . . . sk[D]
〉) MILP needs to be solved for every action 〈sk[1] . . . sk[D]

〉 ∈

Ak, i.e., we need to fill in a table with O(|C[d]|D) entries. If we take the example network

in Figure 4.2, the old action space isAn = {{∅}, {n1}, {n2}, {n1, n2}}, and the new action
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space isAk = {{0, 0}, {1, 0}, {2, 0}, {3, 0}, {0, 1}, {1, 1}, {2, 1}, {3, 1}}. In order to map

back to the representation using nodes, we build the mapping: {0, 0} → ∅, {1, 0} →

{n1}, {2, 0} → {n1}, {3, 0} → {n1}, {0, 1} → {n2}, {1, 1} → {n1, n2}, {2, 1} →

{n1, n2}, {3, 1} → {n1, n2}. However, the problem of converting from number of chan-

nels to nodes (stated as mincost(〈sk[1] . . . sk[D]
〉) above) is not easy as the following theo-

rem shows:

Theorem 3. The problem of converting from number of channels to nodes is NP hard to

approximate to any factor better than ln |N |.

Proof. We perform a strict approximation preserving reduction from the set cover prob-

lem. Consider a set cover problem. We are given a universe of m elements E and u

subsets of E: U . Form a node nu for each subset u ∈ U and a domain de for each element

e ∈ E. For any particular element e and any node containing that element, connect it to

the domain de. Then, these connections, say from l nodes, defines l channels each starting

from a node and ending in dm. For any domain d choose sk[d] = 1, i.e., at least one channel

needs to be sensed. It can be easily seen that for any channel ck in this network there is

a unique node it passes through: call it n(k). Choose wn = 1. Then, the optimization

problem to be solved is the following:

min
zk,an

∑
n

an (4.5)

zk ≤ an(k) ∀k ∈ {1, . . . , K} (4.6)∑
ck∈C[d]

zk ≥ 1 ∀d ∈ {1, . . . , D} (4.7)

zk ∈ {0, 1} an ∈ {0, 1} (4.8)
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First, we prove that the constraints of this optimization specify a choice of subsets

(nodes) the union of which equals the set E. Since all channels going to domain d corre-

sponds to a unique element e and at least one channel going to d is chosen (Eq. 4.7), this

implies at least one node containing e is selected (Eq. 4.6). Thus, the set of nodes (hence

subsets) contains all elements e.

Given, the feasible space is given by a set of subsets (nodes) the union of which pro-

duces E, the objective clearly produces the minimum number of such sets. Also, any

approximate solution with guarantee α maps to an α approximate solution of the set cover

problem. The theorem follows from the lack of better than lnn approximatability of set

cover.

Abstract Observations

As we only reason about the state of each domain in the network, not each individual

channel, we can aggregate the observation in order to reduce the observation space. Thus,

instead of recording which channel generated an alert, we only record total number of

alerts per domain. Given there are |C[d]| channels going to domain d then the observations

for each domain lie in {0 . . . |C[d]|}. This observation space for each domain is then linear

in the number of channels O(|C[d]|). The full joint observation space is exponential in the

number of domains O(|C[d]|D).

The set of observations is then Ω = 〈Ω1, . . . ,ΩD〉 where Ωd ∈ {0 . . . |C[d]|} corre-

sponding to the number of alerts from all |C[d]| channels going to domain d. Because

there is now multiple way for us to get this single observation, the observation probability

function for each domain also needs to be modified.
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O(Ωd|Xd, A) =



(
sk[d]
Ωd

)
α(τd)

Ωd(1− α(τd))
sk[d]−Ωd if Xd = 1(

sk[d]
Ωd

)
β(τd)

Ωd(1− β(τd))
sk[d]−Ωd if Xd = 0

0 else

VD-POMDP Factored Representation

Looking at both the observation probability function as well as the belief update, we can

consider a factored representation of this POMDP, by factoring these by domains. If we

then separate out these factored components and create a new sub-agent for each factor,

so that we now have a total of D POMDP’s, we can greatly reduce the state space, obser-

vation space and action space for each individual sub agent. The model for each of these

individual POMDP is then given as follows.

States S = Xd

Actions A = τd × {0, . . . , |C[d]|} ×Md

Transition T (s′, s) =


1 iff s′ = s

0 else

Observations Ω = 〈Ω1, . . . ,ΩD〉 where Ωd ∈ {0, . . . , |C[d]|}

O(Ωd|Xd, A) =



(
sk[d]
Ωd

)
α(τd)

Ωd(1− α(τd))
sk[d]−Ωd if Xd = 1(

sk[d]
Ωd

)
β(τd)

Ωd(1− β(τd))
sk[d]−Ωd if Xd = 0

0 else

Reward R(S,A) = −
(
Xd(1−Md)v[d] + (1−Xd)Mdw[d] + mincost(sk[d])

)
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Full POMDP VD-POMDP
Original Abstract

State O(2D) O(2D) O(1)

Action O(2N |τ |K2D) O(|C[d]|D|τ |D2D) O(2|C[d]||τ |)

Observation O(2K) O(|C[d]|D) O(|C[d]|)

Table 4.2: Complexities of Full and VD-POMDP models with original and compact rep-
resentations.

The complexity of the state space is reduced to O(1), the action space is O(|τ ||C[d]|)

and the observation space is O(|C[d]|). Table 4.2 shows the comparative complexities of

the original POMDP model and the VD-POMDP model. As we use channels as actions for

each domain specific POMDP, we still need to construct the lookup table to map channels

as actions to nodes as actions in order to obtain the cost of each action on channels. Fac-

toring the model in the way described above also simplifies the construction of this lookup

table from actions on channels to actions on nodes, and hence computing mincost(sk[d])

can be done in a much simpler way for the VD-POMDPs. We solve a similar (MILP) as

in (4.2)-(4.4) but for each VD-POMDP for domain d; thus, we only need to fill in a table

with O(|C|) entries, one for each of the sk[d] actions for each domain d. The new MILP

formulation is given in equations 4.10-4.12. Observe that unlike the MILP (4.2)-(4.4) used

to build the lookup table for the original POMDP, this MILP is solved for a fixed domain

d.
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min
zk,an

∑
n

anwn (4.9)

zk ≤
∑
n∈Ck

an (4.10)

∑
ck∈C[d]

zk ≥ sk[d] (4.11)

zk ∈ {0, 1} an ∈ {0, 1} (4.12)

While the above optimization is much more simpler than the corresponding optimiza-

tion for the original POMDP, it is still a hard problem:

Theorem 4. The problem of coverting the number of channels to nodes for each VD-

POMDP is NP Hard.

Proof. We reduce from the min knapsack problem. The min knapsack problem is one

where the objective is to minimize the value of chosen items subject to a minimum weight

W being achieved, which is a well known hard problem. Also, wlog, we can assume

weights of items and W to be integers. Given a min knapsack with n items of weights

w′i and value vi and min weight bound W form an instance of our problem with n nodes

(mapped to items) and each node i having w′i channels going directly to domain d. It

can be easily seen that for any channel ck in this network there is a unique node it passes

through: call it n(k). Each node i also has traffic wi = vi. Also, sk[d] = W . Then, the

optimization problem being solved is

min
zk,an

∑
n

anvn subject to zk ≤ an(k),
∑

ck∈C[d]

zk ≥ W, zk ∈ {0, 1}, an ∈ {0, 1}
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n1 n2 n3

d1 d2 d3

Figure 4.3: Sample network with 3 domains, 3 nodes and 5 sources. The dashed lines are
channels to domain d1 the dotted line is the channel to domain d2 and the solid lines are
channels to d3.

Note that in the constraints, whenever a node is selected an(k) = 1 then making all wi

channels in it one makes the weight constraints less tight. Thus, any values of an, zk

satisfying the constraints specify a set of nodes such that the sum of its weights is ≥

W . Coupled with the fact that the objective minimizes the values of selected nodes, the

solution to this optimization is a solution for the min knapsack problem.

Policy execution: The solutions to each of these VD-POMDP’s give us an action

〈M∗
d , τ

∗
d , s
∗
k[d]
〉 corresponding to a labeling of malicious or legitimate for that particular

domain d, the threshold, and the desired number of channels to sense over. However, at

execution time we need to turn on detectors on nodes. Thus, in order to aggregate these

factored actions to determine the joint action to take at execution, we need to map the

output from each POMDP back to a set of sensing actions on nodes. This can be easily

accomplished by solving a single instance of the larger MILP (4.2)-(4.4) with the sk[d]

values set to s∗k[d] .

We emphasize here the importance of using the abstract channels as actions instead of

nodes. The possibly alternate approach with nodes as action for each sub-POMDP and
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just taking union of the nodes output by each domain specific POMDP, when the channels

are not disjoint, can result in over sensing. Consider the example below, where there are

4 channels going to domains d1 and d3 and one to d2 and let us currently be in a belief

state where the optimal action for domain d1 and d3 would be to sense on 2 channels out

of the 4 going to each domain and the optimal action for d2 is to sense on the one channel.

Working in an action space of nodes, the VD-POMDP for d1 would choose to sense on

node n1, the VD-POMDP for d3 would choose to sense on n3 as it has the lowest amount

of traffic for 2 channels and the one for d2 would choose to sense on n2 as it is the only

option. Taking the union of these would result in all the sensors being turned on. However,

we can see that choosing only to sense on node n2 satisfies the sensing requirements of all

three separate VD-POMDPs.

Next, we identify a condition under which the solution from the larger MILP is optimal.

In the next section, we show empirically that even when this condition is not met our

approach is close to optimal.

Theorem 5. The above described technique of aggregating solutions of the VD-POMDPs

is optimal for the original POMDP iff the solution to the MILP (4.2)-(4.4) for any VD-

POMPD policy action results in an equality for the constraint (4.3).

Proof. First, with the standard representation the global value function given in equation

4.13-4.14, cannot generally be fully decomposed by domain due to theRn(an) term which

couples the actions for each domain through the sending cost. The decomposition is only

possible in special instances of the problem, such as if network of channels were com-

pletely disconnected. The action of selecting nodes can be partitioned by domains as an[d]
.

Then, the cost associated with sensing on the nodes could be written as a sum of domain

dependent terms Rn(an) =
∑

dRn[d]
(an[d]

). Also, all actions (threshold, choice of nodes
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and decision about each domain) are now partitioned by domain, thus any action a is a

combination of actions per domain ad. Let bd denote the belief state for domain d. The

choice of nodes in this case should just be a union of the nodes chosen by each POMDP as

seen from the the value function as each domain dependent component can be optimized

separately.

V ∗ = max
a

[
R(b, a) + γ

∑
Ω

P (Ω|b, a)V ∗(b, a,Ω)

]
(4.13)

= max
a

[∑
d

(
Rd(bd,Md)

)
+Rn(an) + γ

∑
Ω

∏
d

P (Ωd|bd, τd)V ∗(b, a,Ω)

]
(4.14)

= max
a

[∑
d

(
Rd(bd,Md) +Rn[d]

(an[d]
)
)

+ γ
∑

Ω

∏
d

P (Ωd|bd, τd)V ∗(b, a,Ω)

]
(4.15)

= max
a

[∑
d

(
Rd(bd, ad)

)
+ γ

∑
d,Ωd

P (Ωd|bd, ad)V ∗d (bd, ad,Ωd)

]
=
∑
d

V ∗d

(4.16)

where V ∗d = max
ad

[
Rd(bd, ad) + γ

∑
Ωd

P (Ωd|bd, ad)V ∗d (bd, ad,Ωd)

]
(4.17)

If we instead use the compact representation of the action space, and let the actions sim-

ply be the number of channels to be sensed on and equality is obtained for the constraint

(4.3) for any action from each domain specific POMDP (i.e., each sk[d] can be imple-

mented), then the value function can be decomposed by domain, because the term Rn(an)

is replaced by the
∑

d mincost(sk[d]), which can be factored by domain and does not couple

the VD-POMDP’s. Reconstructing the joint policy then just amounts to finding the best
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action from each POMDP and taking a union of these individual actions. We then just need

to map back to the representation of actions on nodes, by solving the MILP (4.2)-(4.4).

V ∗ = max
ad

[∑
d

(
Rd(bd, ad) + mincost(sk[d])

)
+ γ

∑
d,Ωd

P (Ωd|bd, ad)V ∗d (bd, ad,Ωd)

]
=
∑
d

V ∗d

4.5 VD-POMDP Framework

Here we explain at a high level, the VD-POMDP framework as applied to the data exfil-

tration problem, and how it is implemented. With the VD-POMDP, entire planning model

is broken up into two parts as depicted in Figure 4.4. The first is the offline factoring and

planning, where the POMDP is factored into several sub-agents, and each solved individ-

ually. Second is the online policy aggregation and execution, where the policies of each

sub-agent are aggregated as each of them choose actions to perform.

In order to build the VD-POMDP for data exfiltration problem, we first construct the

network graph, based on the topology of the actual computer network we are modeling as

well as the set of domains under consideration, shown at point (a) in Figure 4.4. Then at

(b), for each domain in our network, we construct a separate POMDP sub-agent. In order

to do this we solve the MILP mincost(skd) for each agent, in order to abstract away from

the network layer and construct the compact representation of the network. At point (c)

each individual POMDP agent is solved, offline, ignoring the presence of the other agents

to obtaining a policy for each domain.
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Figure 4.4: Flowchart for the Data Exfiltration VD-POMDP

The policies are then aggregated in an online fashion, shown at point (d) in Figure 4.4

to obtain a joint action (f). At each time step the agents receive observations from the net-

work and update their beliefs individually. Each agent then presents the individual action

to be performed consisting of a number of channels to be sensed on, a threshold for sensing

and a classification of malicious or legitimate for their respective domain. The required

number of channels for each agent is then fed into the MILP mincost(〈sk[i] . . . sk[D]
〉) to

determine the set of nodes to be sensed on. The agents then again receive observations

from the resulting set of detectors and iterate through this process again.

Policy aggregation is performed online as it would be infeasible to do offline policy

aggregation for all but the smallest policies. If aggregation were to be performed offline,

we would need to consider every possible combination of actions from each policy and

then solve the MILP mincost(〈sk[i] . . . sk[D]
〉) for each of these, in order to compute the

combinatorially large joint policy. Because the MILP is fast to solve, it does not result in

much overhead when these joint actions are computed in an online fashion.

It is important to note here that the policy we compute is not an optimal sequence of

actions, but rather a mapping of belief state to actions. This distinction is important, as it
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may be the case that, upon policy aggregation, there is no feasible implementation of the

individual action. In such a scenario, an agent may choose an action to sense on a subset

of k channels; however, given the sensing requirements of the other agents, the agent

in question may actually get to sense on more channels than they had initially wanted.

The agent may then end up in a belief state that they had not originally planned for, but

because we are solving for the entire belief space, we still know how to behave optimally.

Additionally, from Theorem 5, we know that the joint action will only be optimal if we

can exactly implement each individual action, and no agent get to sense on more channels

than it requests. Our policy aggregation may then result in a suboptimal joint action being

taken, however, we show later in section 6, that even when the optimality condition does

not hold, we can still achieve good performance.

4.6 Evaluation

We evaluate our model using three different metrics: runtime, performance, and robust-

ness. We first look at the runtime scalability of VD-POMDP model, varying the size of

several synthetic network as well as the number of domains and compare to the standard

POMDP model. We then evaluate the performance of the VD-POMDP, measuring how

quickly it can classify a set of domains as malicious or legitimate, as well as computing the

accuracy of correct classifications. For small network sizes, we compare the performance

of the VD-POMDP to the original model and look at the performance of the VD-POMDP

on larger synthetic networks.
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Synthetic Networks

In order to test a variety of network sizes we created synthetic networks using a tree topol-

ogy. Leaf nodes in the tree network correspond to source computers. Channels travel

upwards from these nodes to the root of the tree; for each domain we create one such

channel on each source computer. The size of the network is varied by varying the depth

and branching factor of the tree.

4.6.1 DETER Testbed Simulation

We also evaluated the performance of our model using a real network, by running sim-

ulations on the DETER testbed. The DETER testbed provides capabilities of simulating

a real computer network with virtual machines and simulating agents that perform tasks

on each computer. Every agent is specified in a custom scripting language, and allows

simulating attackers, defender and benign users. For our simulation we simulated legit-

imate DNS queries as well as launched real attacks. We performed a simple attack, by

attempting to exfiltrate data from a file to a chosen malicious domain by embedding data

from the file into the DNS queries. We conducted the attack using the free software Iodine

[Kryo, 2014] which allows for the creation of IP tunnels over the DNS protocol in order to

generate these DNS queries. We were provided with 10 virtual machines, from which we

formed a tree topology with 7 of them as host computers and sources of traffic. We then

built and implemented a real time data exfiltration detector based off of the techniques

proposed in [Paxson et al., 2013]. The detector uses off the shelf compression algorithms

like gzip in order to measure the information content of any channel in the network. We

then set a cut off threshold for the level of allowable information content in any channel.
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Channels exceeding this threshold are flagged as malicious. While we chose to use this

specific detector to generate observations for our model, it is important to note that any

other methods for detecting exfiltration would have been equally viable.

4.6.2 Runtime

We first look at runtimes needed to solve the original model compared to our VD-POMDP

model with increasing number of domains. Unless otherwise stated, all test used a thresh-

old discretization of 2. We used an offline POMDP solver ZMPD [Smith, 2007] to com-

pute policies; however, any solver which computes policies for the entire belief space may

be used. The largest network we were able to solve for with the original model was one

of only 3 nodes. For larger than 2 domains with discount factors γ = −0.2 and all cases

with γ = −0.4 and γ = −0.8 the original POMDP did not finish solving in 24 hours

and is shown cut off at the 24hr mark in Figure 4.5a. Consistent with the complexities in

Table 4.2, in Figure 4.5a we see the runtimes on the y-axis increase exponentially with the

number of domains on the x-axis, for the original POMDP. If the VD-POMDP models are

solved in parallel, runtimes do not vary with increasing domain. If the models are solved

sequentially, then we would see only a linear increase in runtime. However in the case

where networks have the channels uniformly distributed among all hosts, i.e. there exists

one channel from every host to every domain, then the models become identical, and it

becomes only necessary to solve one of them.
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Figure 4.5: Runtime results
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We show the scalability of computing policies for the VD-POMDP in Figure 4.5b. On

the y-axis, in log scale we have the runtime in seconds, and on the x-axis, also in log

scale we have the number of nodes in the network, achieved by varying both the depth and

branching factor of our tree network structure. We can see that there appears to be a linear

scaling with the size of the network. We also show in Figure 4.5d the time it takes to build

the network, the lookup table of costs computed by repeatedly solving (4.10)-(4.12) and

pomdp files to be fed to the solver. This time corresponds to the steps (a) and (b) in Figure

4.4. On the y-axis we have again the runtime and on the x-axis the number of nodes in the

network.

Figure 4.5c shows the runtime for computing the policy of a single factored agent with

increasing action space. The runtime is shown on the y-axis in seconds, while the increas-

ing action space is measured by the threshold discretization on the x-axis. We first divided

the space of possible true positive and true negative rates into a number of segments equal

to the discretization number. For each discretization level, we then combinatorially formed

all the true positive and true negative pairs possible within that discretization number and

averaged over the runtimes, in order to ensure that we were not only testing easy cases,

where one choice threshold was dominant over another.

4.6.3 Performance

We evaluate the performance of the model by looking at the reward, the number of time

steps taken to classify all domains and the accuracy of the classifications. For each test,

we averaged the values over 100 simulations. Table 4.3 compares the performance of the

original POMDP model with the VD-POMDP model. The largest tests we could run using

the full POMDP were on a network of 3 nodes with a total of two domains, while solving
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the model with a discount factor of γ = 0.2. The VD-POMDP model performs as well in

terms of accuracy and time compared to the full POMDP model. We show a normalized

average reward, computed by dividing the total reward by the number of time steps taken

to classify the domains to better compare the models. Since we stop the simulation after

all the domains have been classified, the total reward is not the expected infinite horizon

reward, so simulations which run for different amounts of time will have had the chance

to accumulate different amounts of reward. The normalized reward is meant to give a

better indication of what the long term average reward would be, which would be a much

fairer comparison. We also looked at the VD-POMDP solved with a discount factor of

γ = 0.8, where we can clearly see the benefit of longer term planning. Although this

VD-POMDP takes longer to classify both domains, it has a perfect accuracy and lower

normalized reward than the other two models. This shows that the model is placing more

value on potential future information, by preferring to wait and collect more alerts before

making a final decision. This is clearly the better choice as we see a much better accuracy.

It is clear that it is necessary to be able to plan for the future to perform well in this kind of

domain; it is therefore necessary to be able to solve for large planning horizons, something

that we cannot do using just the original POMDP model. This demonstrates the merit of

the VD-POMDP framework, as solving this problem with a simple POMDP framework is

clearly infeasible.

Looking at just the VD-POMDP we test performance on a variety of larger networks

in Table 4.4. Each of the synthetic networks are tested with 50 domains, averaged over 30

trials. The DETER network is tested with 100 domains averaged over 30 trials. For the

DETER network, we used two thresholds, and determined the true and false positive rates

of our detector by letting it monitor traffic at each threshold setting and observing the
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Model Timesteps Attack Traffic User Traffic Normalized
to Classify Accuracy Accuracy Reward

Full POMDP γ = 0.2 11.814 0.948 0.979 -470.594
VD-POMDP γ = 0.2 11.144 0.944 0.961 -675.100
VD-POMDP γ = 0.8 29.044 1.0 1.0 -386.982

Table 4.3: Comparing performance of full POMDP model to factored model on a small
test network of 3 nodes, with 2 domains. One domain is malicious and the other domain
is legitimate.

number of alerts obtained for each channel. We found our simple implementation of the

detector had true positive rates of α(τ1) ' 0.35 , α(τ2) ' 0.45 and true negative rates of

β(τ1) ' 0.8, α(τ2) ' 0.7, and these were the parameters used in the model for this exper-

iment as well as all the synthetic ones. We can see that, although the synthetic simulations

all perform extremely well, and have a perfect accuracy, the deter simulation occasionally

misclassifies legitimate traffic. This is due to the uncertainty in the characterization of the

detector, as network traffic is variable and may not always follow a static distribution.

Observations for the synthetic experiments were drawn from the distributions that the

VD-POMDP had planned for, while in the DETER experiments, traffic did not always fol-

low the input distributions. However, even with this uncertainty, the model still performs

well in this realistic network setting. A more sophisticated implementation of this detec-

tor along with a more intensive characterization would even further boost the performance.

We also show an example of the diversity of actions chosen by the VD-POMDP. In

Table 4.6 we show a trace of the actions taken by a single agent planning for a single

domain. We show the number of channels chosen to sense on on, the choice of threshold,
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Network Timesteps Attack Traffic User Traffic Normalized
to Classify Accuracy Accuracy Reward

Synthetic 40 Nodes 4.079 1.0 1.0 -13523275.239
Synthetic 85 Nodes 3.252 1.0 1.0 -15514333.580

Synthetic 156 Nodes 3.235 1.0 1.0 -22204095.194
Synthetic 341 Nodes 3.162 1.0 1.0 -21252069.929

DETER 5.3076 1.0 0.995 -6835.588

Table 4.4: Performance of the factored model on larger networks.

Time Action Observations
# Channels τ Md

1 64 1 0 23
2 62 1 0 23
3 3 0 0 0
4 5 0 0 2
5 8 0 0 2
6 18 0 0 4
7 0 0 0 0

Figure 4.6: Trace of a run on a network of 85 nodes of a single legitimate domain.

along with the classification of the domain. We also show the observations, which the

number of channels that triggered alerts. The simulation ends when no more channels

are to be sensed on. We can see the agent varying the number of channels as well as

the threshold of the detector, as they become more and more sure that they domain is

legitimate.

4.6.4 Robustness

Lastly, we looked at the robustness of our model to errors in the input parameter. As

evidenced with the DETER experiment, the model requires known false positive and true

positive rates for the detector. While it may be reasonable to assume that with enough
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monitoring, it is possible to get accurate measures of false positive rates in a network

by simply running the detector on known legitimate traffic for long periods of time, it is

more difficult to characterize the true positive rates, as attacks can take many forms and

exfiltration can occur over varying rates. In order to test the robustness of our model, we

solved for the policy using one set of rates and then tested the model in simulation against

a variety of actual rates. For our tests, the model was solved with a true negative rate of 0.8

and true positive rate of 0.55. We then drew alerts from a range of distributions for the true

positive and negative rates as shown in Figures 4.7 on the y-axis and x-axis respectively.

The metrics used to measure robustness are shown as a heat-map for each true positive,

true negative pair.
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Figure 4.7: Testing the robustness with respect to error in the planned true positive and
true negative rate.

In Figure 4.7a performance of the model was tested by looking at the percent of incor-

rect legitimate domain classifications ie. the percent of legitimate domains flagged as

malicious. In all cases except for one, all legitimate domains were correctly flagged as

non-malicious, and in one case legitimate domains were misclassified in only 0.4% of the

trials. In Figure 4.7b the percent of correct malicious domain classifications is shown,

where in all but two cases, the correct domain was always identified. Figure 4.7c shows
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the number of time steps taken to classify all the domains, while Figure 4.7d shows the

average reward (in this case a penalty) for the the simulations. We can see that the model

is robust to mischaracterization of the detectors, where the only dips in performance occur

when either the detector has a low true negative rate and when the error in both the true

positive and negative rates are large.

4.7 Conclusion and Future Work

We demonstrated the effectiveness of POMDP based planning tool in making intelligent

decisions to tackle the problem of DNS based data exfiltration. These decisions were

made by aggregating information from multiple noisy detectors and using sequential plan-

ning under uncertainty based reasoning. In doing so, we also proposed a new class of

POMDPs called VD-POMDP that uses domain characteristics to split the POMDP into

sub-POMDPs and allows for abstract actions in each sub-POMDP that can then be eas-

ily converted to a full joint action at execution time. VD-POMDP allows scaling up our

approach to real world sized networks. The approach also detects attacks in near real time,

thereby providing options to minimize the damage from such attacks. More generally,

we believe that our approach applies to other security detection and response problems

such as exfiltration over other protocols like HTTP and intrusion detection. While this

work is an important step in addressing the problem of APT’s in a realistic and scalable

manner, we recognize that having a non-adaptive adversary is a simplification of the poten-

tially complex interaction between attacker and defender in this environment. Building an

appropriate adversary model, and considering the underlying game in this domain is a key

avenue for future work in this area.
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Part III

Tactical Planning
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Chapter 5

Tactical Planning in Security Games

In this chapter I discuss the types of tactical planning problems which give rise for the need

of hierarchical planning and how these types of tactical problems have been largely ignored

in the security game literature. This chapter will focus in particular on resource hetero-

geneity and team formation in security games. Here I will first touch on why resource

heterogeneity is important and then focus on a particular class of games known as Threat

Screening Games, one of the only game theoretic security models which models resource

heterogeneity and teams.

5.1 Tactical Planning with Heterogeneous Resources

While strategic planning can allow the defender to design more expressive security sys-

tems and achieve higher solution quality and therefore better security there is additional

computation cost associated with performing this additional planning. As such it is impor-

tant to recognize when this additional work is necessary or beneficial. We see from the

results in section 3.4.2 that the amount of solution quality gained by performing strategic

planning varies with the heterogeneity of the resources; as the number of possible unique

teams which can be formed grows the value in strategic planning increases. When we

looks at how the strategic design variables y affect the problem formulation, it is through

constraints on the resource deployments xir ∈ Gr(y). When there is only one resource
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type, the design variables only appear in a single constraint... and while the design vari-

ables themselves may be subject to some set of constraints, these are now completely

decoupled from the problem, and we now only have to choose y to optimize the single

value x

Example 3. Consider the SORT problem from example 1. This becomes a trivial problem

when there is only one resource type, as the solution is simply to purchase as many of that

single resource type as possible, subject to the budget B. We see this from the problem

formulation

max
y
{F (y) : yb ≤ B}

Where, since F (y) corresponds to the optimal objective value of a game we know that

F (y) ≥ F (y′) if y > y′ and thus the optimal solution is y = B
b

.

This shows us that strategic planning is particularly relevant to games with teams of

heterogenous resources. However, to date the security game literature has focused mainly

on problems with homogenous sets of resources. Thus, in order to take full advantage of

the benefits of strategic planning it is important to be able to solve game models which cap-

ture this added complexity. In section 3.3.2 this thesis extends the NSG model to include

heterogenous resources and provides a novel double oracle solution approach for solving

this problem. Here we provide a more thorough discussion of resource heterogeneity in

security games and how it changes the complexity of the tactical planning problem. I then

look at one of the only types of games to include heterogeneous resource and provide a

framework for solving these games in a more realistic setting.
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5.1.1 Heterogenous Resource Efficiency

A common source of resource heterogeneity is effectiveness in interdicting, detecting or

preventing an attack. This appears in the security game literature in areas such as cyber

security, Other sources of heterogeneity exists, usually due to the constraint structure of

the problem. For example, in the problem of network interdiction of Section 3.2.1 we have

additional heterogeneity due to the differences in the path lengths the resources can cover;

this additional distinction between resources is only possible due to the underlying network

structure and how the network constrains affect each resource. However, the effectiveness

of resource is ubiquitous to all security games, and so has the potential to appear regardless

of the game structure. Thus it is a source of heterogeneity that is important to address as it

is common to all security game problems.

The general problem of heterogeneity in efficiency can be framed in the following

way. Consider a game G with a set of targets V and set of heterogeneous resource typesR

available. Let it be the case that each resource type r ∈ R has a probability Pr,v of success-

fully averting an attack on target v so that, as in section 3.2.1 the probability of successfully

averting an attack on target v is given by Pv(x) = 1−
∏

r∈R(t)(1−Pr,t) similarly to the edge

coverage equation 3.2, whereR(t) corresponds to the set of all resources in team t. (Note

that this can be equivalently expresses using a decision variable xr,v which corresponds to

the number of resources of type r assigned to target t as Pv(x) = 1−
∏

r∈R(1−Pr,t)xr,V ).

LetRd,v be the value of target v to the defender and let av be the adversary’s mixed strategy

over the targets (note that under the Stackelberg model, the optimal adversary mixed strat-

egy is equivalent to a deterministic strategy, being a choice of a single target). We look at

the defender best response to gain intuition on the hardness of the problem. The defender

best response problems is a combinatorial optimization problem over all the defender pure
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strategies, given fixed adversary strategy. It has been shown in [Xu, 2016] that there is

an equivalence in the problems of computing the defender best response and computing

the minimax equilibrium for zero-sum security games, the strong Stackelberg equilibrium

for securitygames and computing the best or worst (for the defender) Nash equilibrium

for security games over the pure strategy space of the defender. Since we are looking to

compute SSE for security games, the the hardness of the defender best response implies

the hardness the full problem.

Theorem 6. For a security game with heterogeneous resources, the defender best response

problem is a problem of maximizing a submodular function subject to matroid constraints.

Proof. We first show that the probability of successfully defending a target is submodular.

A function f : [0, 1]|D| → R is submodular if for every X, Y ⊆ DX, Y ⊆ D with X ⊆ Y

and every x ∈ D \ Y we have that f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y )).

Let f := Pv(t), where t ∈ T denotes a team or set of resources. Let D = T . We have

that:

Pv(X) = 1−
∏
r∈X

(1− Pr,t)

Pv(X ∪ {r′}) = 1−
∏
r∈X

(1− Pr,t)(1− Pr′,t)

Pv(Y ) = 1−
∏
r∈Y

(1− Pr,t)xr,v = 1−
∏
r∈X

(1− Pr,t)
∏

r∈Y \X

(1− Pr,t)

Pv(Y ∪ {r′}) = 1−
∏
r∈X

(1− Pr,t)
∏

r∈Y \X

(1− Pr,t)(1− Pr′,t)
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Pv(X ∪ {r′})− Pv(X) =

(
1−

∏
r∈X

(1− Pr′,t)

)
−

(
1−

∏
r∈X

(1− Pr,t)

)
=
∏
r∈X

(1− Pr,t)Pr′,v

Pv(Y ∪ {r′})− Pv(Y ) =
∏
r∈X

(1− Pr,t)
∏

r∈Y \X

(1− Pr,t)Pr′,t

Pv(Y ∪ {r′})− Pv(Y )− Pv(X ∪ {r′})− Pv(X)

=
∏
r∈X

(1− Pr,v)
∏

r∈Y \X

(1− Pr,v)Pr′,v −
∏
r∈X

(1− Pr,t)Pr′,v

=
∏
r∈X

(1− Pr,v)Pr′,v

 ∏
r∈Y \X

(1− Pr,v)− 1


Since

∏
r∈X(1 − Pr,v) ≤ 1 and

∏
r∈Y \X(1 − Pr,v) ≤ 1 we have that(∏

r∈Y \X(1− Pr,v)− 1
)
≤ 0 therefore Pv(Y ∪{r′})−Pv(Y )−Pv(X∪{r′})−Pv(X) ≤ 0

which means that Pv(X) is submodular.

Next we show that the constraints on the problem form a partition matroid. We have

a number of disjoint sets Ri corresponding to all of the resources of type i and a set of

integers yi corresponding to the maximum number of resources of type i which may be

deployed. Define the set of independent sets X to be the sets such that |X ∩Rr| ≤ yi ∀i.

These set for the independent sets of a partition matroid.

The defender’s best response for a security game with heterogenous resources can be

formulated as the following optimization problem:

100



maximizex
∑
v

avRd,vPv(X)

subject to Pv(X) = 1−
∏

r∈R(X)

(1− Pr,v)

|X ∩Ri| ≤ yi∀i

Thus the defender best response problem is a problem of maximizing a submodular

function subject to matroid constraints.

Solving games with resource heterogeneity proves to be a challenge when the het-

erogeneity is due to resource efficiency. In general, these problems are NP hard, and

NP hard to approximate to within any better than a factor of (1 − 1
e
) [Feige, 1998,

Calinescu et al., 2007].

5.1.2 Heterogenous Schedule Types

Another source of resource heterogeneity is in the types of schedules each resource may

be assigned. For example, in the problem of network interdiction of Section 3.2.1 we

have additional heterogeneity due to the differences in the path lengths the resources can

cover. Different schedules here correspond to different patrols of various lengths. The

different schedules types here come from the underlying structure of the game. Schedules

are distinct if they cover different targets, as shown in the example in Figure 5.1.

Heterogeneity in resource schedules alss makes the problem difficult. In fact when

resources are heterogeneous in their schedule types and schedules are not singletons

(meaning that they may cover multiple targets) finding an optimal Stackelberg strategy

is NP-hard, even when the game is zero-sum [Korzhyk et al., 2010b].
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Standard techniques for solving large scale games such as incremental strategy genera-

tion techniques fail to properly address these challenge. These techniques, such as column

generation and double oracle methods, require the ability to solve efficiently solve the best

response problem, as they involve many oracle calls where the oracles must compute the

best response strategies. As we have shown, for games with heterogeneous resource effi-

ciency, this is a hard problem, so that any incremental strategy generation technique will

be inefficient as it require solving this hard problem many times. Indeed, as an example

of this we turn to one of the few games which model heterogenous resources: a class of

games known as Threat Screening Games which will be the focus of the remainder of this

chapter. Using these games as a motivating example, this thesis provides a framework for

solving the tactical planning problem in games with heterogeneous resource types

5.1.3 Existing Games with Resource Types

Threat Screening Games (TSG) introduced in [Brown et al., 2016] are a game theoretic

model to address the challenge of screening a flow of incoming items for threats. These

Figure 5.1: Three schedules on a graph. The targets are shown in gray, with the adversary
paths to the targets shown by the dotted lines. The schedules are shown in blue overlayed
on the graph. The first schedule is a singleton as it covers only target 1 by covering the
first path. The second schedule covers target 1 and 2 by covering both paths. The third
schedule covers both targets as well, however as it covers the same paths as the second
schedule, they are considered equivalent.
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games model situations, wherein a strategic attacker attempts to penetrate a secure area,

while the screener has the opportunity to screen for threats using limited resources. Opti-

mizing the defender (mixed) strategy by means of the TSG captures the strategic behavior

of attackers and thus yields more effective screening strategies.

As mentioned previously, this model which inspired by previous work in secu-

rity games [Tambe, 2011, Korzhyk et al., 2010a, Yin et al., 2015, Balcan et al., 2015,

Basilico et al., 2009], is fundamentally difference in that it is one of the few games which

reasons about heterogenous resource types each with varying efficacies and efficiencies

with regards to deployment and capacity for use. While this enables TSGs to model a

larger variety of resource allocation problems the resulting problem requires fundamen-

tally new algorithms in order to scale up to real problem sizes. In [Brown et al., 2016] it

is demonstrated that standard optimization techniques such as column generation are sub-

optimal in terms of solution quality and scalability. However, despite promising results,

previous work in TSG fails in its mission to realistically model real-world settings. Its fun-

damental limitation is its assumption of perfect fore-knowledge of screenee arrival times

(e.g., arrival times of passengers at airports). However, in the real-world there is significant

uncertainty in arrival times. Addressing this challenge is difficult, as it requires reasoning

about all the possible realizations of the uncertainty and coming up with an optimal plan

for each of those scenarios. When dealing with a large number of screenees, this result in

millions of possible scenarios, making the planning problem extremely difficult.

To address this shortcoming, this work provides a new model Robust Threat Screen-

ing Games (RTSG), which expresses the required uncertainty in screenee arrival times. In

RTSG, we model the problem faced by a screener as a robust multistage optimization prob-

lem. We present a tractable solution approach with three key novelties that contribute to its
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efficiency: (i) compact linear decision rules; (ii) robust reformulation; and (iii) constraint

randomization. We present extensive empirical results that show that our approach outper-

forms the original TSG methods that ignore uncertainty, and the exact solution methods

that account for uncertainty.

5.2 Motivating Domain and Game Model

Screening for threats is an important security challenge, be it inspecting cargo at ports,

passengers at airports, or fans entering a stadium. Given a strategic adversary capable of

exploiting gaps in security measures, along with a large number of screenees, it becomes

critical to optimize the allocation of limited screening resources. Indeed, to improve air-

port screening efficiency and effectiveness, the US Transportation Security Administration

(TSA) recently launched the Dynamic Aviation Risk Management Solution (DARMS) ini-

tiative [AAAE, 2014] to incorporate adaptive screening. The goal of this project is to move

towards more dynamic and adaptive risk based screening for passengers, through projects

such as TSA pre-check in which passengers can choose to submit to background checks in

order to receive expedited screening. Thus fewer resources can be dedicated to screening

these lower risk passengers. Within the larger DARMS project there has been work on

developing a multi-attribute utility model in order to assigns each passenger a risk level

based on available information such as flight history, frequent flyer membership, TSA Pre-

check status, as well as assigning values to each flight that measures its attractiveness as

a target. This was done by decomposing the assessment of the probability of a successful

attack using probability trees [Burns et al., 2015]. Our goal is exploit this flexibility and
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information on passengers and flights to perform more effective and efficient passenger

screening.

The original TSG model was developed in collaboration with the TSA as a part of this

initiative, and so I first will present the problem of screening for threats in the context of

airport security with no uncertainty as modeled in [Brown et al., 2016] and then describe

the new model with explicit uncertainty.

5.2.1 The Case when Screenee Arrivals are Known

We consider a finite planning horizon consisting of W time windows (periods) W :=

{1, . . . ,W}. During each period, a known number of screenees arrive, each from a known

category κ := (ρ, φ), ρ ∈ P := {1, . . . , P}, φ ∈ F := {1, . . . , F}. The first (second)

component of their category, ρ (φ), represents the uncontrollable (resp. controllable) part

of the screenee’s category. Thus, each screenee can decide the controllable part of their

category, however, they cannot decide the uncontrollable part of their category, which

stems from their inherent characteristics. For notational convenience, we let K := P ×F .

We assume that each screenee knows their own category. As an example, in the context

of passenger screening at airports, ρ can represent the risk category of the passenger (e.g.,

normal boarding versus TSA pre-check), while φ can represent a flight type (e.g., inter-

national with given departure time) – note that both these components are known to the

passenger. We let Nw
κ denote the number of screenees in category κ to arrive in time win-

dow w. Since the category and arrival time of each screenee is known, the quantities Nw
κ

are perfectly known. Without loss of generality, we assume that Nw
κ > 0 for all w and κ.

One of the screenees is planning on conducting an attack using an attack method m

of his choosing from the set M. For this reason, the screener is operating a checkpoint

105



comprised of T teams indexed by t ∈ T and can decide which team should screen each

screenee based on their category. Each of these teams consists of various resource types.

The set of all available resource types is denoted byR. The subset of resources composing

team t is denoted by R(t) ⊆ R. If a screenee is assigned to team t, then he must be

screened by all resource types allocated to that team. Unfortunately, not all screenees can

be screened by the most effective resources as each resource has a capacity Cr on the

number of screenees that it can process in each time window. The attack will be averted if

the attack method is identified by any one of the resources screening the attacker. We let

Et,m denote the effectiveness (ie. probability of interception) of team t at detecting attack

method m, determined by the effectiveness of each resource, see Example 4.

Example 4. Assuming independence of the effectiveness of the resources that make up

each team and letting Er
r,m denote the probability of detecting an attack of type m using

resource r, we have Et,m = 1−
∏

r∈R(t)(1− Er
r,m).

Following the (by now standard) approach in the literature, we formalize this problem

as a Threat Screening Game, i.e., a Stackelberg game in which the screener, as the leader,

commits to mixed strategies, and the attacker acts as the follower [Brown et al., 2016,

Schlenker et al., 2016]. The rationale is that the screener acts first by selecting a (random-

ized) screening strategy, i.e., a feasible assignment of screenees to teams. In response

to the choice of screening strategy, the attacker (after observing the screenee allocation)

selects: a) his attack method m, b) his attack window w, and c) the components of his

category that he can control in κ, so as to cause maximum harm. We refer to such a

choice as an attack (m,w, κ). If the attack is caught, the screener receives a utility U+
κ ,

which depends on the category of the adversary. Accordingly, if the screener is unsuccess-

ful at preventing the attack, he receives the (negative) utility U−κ . The attacker’s utilities
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are assumed to be negative of the screener’s utilities, so that the game is zero-sum. We

assume that the defender knows the probability that the attacker’s uncontrollable category

is ρ, denoted by Pρ and we have
∑

ρ∈P Pρ = 1.The objective of the screener is then to

select the best randomized allocation (i.e., mixed strategy), in anticipation of the attacker’s

best response.

Example 5. Using the domain of passenger screening at an Airport, we will now provide

an illustrative example to instantiate the model. Imagine we are tasked with planning the

screening at one of the terminals in a large airport for a 12 hour time period. Using a

granularity of 1 hour, we have 12 time windows in the game, so that W = {1 . . . 12}.

During this time there are 5 flights that are departing from this terminal, so that F =

{1 . . . 5}. Each of the flights has a value associated with it, which are given by positive

numbers e.g.{100, 100, 200, 100, 500}. If an attack on a flight is successful the defender

receives a utility of negative the value of that flight. So if flight φ = 1 is successfully

attacked the defender receives a utility of−100 regardless of the risk level of the passenger,

so that U−/+κ = U
−/+
φ . Contrarily the defender receives a reward of 0 for successfully

preventing an attack so that U−1 = −100 and U+
1 = 0.

Risk levels are determined by wether a passenger has TSA pre-check or not, and so

there are two risk levels P = {1, 2}. Each risk level has a probability associated with it

which corresponds to the probability P that the adversary may be of that risk level e.g.

P1 = 0.8 and P2 = 0.2. There are then 2× 5 = 10 categories of passenger.

We are concerned about two different types of attacks: explosives and fire-arms, so

thatM = {1, 2}.

In order to screen passengers, at the security checkpoint there are three types of

resources: walk-through metal detector (WTMD), and pat-downs to screen people, and

107



x-ray machines to screen luggage. Each resource has a probability of detecting each

attack method Er
r,m and each resource has a capacity for the number of passengers which

may be processed in an hour Cr given by:

Resource Probability of detection
(
Er
r,m

)
Capacity Cr Teams

m = explosive m = firearm (per time window) t1 t2 t3

x-ray 0.4 0.6 50 X X X

WTMD 0.5 0.7 30 X X

Pat-down 0.9 0.9 10 X

There are three teams which consist of t1 = {x-ray}, t2 = {x-ray, WTMD},

t3 = {x-ray, WTMD, pat-down}. Passengers are assigned to teams of resources, so for

example, if a passenger were to be assigned to t2 they would be screened by the x-ray

machine and the WTMD. Teams must share the pool of available resources, so that if there

is only one x-ray machine, then all teams must share the same machine. The efficiency of

each team is given by the probability of each resource detecting an attack (computed as

shown in example 4) so that:

Team Probability of detection (Et,m)

m = explosive m = firearm

t1 0.4 0.6

t2 0.8 0.88

t3 0.97 0.988
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We are now ready to provide a mathematical formulation of the problem in the spirit

of [Brown et al., 2016].

Defender Pure Strategy Set. An assignment of screenees to teams occurs at the begin-

ning of each period w ∈ W , and corresponds to a decision on the number of screenees

from each category κ to allocate to each team t out of the Nw
κ screenees that arrive in that

time window. Letting νwκ,t denote this assignment, the defender pure strategy set is given

by

S :=

{
ν : νwκ,t ∈ N+ ∀t ∈ T ,

∑
t∈T

νwκ,t = Nw
κ ∀κ ∈ K,

∑
t:r∈R(t)

∑
κ∈K

νwκ,t ≤ Cr ∀r ∈ R, w ∈ W

 .

The first constraint in the set stipulates that the number of screenees must be a non-negative

integer. The second ensures that all the screenees are allocated to a team. The third

guarantees that resource capacities are not exceeded. Note that S has finite cardinality,

i.e., there are finitely many pure strategies available to the screener. The probability of

detecting an attack (m,w, κ) given defender strategy s is given by

Dw,s
κ,m :=

∑
t∈T

Et,mν
w,s
κ,t /N

w
κ ,

where νw,sκ,t denotes the number of screenees in category κ screened by team t in window

w according to pure strategy s.
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Defender Mixed Strategies. A mixed strategy corresponds to a distribution over pure

strategies, i.e., to a choice

q ∈ Q :=

{
(qs)s∈S :

∑
s∈S

qs = 1, qs ≥ 0

}
.

The probability of detecting an attack (m,w, κ) is given by
∑

s∈S qsD
w,s
κ,m.

Robust Linear Programming Formulation. Since the attacker can select his attack

(m,w, κ), but cannot select the uncontrollable aspect of his category, the problem faced

by the screener is expressible as the following robust optimization problem in variables z

and q

maximize min
w,m,φ

∑
ρ∈P

Pρ[z
w
κ,mU

+
κ + (1− zwκ,m)U−κ ]

subject to zwκ,m =
∑
s∈S

qsD
w,s
κ,m ∀κ, m, w

q ∈ Q.

(5.1)

We have omitted the sets of the variables κ, m, w and φ to minimize notational over-

head. The variable zwκ,m is the probability of detecting an attack (m,w, κ). Accordingly,

the objective function corresponds to the worst-case expected utility of the screener. The

expectation is taken with respect to the uncontrollable component of the attacker’s cate-

gory. The minimum is taken across all choices available to the attacker.

The cardinality of the strategy set S (and accordingly the number of decision variables

in Problem (5.1)) is exponential in the number of time windows and Problem (5.1) isNP-

hard [Brown et al., 2016]. We thus consider a relaxation to Problem (5.1) obtained by
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performing the change of variables πwκ,t :=
∑

s∈S qsn
w,s
κ,t /N

w
κ . The variable πwκ,t can be

interpreted as the (marginal) probability of allocating a screenee in category κ to team t in

window w. We obtain the following robust linear problem in variables z and π whose size

is polynomial in the number of time windows

maximize min
w,m.φ

∑
ρ∈P

Pρ[z
w
κ,mU

+
κ + (1− zwκ,m)U−κ ]

subject to zwκ,m =
∑
t∈T

Et,mπ
w
κ,t ∀κ,m,w

π ∈ Π.

(5.2)

The first constraint is a direct consequence of the first constraint in Problem (5.1) combined

with the change of variables, and

Π :=


π :

∑
t:r∈R(t)

∑
κ∈K

πwκ,tN
w
κ ≤ Cr ∀r, w

∑
t∈T

πwκ,t = 1

0 ≤ πwκ,t ≤ 1 ∀t

 ∀w, κ.


denotes the set of all marginal strategies. We note that Problem (5.2) is equivalent to

a moderately sized linear program obtained by linearizing the piecewise linear concave

objective function using the standard epigraph reformulation approach.
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5.2.2 The Case of Uncertain Screenee Arrivals

Insofar, we have assumed that screenee arrival times are perfectly known. Unfortunately,

this assumption fails to hold in most threat screening problems. Moreover, ignoring uncer-

tainty in the screenee arrivals during optimization may yield severely suboptimal or even

infeasible allocations, see Section 5.4. We thus develop a novel modeling and solution

framework for threat screening that is robust to uncertainty in screenee arrival times. Our

framework builds upon formulation (5.2) which enjoys better tractability properties than

Problem (5.1).

Model of Uncertainty. We model the number of screenees from each category to

arrive in each time window as random variables that are defined on the probability space

(Ξ,F ,P), which consists of the sample space Ξ, the Borel σ-algebra F and the probability

measure P. The elements of the sample space are denoted by ξ := (ξ0, ξ1, . . . , ξW ) where

the subvector ξw := (ξw,κ)κ∈K is observed at the end of period w and ξw,κ represents the

number of people from category κ that arrive in window w. We also let ξw := (ξ0, . . . , ξw)

denote the portion of ξ that has been observed by the end of time window w. We assume

that Ξ is a bounded set expressible as

Ξ := {ξ : ξw,k ∈ N, V ξ ≤ h} (5.3)

for some matrix V ∈ R`×WK and vector h ∈ R`, where ` corresponds to the number of

constraints in the uncertainty set. Thus Ξ corresponds to the intersection of the set of all

non-negative integers with a polyhedral set. Without loss of generality, we assume that

Ξ ⊂ {ξ : ξ0 = 1} (since w = 0 is not a valid time period, we let ξ0 be a constant,
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so that affine functions of (ξw)w∈W can be represented compactly as linear functions of

ξ). We assume that Ξ is bounded. In the spirit of robust optimization, we refer to Ξ as

the uncertainty set. We note that polyhedral uncertainty sets allow for a lot of modeling

flexibility and enable us to capture a wide variety of constraints of practical relevance such

as in the airport screening domain.

Example 6 (Airport Screening). In the context of security screening at airports, the total

number of people to travel in category κ on a given day, denoted by Nκ is known from the

flight manifests. At the same time, passenger arrival times are conditioned by the time of

their flight category φ. It is thus natural to assume that all passengers in category κ will

arrive in some window w ∈ ∆κ ⊆ W (covering e.g., a couple of hours before their flight

time). A suitable choice of uncertainty set is then given by

ΞAS :=

{
ξ : ξw,k ∈ N+,

∑
w∈∆κ

ξκ,w = Nκ ∀κ

}
,

which we denote by AS for Airport Screening.

In this paper, we take the view of a risk-averse screener that wishes to be immunized

against all possible realizations of ξ ∈ Ξ. This view point is very natural for the set of

applications under consideration that fall under the realm of security. This implies that the

attacker can in some sense “strategize with nature” to devise a maximally harmful attack.

Equivalently, it can be interpreted as the desire to be immunized against an attacker who

would, by his own fortune, select the maximally harmful attack relative to uncertainty in

arrivals.
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Adaptive Screening. As information about screenee arrivals is revealed sequentially

over time, the screener has the opportunity to adjust his screening policy in an adaptive

fashion, at the beginning of each time window, in response to these observations. In par-

ticular, at the beginning of time window w, the screenee has observed the sequence of

past arrivals ξw−1 and can use that information to reason about uncertainty in remaining

time windows and adjust his screening strategy accordingly. Mathematically, the screen-

ing decisions made at the beginning of time window w (i.e., πw) in Problem (5.2) must be

modeled as functions of the history of screenee arrivals ξw−1. Given a realization ξ̃w−1 of

ξw−1, the screener will allocate πwκ,t(ξ̃
w−1) percent of screenees of category κ to team t in

window w. Accordingly, the probability of intercepting an attacker from category κ using

attack method m in time window w (i.e., zwκ,m) also depends on the realization of ξw−1 and

must be modeled as a function of the history of observations, i.e., we have zwκ,m(ξw−1).

Resource Overflow. When arrivals are uncertain, the resource capacity constraint

in (5.2) reads

∑
t:r∈R(t)

∑
κ∈K

πwκ,t(ξ
w−1)ξw,κ ≤ Cr ∀r ∈ R, w ∈ W , ξ ∈ Ξ.

It requires that for all possible realizations of screenee arrivals, the allocation must be such

that all screenees be screened by available resources in the window in which they arrive.

This may lead to highly conservative strategies that allocate most (if not all) screenees to

the team with the highest capacity. To mitigate such over-conservatism, we propose to

allow each resource r ∈ R to overflow from one time window to the next at a cost Fr

per screenee that is delayed. Thus, each screenee is allocated to a team in the window
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in which they arrive. However, screening by some (or all) of the resources in that team

may take place in a future time window if that resource is over-capacity. The higher

the overflow fine Fr, the least likely that resource r will be overcapacity. We note that

similarly to the screening policy, the number of screenees to overflow in each resource

from time window w to time window w + 1, denoted ow+1
r , must be modeled as functions

of the history of screenee arrivals, ξw. Under these considerations, the resource capacity

constraint becomes

∑
t:r∈R(t)

∑
κ∈K

πwκ,t(ξ
w−1)ξw,κ ≤ Cr − owr (ξw−1) + ow+1

r (ξw) (5.4)

and is enforced for all r ∈ R, w ∈ W , and ξ ∈ Ξ.

Adaptive Robust Optimization Formulation. We now formulate the screener’s prob-

lem as a multi-stage robust optimization problem. We note that if the attacker chooses

category κ and time window w for his attack, at least one screenee in category κ (corre-

sponding to the attacker) must arrive in that time window, i.e., it must hold that ξw,κ > 0.

The screener’s problem may be formulated in epigraph form as

maximize θ

subject to θ ≤
∑
ρ∈P

Pρuρ −
∑
w∈W

∑
r∈R

Fro
w
r ∀ξ

uρ ≤ zwκ,mU
+
κ + (1− zwκ,m)U−κ ∀ξ : ξw,κ > 0

zwκ,m =
∑
t∈T

Et,mπ
w
κ,t ∀ξ, κ,m,w

π ∈ Πo.

(P)
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The decision variables of Problem (P) are θ ∈ R, uρ(ξ), owr (ξw−1), zwκ,m(ξw−1),

πwκ,t(ξ
w−1) ∈ R, and

Πo :=


π :

∃o with owr ≥ 0 : Constraint (5.4) ∀ξ, r, w

∑
t∈T

πwκ,t = 1

0 ≤ πwκ,t ≤ 1 ∀t

 ∀ξ, w, κ


.

We omit the dependence on ξ to minimize notational overheard. The variables uρ(ξ)

express the utility of the screener in scenario ξ when the uncontrollable category of the

screener is ρ. The remaining variables admit the same interpretation as in Section 5.2.1.

In the present setting they are however adaptive. The first set of constraints is used to

linearize the piecewise linear concave objective function. The second set of constraints

determines the worst-case value of uρ(ξ) for each scenario ξ. For any given choice of

(κ,w,m) by the attacker, this constraint is only enforced over those ξ ∈ Ξ for which

ξw,κ > 0 since at least one screenee must arrive in the attacker’s chosen category and

attack window.

Example 7. Continuing the scenario from example 5, the defender then must choose how

many of each passenger from each of the 10 categories of passenger to send to each of

the 3 teams, for each of the 12 time windows, given by πwκ,t. But since the defender does

not know how many people will arrive in any time window they do this by choosing a

percentage of the people who will arrive to screen. So for example, in time window 2,

given ξ = x number of passengers have already arrived, if the defender chooses to screen

5 passengers of category 1, corresponding to risk level 1 (no tsa pre-check) and on flight 1,
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with team 2, we would have π2
1,2(x) = 0.5. This may vary with the number of passengers

who have arrived in the previous time window, so that for a different ξ = x′ the defender

may choose a different number of passengers to screen π2
1,2(x′) = 0.7.

The following Proposition establishes correctness of the above formulation by showing

equivalence of Problem (P) and an appropriately constructed robust dynamic program.

Proposition 1. The multi-stage robust optimization problem (P) computes the optimal

defender screening strategy, which maximizes his worst-case expected utility when scree-

nee arrivals are uncertain. It is always feasible.

Proof. We derive the game formulation using backward induction starting from the last

time window of the TSG, where there is no uncertainty.

Base Case: Last time window. At the last time window W there is no uncertainty,

the defender knows that ξW−1 passengers have arrived, and there are currently oW−1

passengers overflowed. This is a single stage deterministic TSG given in problem (2)

taken at a single time window W , with the addition of overflow. Since this is the last time

window, it must be that the adversary has not yet attacked and thus will attack in this time

window.

The adversary then has a choice of κ and m so that the actions space is

A =

{
aκ,m ∈ {0, 1} :

∑
κ,m

aκ,m

}

.
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The defender chooses a screening strategy π ∈ Πw
o (ξ

w−1
) where

Πw
o (ξ

w−1
) =


πwκ,t :

∑
t:r∈R(t)

∑
κ∈K

πwκ,t(ξ
w−1

)ξw,κ ≤ Cr − owr (ξ
w−1

)

+ow+1
r (ξw) ∀ξw : ξw−1 = ξ

w−1∑
t∈T

πwκ,t = 1

0 ≤ πwκ,t ≤ 1 ∀w, κ, t


we can equivalently express the first constraint as: so that the equilibrium utility for

the defender is then:

fW (ξW−1, oW−1
r ) = max

πW

∑
κ,m

Pρaκ,mu
W
κ,m −

∑
r

Fro
W
r

st. uWκ,m = (zWκ,mU
+
κ + (1− zWκ,m)U−κ )

zWκ,m =
∑
t∈T

Et,mπ
W
κ,t

πWκ,t ∈ ΠW
o (ξW−1)

Adding in Uncertainty: Time Window w. In the second to last time windowW−1 we know

that ξW−2 screenees have arrived and there are oW−2 screenees overflowed. The problem

is no longer deterministic, as we are now unsure of how many screenees will arrive. All

we know us that the number of screenees must be in the range [0, Nκ −
W−1∑
i=1

ξW−2,κ] so

that ξW−1 ∈ ΞW−1(ξ
W−2

) for this time window.

ΞW−1(ξ
W−2

) = {ξW−1 ∈ Ξ, ξW−1,κ ≤ Nκ −
W−2∑
i=1

ξi,κ}

We must now plan for the remaining two time windows, and we assume the adversary will
attack either in this time windowW−1 or in the last time windowW . The adversary has an
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additional choice aw ∈ {0, 1} of whether to attack in time window w or not. We know that
if the adversary attacks in the next time window, the utility we will get is fW (ξW−1, oW−1

r ).
If the attack occurs in this time window then we will get a utility

∑
κ

Pρu
W−1
κ −

∑
r

Fro
W−1
r

determined by our strategy in this time window. We can define a recurrence relation for
any time window w where:

fw(ξw−1, ow−1) = max
πw

min
aw aκ,m

min
ξw

aw

[∑
κ

Pρaκ,mu
W
κ,m −

∑
r

Fro
W
r

+(1− aw)fw+1(ξw, ow)
]

s.t. πw ∈ Πo
w(ξw−1) aw ∈ {0, 1} aκ,m ∈ A

ξw ∈ Ξw = {ξwκ ∈ Ξ : ξw,κ ≤ Nκ −
∑w−1

i=1 ξi,κ}

fW (ξW−1, oW−1) = max
πW

min
aκ,m

∑
κ,m

Pρaκ,mu
W
κ,m −

∑
r

Fro
W
r

(B)

So that the optimal defender utility is given by f 1(∅, ∅). By then expanding out the

recurrence relation we get a sequence sequence a1 + (1 − a1)(a2 + (1 − a2)(. . . aW−1 +

(1−aW−1)) withW terms. Since each ai is binary valued, we can equivalently can express

119



the sequence as a1 + a2 + . . . aW with the additional constraint that and
∑
ai = 1. The

objective can equivalently be written:

max
π∈Π

min
a∈A

min
ξ∈Ξ

[∑
w

[
aw
∑
κ,m

Pρaκ,mu
w
κ,m −

∑
w′,r

Fro
w′

r

]]
max
π∈Π

min
a∈A

min
ξ∈Ξ

[∑
w

∑
κ,m

Pρawaκ,mu
w
κ,m −

∑
w

aw
∑
w′,r

Fro
w′

r

]
max
π∈Π

min
a∈A

min
ξ∈Ξ

[∑
w

∑
κ,m

Pρa
w
κ,mu

w
κ,m −

∑
w′,r

Fro
w′

r

]
A = {a ∈ {0, 1}|C||∆||M| : 1>a = 1}

Ξ = {ξ : 1>ξ = N, ξ ≥ 0 ∀w ∈ W}

Πo = {∪Ww Πw
o (ξw−1) ∀ξ ∈ Ξ}

Where we have combined the two variables aw and aκ,m into a single variable awκ,m. We can

express the minimization over Ξ equivalently using the standard epigraph reformulation:

max
π∈Π

min
a∈A

θ

θ ≤
[∑
κ,m

Pρa
w
κ,mu

w
κ,m −

∑
r

Fro
w
r

]
∀ξ ∈ Ξ

uwκ,m = (zWκ,mU
+
κ + (1− zWκ,m)U−κ )
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In order to get rid of the integer valued variables a, we can do the same reformulation for

the minimization over the A using big M constraints, knowing that :

max
π∈Π

θ

θ ≤
[∑

ρ

Pρuρ −
∑
r

Fro
w
r

]
∀ξ ∈ Ξ

0 ≤ uρ − (zwκ,mU
+
κ + (1− zwκ,m)U−κ ) ≤ (1− awκ,m)M ∀ξ ∈ Ξ, awκ,m ∈ A

For some w′, κ′,m′ we will have aw′κ′,m′ = 1 and awκ,m = 0 ∀w 6= w′, κ 6= κ′,m 6= m′. So

that:

awκ,m ≤ ξw,κ ∀w, κ,m⇔ 1 ≤ ξw′,κ′ , 0 ≤ ξw,κ ∀w 6= w′, κ 6= κ′,m 6= m′

The first constraint can then be expressed:

0 ≤ uρ − (zw
′

κ′,m′U
+
κ′ + (1− zw′κ′,m′)U−κ′) ≤ 0 1 ≤ ξw′,κ′ , ξ ∈ Ξ

0 ≤ uρ − (zwκ,mU
+
κ + (1− zwκ,m)U−κ ) ≤M ∀w 6= w′, κ 6= κ′,m 6= m′

ξ ∈ Ξ

Any feasible solution must have uρ = (zw
′

κ,mU
+
κ + (1 − zw′κ,m)U−κ ) with ξw′,κ ≥ 1 and

that uρ ≤ (zwκ,mU
+
κ + (1 − zwκ,m)U−κ ) ∀w so we can re-write this constraint as uρ ≤

(zwκ,mU
+
κ + (1− zwκ,m)U−κ ) ∀w, ξw,κ ≥ 1 The problem then becomes:

121



maximize θ

subject to θ ≤
∑
ρ∈P

Pρuρ −
∑
w∈W

∑
r∈R

Fro
w
r ∀ξ

uρ ≤ zwκ,mU+
κ + (1− zwκ,m)U−κ ∀ξ ∈ Ξ′

zwκ,m =
∑
t∈T

Et,mπ
w
κ,t ∀ξ, κ,m,w

π ∈ Πo.

(P)

Complexity. Since Ξ is discrete and bounded, Problem (P) is equivalent to a determin-

istic linear program obtained by enumerating all possible realizations of ξ ∈ Ξ and impos-

ing appropriate non-anticipativity constraints, in the spirit of scenario-based stochastic

programming [Birge and Louveaux, 1997]. While the numbers of decision variables and

constraints in that problem is linear in the number of scenarios, the number of scenarios

(cardinality of Ξ) can grow very large, as illustrated by the following example.

Example 8 (Airport Screening). Consider the uncertainty set ΞAS from Example 6. For

any fixed screenee category κ, the number of possible ways in which these screenees may

arrive is

g :=
(
Nκ+|∆κ|−1

Nκ

)
.

For fixed |∆κ| this quantity is O(N
|∆κ|
κ ); and for fixed Nκ, it is O(|∆κ|Nκ). Since passen-

ger arrivals are independent across different categories, the cardinality of ΞAS is given by

g|K| and is thus exponential in the number of categories. In the context airport screening,
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the number of scenarios is thus exponential in the number of flight categories. In addition,

both the number of flight categories and corresponding number of passengers are gener-

ally linear in the number of time windows. This implies that the size of the corresponding

scenario problem is exponential in the number of time windows.

5.2.3 Defender Strategies as Markov Decision Processes

The robust optimization problem (P) emits solutions which are adaptive policies.

These policies are similar to the policy solutions to the decision theoretic models known

as Markov Decision Processes (MDP), which are mathematical model for sequential

decision making under uncertainty. In order to illustrate the connection to this existing

work, we derive the corresponding MDP representation of the robust threat screening

game model. We present here a formal model of Robust Threat Screening Games (RTSG)

expressed using MDPs.

Defender

We can represent the set of valid defender strategies Π as the set of valid policies strategy

for the following finite horizon MDP(S,A, T, R):

States: Let the set of states be S := {(ξ, o)} where a state s ∈ S is a tuple of ξ, the

number passengers in each category κ who have already arrived, and size of the overflow
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queues o on each resource r at time window w.

S :=

{
(ξ, o) : ξκ,w, or,w ∈ N+ ξκ,w ≤ Nκ

or,w ≤ or,w−1 +
∑
κ

ξκ,w − Cr ∀r ∈ R, w ∈ W

}
.

WhereCr is the capacity of resource r andNκ is the total number of passengers in category

κ.

Actions: Let the set of action A be the set of screening assignments aw =

(aw1,1,1 . . . a
w
n,κ,t), indicating the assignment in time window w, of the nth arriving pas-

senger in each category κ to be screened with particular team t.

A :=
{
a : awn,κ,t ∈ {0, 1}

}
.

Because we don’t know exactly how many passengers will arrive in each time window, the

defender pure strategy is a matching for all passenger which may arrive. An example of

the possible ξ components of the state space and corresponding policy is shown in Figure

5.2 for an example with 2 passengers. In the first time window, the defender does not

know if 0, 1, or 2 people will show up in the next time window. The defender needs to

come up with a plan, but cannot condition the plan on information they do no have (ie.

how many people will show up), thus the plan needs to be the same in all three of these

scenarios. If nobody shows up in the next time window, none of the plan is executed. If

one person shows up the defender should screen them according to their plan, but since

they do no know if this will be the only person who will show up or if more passengers will
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come, they need to screen them the same way, regardless of how many passengers arrive

after them. In each state they need to commit to a sequence of screening assignments,

which corresponds to an assignment for each passenger which may show up, having a

length equal to the the maximum number of possible passengers which may show up. The

original RTSG solved directly for the defender’s mixed strategy. We will later show how

this mixed strategy can be derived from this pure strategy representation.

Transition function: Let T (sw, a, sw+1) defines the probability of transitioning to state

sw+1 ∈ S from sw ∈ S given the defender chooses action aw ∈ A. This function is

determined by the stochastic process that governs the passenger arrivals as well as the and

can be written T (sw, aw, sw+1) = P (ow+1|ow, ξw, ξw+1a
w)P (ξw+1|ξw). The defender’s

action aw affects the state transition in that it will affect the overflow queues in the next

round ow+1.

Reward: Let the immediate reward R(sw, aw, sw+1) be the penalty the defender pays in

time window w for the length of the overflow queues on all the resources r, where φr is

the fee for keeping one passenger waiting on resource r. This is the reward the defender

obtains independent of their interactions with the adversary.

R(sw, aw, sw+1) =
∑
r

φro
w+1
r

ow+1
r = max

( ∑
t:r∈t,κ

ξw+1
κ∑
n=1

awn,κ,t + owr − Cr, 0
)
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(a) Possible ξ states in the MDP
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(b) An example pure strategy or policy.

Figure 5.2: Example state transition, and corresponding MDP policy for a small game
with 4 time windows, one category, two teams (t1, t2), and two passengers.

Given a particular series of states (s1 . . . sW )

∑
sw

R(sw, aw, sw+1)

measures the throughput efficiency of a defender policy.

Adversary

The adversary is a separate agent which takes actions in the world along side the defender.

The adversary may be one of several types ρ, which corresponds to their risk level. An

adversary has an action space Q = {qwm,φ} corresponding to a choice of attack method

m, flight φ and time window w. The risk level along with the flight choice φ can be

generalized to an assigned risk category κ = (ρ, φ), as these are treated as a single feature

by the defender. The probability distribution over the adversary types is given by Pρ.
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The actions available to the adversary are denoted qwm,φ ∈ {0, 1} and represent the

whether the adversary is choosing to attack flight φ with attack method m in time win-

dow w. Note that the adversary can only choose a single, flight, attack method and time

window, and must attack at some point in the game, so that
∑
w,m,φ

qwm,φ = 1. The adver-

sary cannot control how other passengers in their time window arrive and therefore cannot

choose what order they arrive in. If they choose category κ as part of their attack, there will

be some probability P (n, ξw+1,κ) that they are the nth passenger in category κ to arrive,

where
∑

n P (n, ξw+1,κ) =
∑

m q
w
m,φ ∀ρ. The immediate joint reward received from the

defender-adversary interaction is:

C(sw+1, aw, qw) = qwm,φ

(∑
m,κ

Pρu
w+1
κ,m (ξw+1)

)

uw+1
κ,m (ξw+1) = zw+1

κ,m (ξw+1)U+
κ + (1− zw+1

κ,m (ξw+1))U−κ

zw+1
κ,m (ξw+1) =

∑
n,t

Et
ma

w
n,κ,tP (n, ξw+1,κ)

qwm,φ =


0 if no-attack

1 if attack

We assume that the adversary is able to conduct multiple rounds of surveillance and

observe the defender’s mixed strategy over all time windows; however the adversary still

does not know the future arrival of passengers, and thus their policy is a function of
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the state and defender policy πq : (πd, ξ) → q. Given a particular sequence of states

(s1 . . . sW ) ∑
sw

C(sw+1, aw, qw)

measures the screening efficiency of the defender policy.

Nature

Nature determines the arrival rate of passengers and influences the state transitions and the

immediate reward received by the defender R(sw, aw, sw+1). In the event that we do not

know what the transition matrix looks like, we can choose to be robust and assume the

worst case possible transition matrix which would minimize the cumulative rewards we

receive at each time step and correspondingly the value function at the start state. Let T

be the set of all valid transition matrices. The problem them becomes:

min
T∈T

V (s0)

Since we are now taking a robust approach, we also assume that the adversary also does

not know the transition matrix but knows we are optimizing for the worst case terminal

state. With this it is as if the adversary and nature are ’colluding’ to minimize the value

function. In the orignal Robust Threat Screening Game formulation, equal weight is given

to both the screening efficiency and the throughput efficiency. Assuming the adversary

chooses to follow an optimal policy, we can express the value function as:
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V πd(s0) = min
q∈Q

min
T∈T

∑
sw+1

T (sw, aw, sw+1)
(
R(aw, sw+1)

+C(sw+1, aw, qw) + V (sw+1))

Compact Policy

Randomized Representation Because the adversary’s policy is a function of the

defender’s policy, the optimal defender policy is a randomized policy. Rather than

representing this randomized policy as a mixture over individual actions or deterministic

policies π(sw)i → (aw)i, where each policy is played with probability Θi we can more

compactly represent the policy by marginalizing over the actions. For each action aw, the

fraction of passengers in each category κ sent to each team t is
∑
n

awn,κ,tP (n, ξw+1,κ),

which depends on the current number of passengers arriving ξw+1,κ.

However, because we are being robust to nature, for any passenger arrival ξw+1,κ we

can assume that the ordering of passengers will be such that the adversary arrives in posi-

tion n′ = argminn
∑
t

Et
ma

w
n,κ,t to minimize the defender’s screening efficiency. For any

arrival of passengers ξw+1,κ, because the adversary ends up arriving in the worst position

for the defender we need randomize over the permutations of assignments. What this

means is that if there is a deterministic policy πi in the support of our randomized policy

which assigns people to teams in some order eg. (t1, t2, t1, t2) in order to make the adver-

sary indifferent to the position they arrive in, the randomized policy must also randomize

over a set other policies such that each position has the same probability of being screened

by each team.
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Let this probability be denoted πwκ,t. We can then compactly represent the random-

ized policy by reasoning directly about these probabilities rather than the distribution over

actual deterministic policies so that πwκ,t =
∑

i Θi(a
w
n′,κ,t)i.

Compact Reward The reward functions can equivalently expressed with this new rep-

resentation:

R(sw, πd(sw), sw+1) =
∑
r

φro
w+1
r

ow+1
r = max

( ∑
t:r∈t,κ

ξwκ∑
n=1

πwn,κ,tξw+1,κ + owr − Cr, 0
)

C(sw+1, πd(sw), qw) = qwm,f

(∑
m,κ

Pρu
w+1
κ,m (ξw+1)

)

uwκ,m(ξw+1) = zw+1
κ,m (ξw+1)U+

κ + (1− zw+1
κ,m (ξw+1))U−κ

zw+1
κ,m (ξw+1) =

∑
n,t

Et
mπ

w
n,κ,t(ξ

w)

Which is the exact randomized policy solved for in Problem (P).

Compact Transitions The transition matrix is now a function of π so that:

T (sw, sw+1, π) = P (ow+1|ow, π, ξw, ξw+1)P (ξw+1|ξw)

The last term is determined by the arrival distribution of passengers and governs the

transition probability of the ξ component of the state. The first term is determined by

the defender action and determines the transition probability of the o component. We are
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interested in computing the probability P (ow+1|ow, π, ξw, ξw+1). Since we decide how to

screen passengers before observing the state transition, πwt,κ be the probability that a single

passenger of type κ is sent to team t in time window w + 1. The probability that a single

passenger of type k is sent to resource r in time window w + 1 is:

πwr,κ =
∑

t:r∈R(t)

πwt,κ.

Let πwκ be the probability that a passenger arriving during time window w + 1 is of type κ

given ξw and ξw+1 (assuming ξw+1 ≥ ξw):

πw+1
κ =

ξκ,w+1 − ξκ,w∑
κ′(ξκ′,w+1 − ξκ′,w)

,

where ξκ,w+1−ξκ,w is the number of passengers of type κ during time window w+1. Now

the probability that a single passenger is sent to resource r during time window w + 1 is:

πwr =
∑
κ′

πr,κ′π
w
κ′ .

Given the state of overflow queue ow+1, let nw+1
o be the set of all possible number of

people sent to each resource which could result in that overflow queue given ow. The size
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of the overflow queue in the next round is given by ow+1,r = max(ow,r − Cr + nr, 0), so

that nw+1
o is given by:

nw+1
o =


n :

n ∈ R|R|

nr ∈


ow+1,r − ow,r + Cr ow+1,r > 0

{0 . . . ow,r − Cr} ow+1,r = 0


Let Nw+1

ξ be the total number of passengers arrived in time window w + 1 so that

Nw+1
ξ =

∑
κ′

(ξκ′,w+1 − ξκ′,w)

. Then for any n ∈ nw+1
o , p(n) follows a multinominal distribution with parameters Nw+1

ξ

and {πw+1
r }r:

p(n) = Nw+1
ξ !

∏
r

(πw+1
r )nr

nr!
.

Now, the transition probabilities of the overflow queue can be expressed by:

P (ow+1|ow, π, ξw, ξw+1) =
∑

n∈nw+1
o

p(n)

This defines the defender’s problem as an MDP where due to the robust nature of the

problem and the adversarial agent the transition matrix is also a function of the defender

policy. The state space of this MDP is very large as it is the product space of total number

of ways passengers may arrive Ξ and the number of possible passenger overflows O.
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5.3 Proposed Solution Approach

Problem (P) can become computationally expensive to solve for realistic size instances

where the cardinality of Ξ is exponential in the number of time windows, see Example

8. We thus propose a solution approach that results in a tractable problem even when Ξ

has exponentially many scenarios. In what follows, we describe our approach and main

results.

5.3.1 Linear Decision Rule Approximation

Information Aggregation. In Problem (P), the decision variables πw are modeled as

functions of the entire vector of past arrival realizations ξw−1. As a first step to obtain

a tractable problem we propose to reduce information available to the screener and only

allow his screening policy to adapt to the aggregate number of screenees that have arrived

in past windows. Thus, we model the screening policy πw for time window w as a function

of the aggregate information ζw−1 := {ζw−1,κ}κ∈K, where ζw,κ :=
∑w

w′=1 ξw′,κ. The

following proposition shows that this results in a conservative approximation to the optimal

screening policy, since the restricted policy lies within the space of feasible policies.

Proposition 2. Restricting the adaptive decision variables πw and zw for each time win-

dow w ∈ W to be functions of the aggregate information vector ζw−1 provides a lower

bound on the optimal objective value of Problem (P).

However in practice aggregating the information vector often does not result in any

loss in optimality. We present here an example where one might expect a policy based on

aggregate information to do poorly, and explain why the solution quality is robust to such

a scenario.
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Example 9. Consider a situation with 2 teams each composed of a single resource r1

and r2, with capacities c1 = 5 and c2 = 10 and where r2 and has a marginally worse

capability of discovering the attacker than r1 so that Em
r1
> Em

r2
∀m. The game takes

place over 3 time windows |W | = 3 with one plane containing 15 people arriving. The

fine for overflowing is φ < 0 and the flight value is U so that U+ = 0 and U− = −U .

Assume two different realizations for the first two periods – one realization, where in the

first period there are 4 passengers, and there are 6 passengers in the second period; in the

second realization, there are 5 passengers in each of the periods. Clearly, in the second

realization, all passengers are checked by the better team T1 – i.e., even for the third

period. However, in the first realization, it may be the case that if the passengers are

assigned to T1, there is already 1 cost due to overflow and moreover, if T1 is assigned

for screening additional passenger has to wait. Therefore, it actually may be optimal for

the defender to use the allocation for T2 that is only marginally worse in case there is an

overflow. However, this information is lost if only the aggregated number of passengers is

used since both scenarios appear identical to the defender.

Why this fails: The scenario described looks at two different arrival distributions call

them ξ and η so that:

ξ = (5, 5, 5) η = (4, 6, 5)

The optimal screening strategy for ξ is π1(ξ) = (1, 1, 1) and π2(ξ) = (0, 0, 0) so that there

is no overflow in any time window.
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For η the counter example assumes that it is optimal for time windows 1 and 2 to screen all

passengers with resources 1, so that π1
1(η) = 1 and π2

1(η) = 1. We will now show that if

this strategy is optimal for time windows 1 and 2, it must also be optimal for time window 3.

First we consider the potential amount of overflow which would be caused by any

screening strategy π1
1(η), π3

1(η), π3
1(η). For brevity we ignore the screening strategy for

resource 2 as there will never be any overflow on this resources in scenario η. We will

also use π1
1 as shorthand for π1

1(η).

In time window 1, no matter what our screening strategy π1
1 is we would never get any

overflow so that o1 = 0.

In time window 2, using π2
1 the overflow would be

o2 = max(
∑

r π
2
rη2 − Cr, 0) = max(π2

16− 5, 0)

=

{
6π2

1 − 5 if 1 ≥ π2
1 ≥ 5

6

0 else

In time window 3, using π3
1 the overflow would be

o2 = max(
∑

r π
3
rη3 − Cr + o2, 0) = max(π3

15− 5 + max(π2
16− 5, 0), 0)

=


6π2

1 − 5− (1− π3
1)5 if 1 ≥ π2

1 ≥ 5
6

& 6π2
1 + 5π3

1 ≥ 10

0 else
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The total overflow would then be O = o1 + o2 + o3 ≤ 12π2
1 − 5π3

1 − 15

If we were only keeping track of the aggregate number of passengers, we would match the

strategy of ξ in the third time window so that π3
1(η) = π3

1(ξ) = 1. The counter example

assumes that in the second time window π2
1(η) = 1 is optimal. This gives us a total

overflow O = 2.

If the adversary were to attack in this time window we would receive a utility:

U3 = φO + (1− E1)π3
1(−U) + (1− E2)π3

2(−U) = 2φ− (1− E1)U

The assumption here is that we may be able to increase this utility by decreasing the total

overflow to O = 1 using an alternate screening strategy. To decrease the overflow o3 in

the third round we need to use screening strategy π3
1 = 4

5
, π3

2 = 1
5
. This results in a new

utility:

U3′ = φO + (1− E1)π3
1(−U) + (1− E2)π3

2(−U) = φ− (1− E1)
4U

5
− (1− E2)

U

5
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The claim is that U3 < U3′. This implies that

2φ− (1− E1)U < φ− (1− E1)4U
5
− (1− E2)U

5

φ < (1− E1)U
5
− (1− E2)U

5

φ < (E2 − E1)U
5

Assume that we then used this new strategy in the third time window so that O = 1.

Consider now the utility in the second time window:

U2 = φO + (1− E1)π2
1(−U) + (1− E2)π2

2(−U) = φ− (1− E1)U

Since trading screening utility for less overflow was the better choice in the third time

window then it must also be better in this time window. We can set π2
1 = 5

6
and achieve a

new utility:

U2′ = (1− E1)
−5U

6
+ (1− E2)

−U
6

Using the fact that φ < (E2 − E1)U
5

and E1 > E2 we have that:

U2 = φ− (1− E1)U < (1− E1)U
5
− (1− E2)U

5
− (1− E1)U

= −(1− E1)4U
5
− (1− E2)U

5

< (1− E1)−5U
6

+ (1− E2)−U
6

= U2′

U2 < U2′

137



So that in fact π2
1 = 5

6
is optimal for time window 2. If we then return our attention

to time window 3, we are now faced with no overflow. Therefore the screening strategy

p3
1 = 1 then results in no additional overflow and would be optimal, and the same as in

the scenario where the passenger arrival is (5,5,5).

The key insight here is that this works well because we are performing robust opti-

mization, and while the loss of information may change the utility of solutions in some

of the realizations of ξ, if it does not change the worst case realization, then the objective

value will not change.

However, even when restricting π to be functions of the aggregate arrival ζ , ow and uρ

are still functions of the full passenger arrival ξw−1. The overflow in time window w is a

function of not only ξw but all ξi ∀i ≤ w since ow ≥
∑w

i=1(πiκ,tξi,κ − Cr). Additionally,

uρ depends on ζw for all w, which is equivalent to knowing the actual passenger arrival ξ.

Since restricting ow and uρ to be functions of ζw−1 would result in further loss of optimality

we avoid it here.

Linear Decision Rule. In Problem (P), the decision variables of the problem are arbi-

trary (bounded) functions of the uncertain parameter realizations. As a second step to

obtain a tractable problem, we propose to restrict the space of feasible adaptive decisions

to those that exhibit affine dependence on the data in the spirit of [Ben-Tal et al., 2004].

Thus, we let
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πwκ,t(ξ
w−1) = (πwκ,t)

>ζw−1 ∀κ, t, w, ξ

zwκ,m(ξw−1) = (zwκ,m)>ζw−1 ∀κ,m,w, ξ

owr (ξw−1) = (owr )>ξw−1 ∀r, w, ξ

uρ(ξ) = u>ρ ξ ∀ρ, ξ

where the vectors πwκ,t, z
w
κ,m ∈ RK , owr ∈ RK(w−1) and uρ ∈ RKW represent the

new decision variables of the problem. Following the decision rule approximation, the

number of decision variables of the problem is polynomial in the number of time windows,

categories, resources, and teams. Also, it is independent of the number of scenarios. Since

the linear functions lie in the space of all feasible functions the decision rule results in a

conservative approximation. We denote the resulting conservative approximation by (Pl).

Proposition 3. Problem (Pl) provides a lower bound on the optimal objective value of

problem (P).

This is trivially shown by noting that the space of possible policies of problem (Pl) is

a subset of the policy space of (P).

Proposition 4. If resource overflow is not permitted (i.e., owr (ξw−1) = 0 ∀r ∈ R, w ∈ W ,

and ξ ∈ Ξ), then there exists an optimal solution to the adaptive robust optimization

problem (P) such that: π, z, and u are all constant in ξ.

Proof. Let

ξ := arg min
ξ∈Ξ

{∑
ρ∈P

Pρuρ(ξ)

}
.
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In the definition of ξ, we have assumed that the maximization problem admits a unique

solution. This is without loss of generality. If this is not the case, we can choose the

solution that comes first using lexicographic ordering.

Define (π̃, z̃, ũ) through:

π̃w
′

κ,t(ξ
w′−1) := πwκ,t(ξ

w−1
)

z̃w
′

κ,m(ξw
′−1) :=

∑
t∈T

Et,mπ̃
w′

κ,t(ξ
w′−1)

ũρ(ξ) := min
w′,m

min
κ:ξw′,κ>0

z̃w
′

κ,m(ξw
′−1)U+

κ + (1− z̃w′κ,m(ξw
′−1))U−κ

where we use use the convention that an infeasible minimization problem has optimal

objective equal to∞.

∀ξ ∈ Ξ, w′ ∈ W

The policy (θ, π̃, z̃, ũ) trivially satisfies the second and third constraints in the problem

and the requirement that π̃ ∈ Πo. It remains to verify that it satisfies the first set of

constraints. Define

θ(ξ) :=
∑
ρ∈P

Pρuρ(ξ)

θ̃(ξ) :=
∑
ρ∈P

Pρũρ(ξ)

The first constraint of problem (P) can be equivalently expressed as θ ≤ θ(ξ) ∀ξ ∈ Ξ.

Optimality of (θ, π̃, õ, z̃, ũ) requires that θ ≤ θ̃(ξ) ∀ξ. If we can guarantee θ̃(ξ) ≥

θ(ξ) ∀ξ then it trivially follows that θ ≤ θ̃(ξ).
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By definition of ξ̄ we know that θ(ξ̄) ≤ θ(ξ) ∀ξ and therefore that θ ≤ θ(ξ̄). By

definition of ũρ(ξ) we know that ũρ(ξ) = uρ(ξ̄) so that θ̃(ξ) = θ(ξ̄). Therefore θ ≤ θ̃(ξ)

and policy (θ, π̃, z̃, ũ) is optimal.

5.3.2 Robust Counterpart

Problem (Pl) exhibits only a moderate number of decision variables but still a very large

number of constraints. In what follows, we propose to mitigate the number of constraints

by using techniques inspired from modern robust optimization [Ben-Tal et al., 2004]. The

key observation is that under the linear decision rule approximation, all constraints in the

problem (except from (5.4)) are linear in ξ, thus being expressible in the form a(x)>ξ ≤ 0

∀ξ ∈ Ξ, for some linear function a that maps the collection of all decision rule coefficients

(denoted by x) to coefficients of ξ. The following proposition enables us to reformulate

these constraints in a compact fashion.

Proposition 5. For any y ∈ Rk, define:

(i) y>ξ ≤ 0 ∀ξ ∈ Ξ

(ii) ∃λ ∈ R` with λ ≥ 0, V >λ ≥ y, and h>λ ≤ 0.

Then ii) implies i).
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Proof. Following a standard duality argument, we have

y>ξ ≤ 0 ∀ξ : ξ ∈ N+, V ξ ≤ h

⇐y>ξ ≤ 0 ∀ξ : ξ ≥ 0, V ξ ≤ h

⇔{max y>ξ : V ξ ≤ h, ξ ≥ 0} ≤ 0

⇔{min h>λ : V >λ ≥ y, λ ≥ 0} ≤ 0

⇔∃λ ∈ R` : h>λ ≤ 0, V >λ ≥ y, λ ≥ 0,

which concludes the proof.

To represent these constraints efficiently, we apply the above result to each constraint

in Problem (Pl) (except from (5.4)) and denote the resulting problem by (Pl−rc). For

general uncertainty sets, we obtain a conservative approximation to Problem (Pl) . The

following Proposition establishes that with uncertainty set ΞAS, as defined as in Example 6,

the reformulation of these constraints is exact.

Proposition 6. Suppose that we have the uncertainty set ΞAS as defined in Example 6.

Then, statements i) and ii) in Proposition 5 are equivalent and Problems (Pl) and

(Pl−rc) are equivalent.

Proof. We first show that statements i) and ii) are equivalent for Ξ = ΞAS. From Propo-

sition 4, we have that ii) implies i). We now show that it also holds that i) implies ii).

Define the LP relaxation of the uncertainty set ΞAS as

LP(ΞAS) :=

{
ξ : ξ ≥ 0,

∑
w∈∆κ

ξw,κ = Nκ ∀κ

}
,

142



and let CH(ΞAS) denote its convex hull. It suffices to show that LP(ΞAS) and CH(ΞAS)

coincide, or equivalently that the extreme points of LP(ΞAS) are integer. In what follows,

we make the assumption that Nκ > 0 for all κ. This assumption is non-restrictive and can

always be guaranteed by eliminating any categories κ for which Nκ = 0 from the problem

(since no people arrive in this category, there is no need to screen them).

We note that LP(ΞAS) is a non-empty standard form polyhedron and thus has at least

one extreme point. We now argue that at any basic feasible solution of LP(ΞAS), there

must be one and only one element of {ξw,κ}w∈∆κ that is distinct from zero for each κwhich

will conclude the proof. Let K := |K|. The LP relaxation of the uncertainty set involves

WK uncertain parameters andK equality constraints. At any basic solution, there must be

at least WK−K uncertain parameters at zero level (at most K non-zero uncertain param-

eters) and the equality constraints must hold. Since Nκ > 0 by assumption, there must be

at least one of {ξw,κ}w∈∆κ that is non-zero for each κ at any basic solution. Suppose that

there is a basic solution at which more than one of {ξw,κ}w∈∆κ is non-zero for some κ.

Then the total number of non-zero parameters is strictly greater than K, a contradiction.

This concludes the first part of the proof.

We now show that statements i) and ii) are equivalent for Ξ = ΞAS ∩ {ξw′,κ′ > 0} =

ΞAS ∩ {ξw′,κ′ ≥ 1}, w′ ∈ W , κ′ ∈ K. The LP relaxation of this uncertainty set is given by

LP(ΞAS ∩ {ξw′,κ′ ≥ 1}) =

{
ξ : ξ ≥ 0,

∑
w∈∆κ

ξw,κ = Nκ ∀κ, ξw′,κ′ ≥ 1

}
.

Note that this set has at least one extreme point since it is non-empty and does not contain

a line. We now show that at any extreme point of LP(ΞAS ∩ {ξw′,κ′ ≥ 1}), there must

be one and only one element of {ξw,κ}w∈∆κ that is distinct from zero for each κ which
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will conclude the proof. First, it follows from the assumption Nκ > 0 that at least one

of {ξw,κ}w∈∆κ must be non-zero at an extreme point. We now proceed by contradiction

to show that no more than one component of {ξw,κ} can be non-zero at an extreme point.

Suppose that ξ is an extreme point such that for some κ, it holds that ξw1,κ > 0 and

ξw2,κ > 0 for w1, w2 ∈ ∆κ with w1 6= w2. Define the points ξ1 and ξ2 through

ξ1
w,κ :=


ξw1,κ + ξw2,κ if κ = κ and w = w1

0 if κ = κ and w = w2

ξw,κ else,

and

ξ2
w,κ :=


0 if κ = κ and w = w1

ξw1,κ + ξw2,κ if κ = κ and w = w2

ξw,κ else.

It can be readily verified that ξ1 and ξ2 are both elements of LP(ΞAS ∩ {ξw′,κ′ ≥ 1}) and

that
ξw1,κ

ξw1,κ + ξw2,κ

ξ1 +

(
1− ξw1,κ

ξw1,κ + ξw2,κ

)
ξ2 = ξ,

so that ξ is expressible as a strict convex combination of two elements of LP(ΞAS ∩

{ξκ′,w′ ≥ 1}), a contradiction.

5.3.3 Constraint Randomization

Problem (Pl−rc) still involves constraint (5.4) enforced over a set Ξ of potentially very

large cardinality. We obtain a tractable approximation to (Pl−rc) by replacing Ξ with
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subsets ΞN ⊂ Ξ of cardinality N . We denote the resulting problem by (PN
l−rc). The

following theorem shows that a randomly sampled subset ΞN of moderate cardinality N

will lead a good approximation.

Theorem 7 ([Campi and Garatti, 2008]). Suppose that (Pl−rc) is feasible and accom-

modates n decision variables. For a prespecified violation probability ε ∈ (0, 1) and

confidence β ∈ (0, 1), define

N(ε, β) := min

{
N ∈ N :

n−1∑
i=0

(
i

N

)
εi(1− ε)N−i ≤ β

}

Then, the probability mass of all ξ ∈ Ξ whose associated constraints are violated by an

optimal solution of (Pl−rc), for N ≥ N(ε, β), does not exceed ε with confidence 1− β.

The parameter ε describes the probability that an optimal solution to (Pl−rc) violates

the overflow constraint. A violation of the overflow constraint implies that the overflows

are calculated incorrectly for some samples so that the part of the objective associated with

overflow is calculated incorrectly. The theorem states that such miscalculations are rare.

Moreover, the size of the resulting sampled problem is polynomial in the number of time

windows, categories, resources, and teams, see [Vayanos et al., 2012]. In order to solve

the resulting problem more efficiently we employ a cutting plane method, in the spirit of

[Fischetti and Monaci, 2012].
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5.3.4 Full Robust Threat Screening Game Formulation

We use the uncertainty set ΞAS. Substituting in the linear decision rules for π and o the

constraints read as follows:

maximize θ

subject to θ ≤
∑
ρ∈P

Pρu
>
ρ ξ −

∑
w∈W

∑
r∈R

Fr(o
w
r )>ξw−1 ∀ξ

u>ρ ξ ≤
∑
t∈T

Et,m(πwκ,t)
>ζw−1U

+
κ + (1−

∑
t∈T

Et,m(πwκ,t)
>ζw−1)U−κ ∀ξw,κ > 0

∑
t:r∈R(t)

∑
κ∈K

(πwκ,t)
>ζw−1ξw,κ ≤ Cr − (owr )>ξw−1 + (ow+1

r )>ξw ∀r, w, ξ

(πwκ,t)
>ζw−1 ≥ 0 ∀κ, t, w, ξ

(πwκ,t)
>ζw−1 ≤ 1 ∀κ, t, w, ξ∑

t∈T
(πwκ,t)

>ζw−1 = 1 ∀κ,w, ξ

(owr )>ξw−1 ≥ 0 ∀r, w, ξ
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We show an example of how to take the robust counterpart of the last constraint

(owr )>ξw−1 ≥ 0 ∀ξ. The robust reformulation of constraints (1) (4) (5) are done in the

same way. By proposition 5, we know that CH(ΞAS) = LP(ΞAS) so that we may write:

(owr )>ξw−1 ≥ 0 ∀ξ ∈ CH(ΞAS)

⇔min(owr )>ξw−1∑
w∈∆κ

ξw,κ = Nκ ∀κ

ξ ≥ 0

⇔max (ywr )>N

(ywr )κ ≤ (owr )w′,κ ∀κ,w′ ∈ ∆κ, w
′ < w

(ywr )κ ≤ 0 ∀κ

ywr ∈ Rκ

⇔(ywr )>N ≥ 0

(ywr )κ ≤ (owr )w′,κ ∀κ,w′ ∈ ∆κ′ , w
′ < w

(ywr )κ ≤ 0 ∀κ

We reformulate constraint (6) by matching coefficients. We have that ζw,κ =
∑w

i=1 ξi,κ

and ζ0 = 1 so the constraint is equivalently expressed

∑
t∈T

(πwκ,t)κζw−1,κ + (πwκ,t)0 = 1 ∀κ,w, ζ

This can only be satisfied for all ζ if
∑
t∈T

(πwκ,t)κ = 0 and (πwκ,t)0 = 1 and so we have that:
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∑
t∈T

(πwκ,t)
>ζw−1 = 1 ∀κ,w, ζ

⇔
∑
t∈T

(πwκ,t)κ = 0, (πwκ,t)0 = 1 ∀κ,w

For constraint (2) the uncertainty set has the additional constraint ξw,κ > 0. We show an

example of how to take the robust counterpart of such a constraint in the form (awκ,m)>ξ ≥

0 ∀ξ : ξw,κ > 0 where for constraint (2):

(awκ,m)w′,κ′ = U+
κ

∑
t∈T

Et,m(πwκ,t)κ′ + U−κ (1−
∑
t∈T

Et,m(πwκ,t)κ′)− (uρ)w′,κ′

By proposition 5, we know that CH(ΞAS ∩ ξw,κ ≥ 1) = LP(ΞAS ∩ ξw,κ ≥ 1) so that we

may write:

(awκ,m)>ξ ≥ 0 ∀ξ ∈ CH(ΞAS ∩ ξw,κ ≥ 1)

⇔min(awκ,m)>ξ∑
w′∈∆κ′

ξw′,κ′ = Nκ′ ∀κ′

ξw,κ ≥ 1

ξw′,κ′ ≥ 0 ∀, κ′, w′ 6= w

⇔max (vwκ,m)>N + qwκ,m

(vwκ,m)κ′ ≤ (awκ,m)w′,κ′ ∀κ′, w′ ∈ ∆κ′

(vwκ,m)κ + qwκ,m ≤ (awκ,m)w,κ

qwκ,m ≥ 0

vwκ,m ∈ Rκ, qwκ,m ∈ R
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⇔(vwκ,m)>N + qwκ,m

(vwκ,m)κ′ ≤ (awκ,m)w′,κ′ ∀κ′, w′ ∈ ∆κ′

(vwκ,m)κ + qwκ,m ≤ (awκ,m)w,κ

qwκ,m ≥ 0

The final robust multistage optimization problem can be expressed as:
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maximize θ

subject to θ ≤
∑
ρ∈P

Pρ(uρ)0 −
∑
w∈W

∑
r∈R

Fr(o
w
r )0 − s>N∑

ρ∈P

Pρ(uρ)−
∑
w∈W

∑
r∈R

Fr(o
w
r )− s ≥ 0

(U+
κ − U−κ )

∑
t

Et,m(πwκ,t)0 + U−κ ≤ (uρ)0 − (vwκ,m)>N + qwκ,m ∀κ,w,m

(U+
κ − U−κ )

∑
t

Et,m(πwκ,t)κ′ ≤ (uρ)w′,κ′ − (vwκ,m)>κ′ ∀κ,w,m, κ′

w′ 6= w,w′ ∈ ∆κ′

(U+
κ − U−κ )

∑
t

Et,m(πwκ,t)κ ≤ (uρ)w,κ − (vwκ,m)>κ − qwκ,m ∀κ,w,m, κ′

w′ = w,w′ ∈ ∆κ′∑
t:r∈R(t)

∑
κ∈K

πwκ,t(ξ
w−1)ξw,κ ≤ Cr − owr (ξw−1) + ow+1

r (ξw) ∀r, w, ξ

qwκ,m ≥ 0 ∀κ,w,m∑
t∈T

(πwκ,t)
>
κ′ = 0 ∀w, κ, t, κ′∑

t∈T

(πwκ,t)
>
0 = 1 ∀w, κ, t

(xwκ,t)
>N + (πwκ,t)0 ≥ 0 ∀w, κ, t

(xwκ,t)κ′ ≤ (πwκ,t)κ′ ∀w, κ, t, κ′

−(dwκ,t)
>N + (πwκ,t)0 ≤ 1 ∀w, κ, t

(dwκ,t)κ′ ≤ −(πwκ,t)κ′ ∀w, κ, t, κ′

(dwκ,t)κ′ ≤ 0 ∀w, κ, t, κ′

(yw+1
r )>N ≥ 0 ∀w, r

(yw+1
r )κ′ ≤ (ow+1

r )w′,κ′ ∀w, r, κ′

w′ ∈ ∆κ′ , w
′ ≤ w

(yw+1
r )κ ≤ 0 ∀w, r, κ

150



3 6 9
0

50

100

150

(a) Flight Categories φ

%
Im

pr
ov

em
en

t
Average-Overflow Average-OpenTeam Random

3 6 9
0

50

100

150

(b) Flight Categories φ

%
Im

pr
ov

em
en

t

Figure 5.3: Utility improvement over averaged sample and random uniform in (a) worst
case and (b) average case.

5.4 Evaluation

We evaluate our framework on airport passenger screening problems with uncertainty set

ΞAS.

5.4.1 Solution Quality

The optimal objective of our solution gives us the performance on the training set of sam-

ples we use. We evaluate the solution quality out of sample (both on average and in the

worst case) by generating a large test set. We also use the test set to compute an experimen-

tal violation probability. We assume that the arrival of passengers is normally distributed

in the range ∆κ. Each data point is averaged over 30 trials, each with randomized param-

eter settings, with error bars giving the 90% confidence intervals. For each of these trials

we generate 10,000 samples from the distribution of passenger arrivals, and evaluate the

computed strategy on each sample so that each data point corresponds to 300,000 evalua-

tions.
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Uncertainty model vs Averaged Model. We compare our solution method to the TSG

model for problems with increasing numbers of flights with W = 10. The TSG model

optimizes against only the average ξ, so there will be many scenarios where the strategy

becomes infeasible. We consider two heuristics to adjust an infeasible strategy: (1) Over-

flow Heuristic: add excess passengers to the existing overflow queue, or (2) Open-Team

Heuristic: send excess passengers to any team with available capacity. Figure 5.3 summa-

rizes our results. Against both heuristics, we outperform the TSG in worst case (average)

by more than 100% (50%). The average violation probability was 98±2% for the averaged

sample solutions and 0.5± 0.02% for the solution to (PN
l−rc).

Uncertainty Model vs Uniform Random. We compare to a baseline where passengers

are assigned to teams uniformly at random. Figure 5.3 shows our results. In both the

average and worst cases, the solution quality of random screening can be arbitrarily bad–

we reach around 200% improvement.

Full Stochastic Program. We also compare the quality of the solution of (PN
l−rc) to

that of the optimal solution to the full stochastic program associated with (P). Because

the full program is exponential in the number of categories, we can only solve for very

small problem instances. We fix the number of time windows, with an arrival period of 2

time windows for any flight, and show runtime and solution quality for a small range of

categories. The results are shown in Table 5.1 where near-optimal performance is exhib-

ited.
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(φ, ρ) % Diff Solution Solve Time (ms) Wall Time (ms)

(PN
l−rc) (P) (PN

l−rc) (P)

(1,2) 1.3(0.1) 7.4(0.1) 13.1(0.4) 22.8(0.2) 79(9)

(1,3) 0.29(0.1) 40(1) 320(10) 110(10) 2500(230)

(1,4) - 110(40) - 640(10) -

(2,1) 1.1(0.03) 2.5(0.07) 7(0.2) 10.9(0.4) 44.9(0.6)

(2,2) 0.8(0.01) 87(1) 2130(90) 260(10) 70500(90)

(2,3) - 340(50) - 2700(100) -

Table 5.1: Comparing the (PN
l−rc) to full stochastic program (P). Blank entries corre-

spond to instances where the full stochastic program could not be held in memory.

5.4.2 Scalability

Figure 5.4 shows total solve and wall times for problems with increasing number of flight

categories. We are able to efficiently solve for a very large number of flight categories,

with polynomial growth with respect to flight categories.
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Figure 5.4: Solve & Wall time with increasing number of flights.

Table 5.2 summarizes our findings, showing the experimental violation probability as

well as the number of decision variables needed for each problem. We see that even for
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Figure 5.5: Utility improvement using adaptive decision rules.

very large problems, where the cardinality of ΞAS is very large, the computed strategies

have very low violation probability.

φ Violation Probability (%) Decision Variables (×102)

10 0.27± 0.03 40± 0.5

12 0.18± 0.03 54± 0.5

14 0.14± 0.02 70± 0.6

16 0.19± 0.04 100± 2

Table 5.2: Experimental violation probability with increasing problem size.

Deployment to Saturation Ratio. In Figure 5.5 we explore the space in which the

decision problem becomes difficult by comparing the linear decision rule to a constant

decision rule, where we make the same decisions regardless of the past arrival of passen-

gers. It is a known phenomenon in security games, that the problem difficulty increases as

the deployment to saturation ratio (ratio of defender resources to targets) approaches 0.5

[Jain et al., 2012b].
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We measure the ratio by comparing the number of passengers to the capacity, for a

single flight, so that the maximum number of passengers which can be screened in any

time window is clearly defined. Figure 5.5 shows that as the problem difficulty increases,

the gap in solution quality becomes large and the adaptive screening greatly outperforms

the constant strategy.

5.5 Chapter Summary

This chapter makes several contributions in the area of tactical planning for security games

by extending an important class of games to model heterogeneous resources, and enriching

on of the few existing game models with teams of resources. In this chapter, I address a

significant limitation in the area of Threat Screening Games, where the previous unrealistic

assumption of complete certainty in screenee arrival times renders its solution unusable in

real-world settings, by proposing a scalable framework that provides good solution quality

and works for generalized models of uncertainty. This framework can additionally be

applied to other problems where existing techniques such as column generation may fail

to scale due to the more complex nature of modeling heterogenous resources. As such this

addresses an important limitation of
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Part IV

Operational Planning
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Chapter 6

Operational Planning in Security Games

In the last chapter of this thesis I formalize the operational planning problem for security

and game theory and how it relates to the usability of game theoretic models. I discuss

why usability and consequently operationalization is important and when it becomes

necessary to take operational planning into consideration.

Previous chapters of this thesis discuss many ways in which security game models can

be made more expressive, with the goal of making them more realistic and more appli-

cable to solve real world problems. In fact a large portion of the past work in this area

is dedicated to developing and extending the security game frame work to better model

the real world. As there has been much success in this goal, security agencies have begun

adopting these more sophisticated game-theoretic strategies making ease of practical use

and implementation a key concern. These game models have found purchase in many real

world security systems and organizations such as the Los Angeles International airport

[Pita et al., 2008b], the United States Coast Guard [Shieh et al., 2012b], the Federal Air

Marshal Service [Tsai et al., 2009], police departments in Los Angeles [Yin et al., 2012],

Mumbai [Jain et al., 2010a] and Singapore [Brown et al., 2014], the Transportation Secu-

rity Administration [Brown et al., 2016] and well as many non governmental organiza-

tions such as the World Wildlife Fund, the Wildlife Conservation Society, and Panthera

[Fang et al., 2017, Ford et al., 2014b, Nguyen et al., 2016a] from preliminary field tests
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being conducted to actual deployed applications. However, as the use of these models

continues to grow, it becomes ever more pertinent to consider the operationalization of

the plans generated from these models, i.e. how the mixed strategy solutions will be actu-

ally be implement and deployed by the security personnel.

In this next section I will formalize the problem of usability of mixed strategy, discuss

the tradeoffs in usability and utility of solutions.

6.1 Usability in the Real World

As mentioned in the previous section, many game theoretic models have been deployed

and field tested in real world systems by real world security agencies. Solutions to these

games are mixed strategies, being randomizations over a set of pure strategies. In practice,

each pure strategy can be viewed as a separate security protocol. Thus, mixed strategies

with large support sets can be problematic to operationalize as they require security agents

to be familiar with a large variety of protocols to execute them all properly. These types

of complex tasks increase the cognitive load in individuals [Hogg, 2007] increasing the

likelihood that mistakes are made [Paas, 1992, Cooper and Sweller, 1987] and making the

system vulnerable to exploitation. While such usability concerns have always been present

in deployed security games, these have often been addressed in an ad-hoc fashion, and not

explicitly discussed in the literature.

Interest in the topic of usability for security games, in particular the computation of

small support mixed strategies developed due to interactions and feedback from these

agencies when actually attempting to deploy the strategies produced by these models.

A prime example of this was work that was done previously for the United States Coast
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Guard, a branch of the United States Armed Forces, who, among many other duties, are

tasked with protecting ports all around the United States. Game theoretic models were

developed in order to compute patrol routes the coast guard to use when deciding what

areas of the port should be monitored [Fang et al., 2013b]. However the mixed strategy

solutions so these had support over a very large number of pure strategies, in the thou-

sands. The coast guard patrols operate normally by breaking down the patrols they are

going to conduct into a sequence of maneuvers to ensure proper execution of the patrols.

Requiring then that the coast guard personnel be familiar with thousands of sequences

of maneuvers, in the thousands of pure strategies, is not reasonable in practice. In fact

when these strategies were first presented to the coast guard, they were rejected for these

exact reasons, where the coast guard responded that they would only be willing to use four

different patrols [Fang private communication 2018].

Thus there is a real world demand for small numbers of effective strategies, and if

security game models are to be adopted by security agencies, they need to be able to

address this requirement in a principled way. In the next section I describe how to formally

address this usability concern for security games.

6.2 The Price of Usability and Operationalizable Mixed

Strategies

Security games deal with the challenge of allocating scarce security resources among het-

erogeneous targets to avert a possible attack. Optimal solutions to security games can

involve randomizing over large numbers of pure strategies, each corresponding to a dif-

ferent security protocol. Thus, while they are by far preferable to deterministic strategies
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from an efficiency perspective, they are difficult to operationalize, requiring the security

personnel to be familiar with numerous protocols in order to execute them.

Example 10 (Usability in a Real-World Security Game). Consider the real world secu-

rity game presented in the original SORT problem [Mc Carthy et al., 2016], where the

defender must build a team of resources, to be deployed on patrols to protect an endan-

gered forest area. Within this area there is a set of N + 1 targets indexed in the set

{0, . . . , N} to be protected. Let the first target, t0, have a value v0 := 10 − 1
N

and the

remaining targets, ti, have value vi := 1, i = 1, . . . , N . In a pure strategy, the defender

may either choose to concentrate their resources to statically protect a single target (no

patrolling) or may conduct a patrol, which splits their time equally between a set of m

targets so that each target is covered during 1
m
− m

100
of the time (here m

100
corresponds to

the amount of coverage lost due to travel between m targets.

The unique optimal defender strategy is a mixture over N + 1 pure strategies covering

each target statically such that t0 is covered statically with probability 0.9 and each ti,

i = 1, . . . , N , is covered statically with probability 0.1
N

.

Suppose now that to facilitate the operationalization of his defense strategy, the

defender restricts themselves to using only two strategies: one which covers t0 statically

and one which patrols between the remaining N targets, playing the first with 0.9 prob-

ability and the second with probability 0.1. This strategy, which has only two support

points achieves an ε approximation to that of the best mixed strategy. At the same time,

this strategy is far easier to operationalize.

The operational planning problem explicitly formulates planning for usability in secu-

rity games and motivate our definition to limit the cognitive load placed on security per-

sonel, and refer to such strategies as being operationalizable.
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Operationalizable Security Games Motivated by our discussions with practitioners in

the security domain, we propose a model for usability in security games which we refer

to as Operationalizable Security Games that admits solutions whose mixed strategy sup-

port cardinality is a design parameter selected by the defender; the choice of cardinality

enables explicit trade-off between ease of implementation and efficiency. Rather than pre-

committing to a fixed subset of pure strategies to be used in the randomization, our model

decides on the best subset of policies to employ. Our hope (which we confirm with exten-

sive experiments, see Section 6.6) is that the price of usability, i.e., the loss in efficiency

due the restriction of the space of feasible mixed strategies, will not be high even if only a

moderate number of strategies is employed.

Definition 1 (k-Operationalizable Mixed Strategy). A mixed strategy p is k-

operationalizable if the cardinality of the support of p is limited to k, i.e. |{i ∈ {1, . . . , S} :

pi > 0}| ≤ k.

For usability’s sake, we propose to restrict solutions of security games to be k-

operationalizable. A large k produces solutions that randomizes over a large number

of pure strategies (maximizes optimal utility but not easy to operationalize) and low k

produces more deterministic strategies (easy to operationalize, but exploitable by an intel-

ligent adversary). We can balance between usability and efficiency using the single param-

eter k. The following theorem postulates that unfortunately usability comes at a computa-

tional price.

Theorem 8. Let G be a zero sum game with pure strategy spaceQ. The problem of finding

optimal solutions that are k-operationalizable is NP-Hard to solve even if G can be solved

in polynomial time.
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Proof. Given an arbitrary instance of the set cover problem, a number k, a universe U and

a collection of sets S = {S1, S2, . . . , Sm} we want to determine if there is a set covering

of size k or less ie. a subset C ⊆ S, such that |C| ≤ s. Let G be a game with a number

of uniform resources equal to maxi |Si|, with target set U and scheduling constraints such

that Q = S. Let each target have value V , so that the defender receives a utility of −V

if the target is unprotected and a utility of zero if the target is protected. Let xi be the

probability that target i is covered by a resource. The defender’s expected utility is then

Ex[U ] = −max
i∈U

V (1 − xi). If there exists an k-operationalizable solution to G with

expected utility Ex[U ] > −V that means that it is possible for the defender to cover all the

targets with some probability using only k pure strategies. These pure strategies in support

of the k-operationalizable strategy then give a set cover if size k (or less). Therefore if the

corresponding game has an optimal objective value greater than−V there exists a set cover

C ⊂ S such that |C| ≤ k.

For a player in such a game G, an optimal mixed strategy which is k-operationalizable

is one which minimizes that player’s Price of Usability.

Definition 2 (Price of Usability). Let G be a game with optimal mixed strategy solution p

and utility U(p). Let pk be an optimal k-operationalizable mixed strategy solution to G.

We define the price of usability (PoU) as the ratio between the utilities of p and pk so that

PoU := U(p)
U(pk)

.

6.3 Operational SORT Problems

The SORT problem admits additional usability concerns; not only can the mixed strategy

have a very large support, but the number of types of resource configurations (teams) used
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by any pure strategy may also be very large (as the number of team types grows combi-

natorially with the number of resources). This can also pose the same operationalization

issues, and so we also propose to limit the number of possible resource configurations that

may be used in any pure strategy. Formally, we say that a mixed strategy solution to a

SORT problem is operationalizable if the following property holds.

Definition 3 ((k, τ )-Operationalizable Mixed Strategy). A mixed strategy p is said to be

(k, τ)-operationalizable if the support size of p is less than k, and each pure strategy uses

no more than τ unique teams, i.e., if lt is a binary variable indicating the formation of a

team of type t then
∑T

t=1 lt ≤ τ .

We can compute operationalizable strategies for the SORT problem by constructing a

new set of allowed pure strategies Qτ by adding the following additional constraints to

the set Q which enforce that each pure strategy i may use no more than than τ resource

configurations:
T∑
t=1

xt,i ≤ τ (6.1)

We call lt an operational variable so that tt = 1 if a strategy uses team t at any point.

6.4 Motivating Domain and Game Model

As a motivating example we take the Threat Screening Game introduced in Chapter 2. This

model was developed in collaboration with the US Transportation Security Administration

(TSA) to tackle the problem of screening for threats at checkpoints. As development of

this model continues it is important that the usability and implementability of the solutions
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to this model is taken into account, to ensure that it is successfully integrated into the TSA

security system.

The first challenges we address here relates to the practical difficulty of integrating

decisions made by different levels of authority: a) higher level strategic decisions related

to the design of teams of security resources and the assignment of personnel to shifts and

teams; and so we provide a model of the SORT problem for TSG in order to explicitly

reason about staff scheduling constraints and how to form teams of screening resources,

subject to capacity and staff scheduling constraints.

6.4.1 SORT for Threat Screening Games

Addressing the two usability limitations of TSG [Brown et al., 2016, Schlenker et al., ]

discussed earlier, in this section we first present (1) the model of Simultaneous Opti-

mization (SORT) for TSGs and second (2) the problem of computing operationalizable

strategies for TSGs. We assume a zero-sum game. Throughout this section we use the

example of passenger screening at airports, but emphasize that the TSG applies to gener-

alized screening problems. The TSA TSG is a game between the screener (defender) and

adversary over a finite planning horizonW consisting of W time windows. The defender

is operating a checkpoint through which screenees (passengers) arrive at during each time

window. Each screenee belongs to a category c ∈ C where a category c := (ρ, f) con-

sists of components which are controllable and uncontrollable. In the airport security

domain, the controllable component f corresponds to a flight type, dictated by the adver-

sary’s choice of flight to attack, while the uncontrollable element ρ describes the risk level

assigned to each passenger (i.e. if they are TSA pre-check). It is assumed that the number

of passengers of category c arriving during each time window, Nw
c , is known.
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The adversary attempts to pass through screening by disguising themselves as one of

the screenees. He has a choice of flight to attack, and thus can choose his flight type

category, a time window w to arrive in and an attack method m ∈ M. The adversary

cannot control his risk level ρ and we assume a prior distribution Pρ over the risk level of

the adversaries.

At the checkpoint, the defender has a set of r ∈ R resources which are combined into

teams indexed in the set T to which incoming passengers are assigned. If a passenger is

assigned to be screened by a team t ∈ T , they must be screened by all resources R(t) ⊂

R in that team. The efficiency of a team, Et,m, denotes the probability that an attacker

carrying out an attack of type m be detected when screened by team t. This efficiency

depends on the resources in that team: Et,m = 1 −
∏

r∈R(1 − er,m), where er,m is the

efficiency of resource r against attack method m.

Each resource r ∈ R has a fixed capacity Cr for the number of passenger which it can

process in any time window. In the case that it is not possible to screen all passengers in a

single time window, we allow these passengers to be screened in the next time window by

their assigned resources, at a cost φr per passenger overflowing to the next window. Each

resource r maintains an overflow queue owr corresponding to the number of passengers

waiting to be processed by that resource in the beginning of time window w.

To speed up processing, the defender can increase the number of resources of each type

that are available in a particular window (by e.g., opening up more lanes). However, the

number of resources of each type r that can be operated at any given time is limited by the

number of resources of that type that are available in the arsenal of the defender, denoted

by Mr ∈ R, and by the number of operators that are working in that window. Specifically,

to operate each resource of type r, Ar workers are needed. The workforce of the defender
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consists of S workers and the defender can decide on the number of workers available in

any window. However, the workers must follow shifts: they can start in arbitrary time

windows but must work for δ consecutive time windows.

6.4.2 SORT-TSG Problem Formulation

We now formulate the SORT problem for TSG as a mixed-integer linear optimization

problem. For convenience, we first introduce the pure strategy spaces related to the strate-

gic and tactical decisions of the defender, respectively, and then go on to formulate the

optimization problem which randomizes over these strategies.

The core strategic decisions of the SORT-TSG problem correspond to the number of

resources of each type r ∈ R to operate in each window, which we denote by ywr ∈ N+.

They also include the number of workers bw ∈ N+ to start their shift in window w and the

number of workers sw available in window w. The space of pure strategic strategies can

then be expressed as:

Y :=



y : ∃(b, s) :

sw =

min(w,W−δ+1)∑
w′=max(1,w−δ+1)

bw
′ ∀ w

W−δ+1∑
w=1

bw ≤ S

∑
r∈R

ywr Ar ≤ sw ∀ r

ywr ≤Mr ∀ w, r

ywr , b
w, sw ∈ N+ ∀ w, r



.
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The first constraint above counts the total number of workers with shifts currently in

progress at time windoww. The second constraint stipulates that the total number of work-

ers assigned to each shift cannot exceed the size of the workforce. The third and fourth

constraints enforces that in each time window there must be enough workers to operate

each resource, and that the number of operating resources cannot exceed the maximum

number available for each type.

The core tactical decision variables of the SORT-TSG problem correspond to the num-

ber of passengers of each type c to screen with team t in window w, denoted by nwt,c. For

any choice y of strategic decisions, the space of pure tactical strategies is expressible as:

Xy :=


(n, o) :

∑
t∈T

nwc,t = Nw
c ∀ c, w

∑
t:r∈R(t)

∑
c

nwc,t ≤ ywr Cr − ow−1
r + owr ∀ w, r

nwt,c, o
w
r ∈ N+ ∀ t, c, w, r


,

where the two constraints above stipulate that all arriving passengers must be assigned to

be screened by a team and enforce the capacity constraints on each of the resource types.

Note that the capacity is determined by the number of operating resources of each type.

The full defender pure strategy space can be expressed compactly as:

Q := {(y, n, o) : y ∈ Y , (n, o) ∈ Xy}.

Next, given the probability distribution as the defender’s mixed strategy, we denote by

Ep[ ] the expectation operator with respect to p (the mixed strategy). Thus, the expected

number nwt,c of passengers in category c screened by team t in time window w and the
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expected number owr of passengers waiting to be screened by a resource of type r in time

window w are given by:

Ep[n
w
t,c] :=

S∑
i=1

pin
w,i
t,c and Ep[o

w
r ] :=

S∑
i=1

pio
w,i
r . (6.2)

The utility of the defender is linear in the pure strategies, so the defender’s optimization

problem can be expressed as:

max
p

∑
ρ Pρθρ −

∑
w

∑
r φrEp[o

w
r ]

s.t. θρ ≤ zwc,mU
+
c + (1− zwc,m)U−c ∀ c,m,w

zwc,m =
∑

tEt,m
Ep[nwc,t]

Nw
c

∀ c,m,w

p ∈ P ,

(P)

where zwc,m is the adversary’s detection probability for an adversary of type c, using attack

m during w and θρ is the expected utility when the passenger’s risk level is ρ. We denote

this formulation of the SORT-TSG as problem P .

Theorem 9. Problem P is NP-Hard to solve.

Proof. Reduces to [Brown et al., 2016] when there is no overflow and when strategic deci-

sions are fixed.
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6.4.3 Operationalizable Strategies for SORT-TSG

To address the usability concerns related to operationalizable mixed strategies, we here

provide a formulation for computing (k, τ)−operationalizable strategies for the SORT-

TSG problem. We construct a new set of allowed pure strategiesQτ by adding the follow-

ing additional constraints to the orginal set Q which enforce that each pure strategy may

use no more than than τ resource configurations:

T∑
t=1

lt ≤ τ ;
nwc,t
Nw
c
≤ lt, ∀ t, w, c; lt ∈ {0, 1}, ∀ t. (6.3)

Where the second constraint enforces that lt = 1 if a strategy uses team t at any point,

i.e., if ∃ w, c, t : nwc,t > 0 We then enforce that the support of the mixed strategy has

maximum cardinality k by replacing equations (6.2) with:

Ep[n
w
t,c] =

k∑
i=1

pin
w,i
t,c Ep[o

w
r ] =

k∑
i=1

pio
w,i
r ∀ w, t, c, (6.4)

such that p ∈ Pk = {pi ≥ 0, i = 1, ..., k,
∑k

i=1 pi = 1}. Lastly, for the TSG problem

it is undesirable to have many different schedules for staff members and have employees

work different shifts throughout the week. For this reason we specifically enforce that the

scheduling decisions s should be the same across all k pure strategies i.e.

si = sj ∀i, j ∈ {0 . . . k}. (6.5)

These additions (2,3,4) to P , define the operationalizable SORT-TSG problem, we refer

to the problem as Pk .
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6.5 Solving the Operationalizable SORT-TSG

The SORT-TSG problem is expressible as a mixed integer linear program (MILP). How-

ever the resulting operationalizable problem Pk is non-linear, with bilinear terms intro-

duced in (3). Since the domains of n and o are finite we can express each integer variable

n and o as a sum of binary variables, and the bilinear terms can be easily linearized using

standard optimization techniques. However, the resulting program has a number of binary

variables which grows with the number of passengers, making the full MILP formulation

intractable to solve. Other standard approaches for dealing with these types of problems,

such as column generation, also do not work well as we show in Section 6.6. In the fol-

lowing, we provide our new solution approach for efficiently solving Pk .

For convenience we define the following notation. Let P be an optimization problem

with integer variables xi ∈ N ∀i. We denote the LP relaxation of P , i.e., the problem

obtained by letting xi ∈ R ∀i, as P LP . Additionally let the LP relaxation of a problem

P with respect to a single variable xj , i.e., the problem obtained by letting xj ∈ R, be

denoted byP LPxj . Let the marginal value of xj (i.e., the expectation Ep[xj]) be denoted

x̃j . Lastly we denote the problem with a fixed variable xj as P |xj .

Our novel solution approach Pk is based on the two following ideas: (1) we allow

the k pure strategies to form a multiset (so that a single strategy may appear multiple

times) and (2) we restrict the mixed strategy to be a uniform distribution over the multiset

of k pure strategies. The intuition behind this approach is that the multiset allows us to

approximate any optimal mixed strategy P using multiples of the fractions 1
k
. If pi ≥ 1

k

(probability of playing strategy i), then strategy iwill appear multiple times in the multiset,

and thus will be played with probability a
k

where a is the number of times it appears. If
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pi <
1
k

then as k grows large enough, the loss in utility from not playing strategy i becomes

negligible.

This intuition is formalized in Theorem 10 which stipulates that we can compute

approximate equilibria (with approximation error ε) for any choice of k by fixing a uniform

distribution over the multiset of k pure strategies.

Theorem 10. Given a game G with Stackelberg equilibrium x∗, z∗ and game value

(x∗)>Rz∗ there exists a solution x′, z′ such that x′ is k-operationalizable and is uniformly

distributed over its support where for k > 4 log(1+n)
ε2

(where n is the size of the adver-

sary’s action space) we have that x′, z′ is an ε-Stackelberg equilibrium with game value

(x∗)>Rz∗ − (x′)>Rz′ ≤ ε.

Proof. LetG be a zero sum matrix game with payoff matrixR. Let x∗, z∗ be a Stackelberg

equilibrium solution to game G with game value (x∗)>Rz∗ for the leader. Construct an s-

finite adaptive solution x′ by sampling from x∗, s times. We want to show that there exists

an x′ with uniformly distributed support over s strategies and adversary best response y′

such that, (x′, y′) form an ε-equilibrium:

(x′)>Rzi − (x′)>Rz′ < ε ∀i ∈ Qa, |Qa| = n (6.6)

And the corresponding game value is ε away from the Stackelberg equilibrium game value:

(x∗)>Rz∗ ≥ (x′)>Rz′ + ε (6.7)
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Let x′ be the defender mixed strategy. We construct x′ from x∗ by drawing s iid

samples from the defender pure strategy space according to distribution x∗, and assigning

each sample probability 1
s

in x′. We define the events:

E1 = {(x∗)>Rz∗ ≥ (x′)>Rz′ + ε}

E2,i = {(x′)>Rzi − (x′)>Rz′ < ε}

If we can show that the probability of all the events E1 ∩ni E2,i occurring is non zero

then there must exist an (x′, y′) such that these equations hold. What we will do is show

that:

P (E1 ∩ni E2,i) = 1− P (¬(E1 ∩ni E2,i)) = 1− P (¬E1)−
n∑
i

P (¬E2,i) > 0

Following [Lipton et al., 2003] we define several auxiliary events. Let

E1,a = {(x′)>Rz∗ − (x∗)>Rz∗ ≥ ε

2
} (6.8)

E1,b = {(x′)>Rz′ − (x∗)>Rz′ ≥ ε

2
} (6.9)

We note (as in [Lipton et al., 2003]) that

E1 ⊇ E1,a ∩ E1,b

P (E1) ≥ P (E1,a ∧ E1,b)

P (¬E1) ≤ P (¬1,a) + P (¬E1,b)

(6.10)
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Similarly define:

E2,a = {(x′)>Rz′ − (x∗)>Rz′ <
ε

2
}

Eb
2,i = {(x′)>Rzi − (x∗)>Rzi <

ε

2
}

so that:

E2,i ⊇ E2,a ∩ Eb
2,i

P (E2,i) ≥ P (E2,a ∧ Eb
2,i)

P (¬E2,i) ≤ P (¬E2,a) + P (¬Eb
2,i)

(6.11)

Again following [Lipton et al., 2003] we note that (x′)>Rz? is a sum of k independent

random variables each of expected value (x∗)>Rz? with each random variable having

value between 0 and 1. We can apply a standard concentration bounds (using Hoeffding’s

inequality) and get:

P (¬E1,a) ≤ e−
kε2

2

P (¬E1,a) ≤ e−
kε2

2

P (¬E1) ≤ 2e−
kε2

2

Similarly:

P (¬E2,a) ≤ e−
kε2

2

P (¬Eb
2,i) ≤ e−

kε2

2

P (¬E2,i) ≤ 2e−
kε2

2
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So that finally:

P (¬E1 ∩ni E2,i) ≤ 2e−
kε2

2 + 2ne−
kε2

2

≤ 2(1 + n)e−
kε2

2

For k > 4log(1+n)
ε2

we then have that P (¬(E1 ∩ni E2,i)) < 1 and P (E1 ∩ni E2,i) > 0 which

concludes the proof.

We derive these bounds following the proof of [Lipton et al., 2003], which for our

problem are a factor 3 tighter. By fixing p = 1
k
, Pk can be solved directly as an MILP

without the creation of extra binary variables. Algorithm 6 outlines this process. To speed

up computation we first solve the full relaxation Pk LP to get marginal values ỹ and ñ

(line 2). We then round these to get integral values yr and nr (line 3) which we then use

as a warm start to solve the MILP (line 5).

Algorithm 6: k-Uniform Strategies
1: procedure k-UNIFORM

2: ỹ, ñ, õ←Pk LP

3: yr, nr, or ← Round(ỹ, ñ, õ)
4: p← pi = 1

k
, i = 1, ..., k

5: y, n, o←WarmStart(Pk |qk, yr, nr, or)
6: return y, n, o

For any choice of k, we can then compute an ε-equilibrium and show that in practice

this approach performs well. Additionally, it provides a general framework from which

we can build more sophisticated and scalable algorithms which we demonstrate in the next

section.
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6.5.1 Heuristic Approach

While the approach described in Section 6.5 provides guarantees for any choice of k, in

practice the problem can still be slow to solve, as it requires solving an MILP. Thus we

provide a heuristic approach which can be solved more efficiently and still yields high

solution quality in practice.

The novelty in our approach comes from exploiting the hierarchical structure of the

SORT variables, as well as an optimized rounding procedure to decompose marginal solu-

tions into an operationalizable set of k integral strategies.

The tactical variables (n, o) are dependent on the strategic variables y and so, starting

from marginal solution to the LP relaxation, we first impose the operationalizable con-

straints on the strategic variables, keeping the tactical variables unconstrained. This gives

us a set of k strategies with integral y, from which we can compute the corresponding inte-

gral tactical variables n for each of the k strategies. Both of these steps use an optimized

rounding procedure. Because our objective is a function of the expected value of n and

o, it becomes important to optimize over how we do our rounding. Ideally we would like

to be able to exactly reconstruct the marginal values obtained from the LP relaxation in

order to maximize our objective. Arbitrarily rounding the marginal variables to generate k

integral strategies does not take into account the value of the resulting marginal and may

result in very suboptimal solutions. Instead we compute an optimal rounding to compute

feasible solutions, which take into account the value of the resulting marginal with respect

to our objective.

Algorithm 2 outlines the steps of this solution method. We start by solving the full

relaxation Pk LP (line 2) to obtain a marginal solution for the strategic variables ỹ. We

then decompose this marginal solution into a set of k integral pure strategies (line 3) using

175



an optimized rounding procedure (which we formalize in the later section) which computes

the best k roundings of the marginal ỹ (keeping a marginal ñi for each strategy i, i =

1, ..., k). We then compute the best integral assignment ni and corresponding overflow oi

for each resource configuration yi (line 4) using the same optimized rounding procedure

on the marginals ñi, i = 1, ..., k.

Algorithm 7: Multiple Hierarchical Relaxations
1: procedure MHR
2: ỹ, ñ, õ←Pk LP

3: yi, ñi, õi i = 1, ..., k ← Strategic(Pk LPn|q, ỹ)
4: yi, ni, oi i = 1, ..., k ← Tactic(Pk |y, ñ)
5: return y, n, o

Strategic Variables: Resource Configurations At this stage (line 3) we determine what

the k optimal integral variables yi are assuming no integrality constraints on the ni vari-

ables, i.e. we solve the problem Pk LPn equivalent to letting Ep[nwt,c] =
∑k

i=1 piñ
w,i
t,c and

Ep[o
w
r ] =

∑k
i=1 piõ

w,i
r , where ñw,it,c , õ

w,i
r are in the integer relaxation of Xyi . Unfortunately

the following theorem shows that Pk LPn is still intractable to solve.

Theorem 11. Problem Pk LPn is NP-hard to solve.

Proof. We give a reduction from the knapsack problem with unbounded items, which is

NP-hard. The knapsack problem with unbounded items is described as follows. Given a

set of n types of items, where vj is the value of each item and wj is the weight of each

item, find an allocation of items to the knapsack such that the minimum value over all

knapsacks is maximized.

Given an instance of the multiple-knapsack problem with n types value vi and weights

wj . This can be reduced to the following instance of Pk LPn . Let n+ 1 be the number of
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resources. The number of time windows, passenger types and attack methods equal 1, so

we omit the indices w, c and m. Also, we choose k = 1.

Construct for each resource a team consisting of that resource. The efficiency of each

team, Et, corresponding to resource t equals the value vt, t = 1, ..., n. Additionally, we

have one team with resource n + 1 and the efficiency of this team En+1 equals 0. The

capacity of each team, Cr, equals 1.

The number of people required to use one resource, Ar, is given by vr, r = 1, ..., n

and An+1 is chosen to be 0. The maximum number of resources, Mr, is chosen such that

Mr ≥ P
Ar

.

We choose the number of passengers arriving, N , such that it can never occur that all

passengers can be send to resources r = 1, ..., n. The remaining passengers can be send to

resource n+ 1. Different choices of N are possible, we choose N = maxrMr. The utility

of a successful attack, U+, is chosen as N and the utility of an unsuccessful attack, U−, is

0.

Finally, we choose the value of φr so high that the overflow variables are always chosen

as 0. Note that this model always gives a feasible solution since all remaining passengers

be be send to the team with resource n+ 1

Solving Pk LPn with the parameters described above gives an optimal solution for

the knapsack problem with n types of items, where the resources scheduled corresponds

to the items assigned to the knapsack. The optimal value of Pk LPn equals the optimal

value of the knapsack problem. This can be seen as follows. If a specific resource (item)

r, r = 1, ..., n is scheduled, then 1 out of N passengers will be send to that team. So, this

resource adds Er
N

(= vr
N

) to the total value of z. Since z is multiplied by U+ (= N ), this

resource add vr to the total value of that time window.
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To approximate this problem, as in Algorithm 6, we assume a uniform distribution for

the mixed strategy. Note that by Theorem 10 for any choice of k that Pk LPn|p is an ε

approximation to Pk LPn . Given Pk LPn|p, we compute a multiset of k integral solutions

yi, i = 1, ..., k, from the marginal ỹ using the following optimized rounding procedure.

We make the change of variables yi = bỹc + δi such that δi ∈ N+, i = 1, ..., k. Solving

Pk LPn|p with this change of variables computes the best k roundings of the marginal ỹ

which we use as our k pure strategies. This subroutine is outlined in Algorithm 8.

Algorithm 8: Determine resource allocations ys
1: procedure STRATEGIC(Pk LPn|p, ỹ)
2: p← pi = 1

k
, i = 1, ..., k

3: y ← yi = bỹc+ δi, δi ∈ N+, i = 1, ..., k
4: return arg max

y,ñ,õ
Pk LPn|p

Tactic Variables: Passenger Allocations (line 4) We now have for each pure strategy

i, a marginal ñi, i = 1, ..., k. In this step we again apply the same optimized round-

ing procedure to these variables to obtain integral values ni. Additionally, here we relax

the constraint pi = 1
k

and allow the program to optimize over the distribution over pure

strategies.

Reintroducing the mixed strategy p as a variable reintroduces the bilinear terms (6.4)

in Pk . However, with our rounding procedure, we can efficiently linearize these terms

without creating a very large number of binary variables (as with the full MILP). We let
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ni = bñic + γi and are left with the bilinear terms pi(γi). To linearize these we make a

change of variable zi = pi(γi) and can express constraints (6.4) as:

E[nwt,c] =

k∑
i=1

(
pi

⌊
ñw,it,c

⌋
+ zw,it,c

)
,

0 ≤ zw,it,c ≤ pi, ∀ i = 1, ..., k.

zw,it,c ≥ pi − (1− γw,it,c ), ∀ i = 1, ..., k.

This subroutine is outlined in Algorithm 9. First, we make the change of variable for

the rounding procedure, and linearize the bilinear terms. We then solve the resulting

optimization problem for the fixed y and b solved in the previous stage of the algorithm

and finally return n and p which gives us a complete (k, τ)-operationalizable solution.

Algorithm 9: Determing Passenger type allocation ns
1: procedure TACTIC(Pk |(y, b), ñ)

2: n← ni = bñic+ δni , δni ∈ N+, i = 1, ...k

3: LinearizeTerms(Pk |(y, b))

4: return arg max
n,p

Pk |(y, b)

6.6 Evaluation

We evaluate our algorithms on several different sized instances of SORT-TSG. We use

instances of three types: small, moderate and large instance with time windows, passenger

types and resources (W=1, C=2, R=2), (W=5, C=10, R=5), (W=10, C=20, R=5) respectively.

The large instances correspond to a 10 hour planning window for a single terminal at a
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large airport. 1 Each experiment is averaged over 50 randomized instances of the remain-

ing parameters.

The Price of Usability In this paper, we proposed to mitigate the price of usability (PoU)

by computing (k, τ)-operationalizable strategies. We have defined the price of usability

similarly to the price of anarchy, as the ratio between the optimal solution with no usability

constraints and the operationalizable equilibrium, (i.e. P /Pk ) so that when the oper-

ationalizable game Pk has the same optimal objective as P the PoU = 1. In order to

1LAX (Los Angeles airport) has an average of 20 unique flight types per terminal (185 destination loca-
tions spread over 9 terminals).
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Figure 6.1: Here we show the empirical PoU, as well as the runtimes of both methods with
increasing k and τ for both methods (left: τ = 10, right: k = 2).
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compare the operationalizable utility to that of P , we use column generation to com-

pute the optimal solution to the security game without usability constraints. We do this

for moderately sized games, as the column generation method does not scale up to large

instances. In Figure 6.1, we show that the PoU shrinks to almost 1 with increasing number

of pure strategies k and team types τ . We note that the bump in runtime with increasing

τ is due to a phenomenon in security games known as the deployment to saturation ratio

[Jain et al., 2012b].

Solution quality We evaluate the solution quality of our algorithms by comparing to

(1) two variations of a column generation heuristic, one which cuts off after I iterations

and one which selects and re-optimizes over the top k strategies, and (2) the full MIP

which optimally solves operationalizable security game Pk . Figure 6.2(a) shows the

comparison of our methods with the first column generation (CG) baseline. When run

to convergence, (CG) optimally solves P , without operationalizable constraints (CG).

We approximate Pk by cutting off (CG) after I iterations. We see that for small I , CG

achieves very poor utilities compared to our algorithm, and that it takes up to 150 gener-

ated strategies (iterations) to match the solution quality of our methods. Additionally we

investigate the support size of the mixed strategies computed by (CG) without operational-

izable constraints. Figure 2(b) shows that number of strategies used grows as we increase

the problem size (here, the number of flight types). We also compared to a second variation

of the column generation method where we pick the top k pure strategies, and compute the

optimal mixed strategy over these k strategies. This was done cutting column generation

off after 10, 20, 50, 100 columns as well as after full convergence. The results are shown

in Figure 6.3. We see on average a 30% loss in PoU when using this baseline compared to
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our methods, and in the worst case up to 100% loss with PoU ∼ 2 for the baseline when

compared to our methods. This demonstrates that we can significantly reduce the support

size and still obtain a PoU ∼ 1

In Table 6.1, we compare utility of our algorithms with the utility obtained from solving

the full MILP (which optimally solves Pk ). The full MILP can only be solved for small

instances (maximum of k = 3). For these instances, we see that both our methods produce
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Figure 6.2: a) Comparison of our algorithms with CG which is cut off after I iterations
(k = 5, τ = 10). b) Support size of CG solutions for increasing problem size.
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Figure 6.3: Average case price of usability and b) worst case price of usability, for our two
methods (k-uniform and MHR) compared to a cutoff column generation baseline. Column
generation (CG) was cutoff after 10, 20 and 50 columns and after convergence.
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near-optimal solutions and can be executed significantly faster. For moderate and large

sized instances, we see the k-uniform algorithm outperform MHR in terms of utility, but

that MHR can solve large instances faster.

Small Moderate Large

u* rt(s) u* rt(s) u* rt(s)

k-uniform -85.3 0.2 -543 48 -1258.8 219.4

MHR -87.0 0.1 -661 20.1 -1315.8 91.2

MILP -85.2 1154.3 - - - -

Table 6.1: Runtime and utility u∗ of the k-uniform and MHR algorithm compared with the
solution of the full MIP (small: k = 3, moderate,large: k = 4).
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Figure 6.4: Runtime for different values of W and C (k = 2, τ = 5, left: C = 10, right: W = 5).

Scalability To evaluate the scalability of our algorithms, we compare the running time

for different time windows W and number of passenger categories C. Figure 6.4 shows

the running time for different values of W and C where the rest of the parameters are

fixed. This figure shows that the running time is only slightly increasing in W and that our

algorithms can be scaled up to a very large number of passenger types.
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Non-uniform distribution of q In the heuristic approach proposed in Section 6.5, we

use an uniform distribution over q. For large k, many distributions can be reconstructed

in this way. However, when we only consider a small number of allowed strategies k

it might be better to optimize over different distributions of q. We have tested this on a

moderate instance for k = 2, 3, 4, using the the MHR algorithm described in Section 6.5.1.

Instead of using a uniform distribution in 8, we solve this step for different distributions of

q. We only allow for ’simple’ distributions, consisting of sixths, fifths, fourths, thirds and

seconds.
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Figure 6.5: Improvement (compared to utility when k = 1) and runtime when varying
over q (τ = 10).

Figure 6.5 illustrates that varying over different distributions of q improves the solution

quality a lot for small k. However, when k is increasing the benefit of different distribu-

tions decreases since more distributions can already be constructed. Also, the running time

increases significantly because the same algorithm has to be run for different distributions.
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6.7 Chapter Summary

This chapter introduces a fundamental new problem of operationalizable strategies in secu-

rity games and provide a single framework which reasons about the three levels of plan-

ning: strategic, tactical and operational level decision problems. Motivated by the impor-

tant problem of screening for threat we provide algorithmic solutions to overcome the

computational challenges that arise when these planning problems are addressed for TSGs

and which mitigate the Price of Usability.

185



Part V

Conclusion
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Chapter 7

Contributions

Game theory for security has focused only the problem of tactical planning; namely how to

best deploy a set of fixed security resources. Inspired by the practical uses of hierarchical

planning, in this thesis I formalize the different levels of planning for security games, and

provide analysis into both the complexity of these problems as well as when they are most

impactful to consider. I introduce two new types of problem strategic and operational

planning which look at higher level design problem in security games, such as choosing

a set of resources subject to budgetary constraints as well as lower level implementability

challenges, such as ensuring that not only do strategies adhere to usability constraints

such as staff schedules but are computed in such a way that they optimize the ease of

implementation.

First this thesis introduces the strategic planning problem, where I provide a formal

model for this problem with respect to security games where it becomes necessary to

optimize over both the strategic and tactical planning problems simultaneously. I provide

hardness results on the corresponding problem, as well as an efficient algorithm for solv-

ing this problem, which uses hierarchical abstractions of the tactical problem in order to

efficiently search through the space of possible design choices.

Second I looks at the idea of resource heterogeneity in security games as the type of

tactical planning problem which make strategic planning necessary. I focus in particular

on a source of heterogeneity that can be found in all domains, resource effectiveness and I
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show that solving games with this type of heterogeneity is hard. While imperfect resource

effectiveness has been studied in the past, heterogenous in this area i.e. having resources

with varying degrees of effectiveness does not frequently appear. In this thesis I look at

one of the few games which models this type of heterogeneity and address a significant

limitation which allows the defender to design more adaptive strategies for deploying these

resources. I provide a novel framework based on linear decision rule approximations of

the optimal strategy as well as robust reformulations and constraint randomization for

efficiently computing solutions to this large scale problem. The solution approach not

only provides very little loss in optimality but is also scalable, making it suitable for use

in real world settings.

Third, motivated by the continued adoption of these security game models in the real

world, I address usability concerns by looking at the operational planning problem. This

thesis provides the first formal definition of usability for security games by introducing

a new solution concept known as operationalizable strategies which are mixed strategies

with small supports. This is a significant step towards ensuring the continued use of secu-

rity games in the field as it provides a framework for address challenges in the day to day

implementations of the mixed strategy solutions to these games. To this end, this thesis

also provides a efficient algorithm for computing ε-optimal equilibria to these games as

well as a scalable heuristic. This work also provides a cost benefit analysis into the trade-

off in having operationalizable strategies and quantifies this by introducing the Price of

Usability which measures the utility loss in operationalizable strategies compared to the

full mixed strategy solutions.

Lastly, in the final chapter of this thesis I combine all three levels of planning into a sin-

gle framework, looking at simultanously optimizing over strategic level planning decision
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on how to schedule and form teams of heterogenous resources, how to tactically deploy

these resources as well as ensuring that the mixed strategy solutions are operationalizable.

I show that the Price of Usability, i.e., the loss in optimality to obtain a strategy that is

easier to operationalize, is typically not high with the solution approaches provided in this

work.

7.1 Future Directions

Overall this thesis opens up a large avenue for future work as it introduces two new types of

planning problems to security games, that of strategic and operational planning. While this

work addresses an important aspect of strategic planning namely, choosing among a set

of heterogenous resources, there are other strategic design problems which can appear in

security games. Problems where the defender has the ability to choose the payoff structure

or alter the topology of the game are also strategic level planning problems that have yet

to be considered in the literature.

Additionally, addressing uncertainty in the strategic planning problem will be an

important direction for future work as it may be the case that there is uncertainty in the

availability of different resources, their costs or in the budget available for investment.

This is particularly relevant in the multistage setting where we need to make decisions

now based uncertain information about how we may invest in the future. This is a chal-

lenging problem to address as now both the tactical and strategic plans need to be policies.

In the domain of tactical planning there are still many games which do not handle

heterogenous resources and so an important direction for future work is developing models
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which do not assume homogenous resources as well as more techniques for dealing with

heterogeneity in resource types.

Lastly with respect to operational planning this thesis presents the idea of k-

operationalizable mixed strategies which limit the support size of strategies to be of size

k. This introduces a new design parameter k which allows the defender to tune the tradeoff

between usability and utility. Indeed, an avenue for future work would be optimizing this

choice of k in order to more efficiently tune this tradeoff and to ensure that the price of

usability is not unnecessarily high.
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Ordóñez, F. (2010b). Software assistants for randomized patrol planning for the lax
airport police and the federal air marshal service. Interfaces, 40(4):267–290.

[Jiang et al., 2013] Jiang, A. X., Procaccia, A. D., Qian, Y., Shah, N., and Tambe, M.
(2013). Defender (mis) coordination in security games. In IJCAI, pages 220–226.

[Jim Breithaupt, 2014] Jim Breithaupt, M. S. M. (2014). Information Security Principles
of Success. Information Security: Principles and Practices, 2nd Edition.

[Jung and Tambe, 2003] Jung, H. and Tambe, M. (2003). Performance models for large
scale multiagent systems: using distributed pomdp building blocks. In Proceedings of
the second international joint conference on Autonomous agents and multiagent sys-
tems, pages 297–304. ACM.

[Korzhyk et al., 2010a] Korzhyk, D., Conitzer, V., and Parr, R. (2010a). Complexity of
computing optimal Stackelberg strategies in security resource allocation games. In
Proceedings of the 24th AAAI conference on Artificial Intelligence (AAAI), pages 805–
810.

[Korzhyk et al., 2010b] Korzhyk, D., Conitzer, V., and Parr, R. (2010b). Complexity of
computing optimal stackelberg strategies in security resource allocation games.

[Kryo, 2014] Kryo (2014). Iodine.

[Leitmann, 1978] Leitmann, G. (1978). On generalized stackelberg strategies. 26:637–
643.

[Lelarge and Bolot, 2008] Lelarge, M. and Bolot, J. (2008). A local mean field analysis
of security investments in networks. In Proceedings of the 3rd ACM International
Workshop on Economics of networked systems, pages 25–30.

[Liemhetcharat and Veloso, 2012] Liemhetcharat, S. and Veloso, M. (2012). Modeling
and learning synergy for team formation with heterogeneous agents. In AAMAS,
AAMAS ’12, pages 365–374, Richland, SC.

196



[Lipton et al., 2003] Lipton, R. J., Markakis, E., and Mehta, A. (2003). Playing large
games using simple strategies. In Proceedings of the 4th ACM conference on Electronic
commerce, pages 36–41. ACM.

[Madani et al., 1999] Madani, O., Hanks, S., and Condon, A. (1999). On the undecidabil-
ity of probabilistic planning and infinite-horizon partially observable markov decision
problems. In Proceedings of the Sixteenth National Conference on Artificial Intelli-
gence and the Eleventh Innovative Applications of Artificial Intelligence Conference
Innovative Applications of Artificial Intelligence, AAAI ’99/IAAI ’99, pages 541–548,
Menlo Park, CA, USA. American Association for Artificial Intelligence.

[Marcolino et al., 2014] Marcolino, L. S., Xu, H., Jiang, A. X., Tambe, M., and Bowring,
E. (2014). Give a hard problem to a diverse team: Exploring large action spaces. In
AAAI.

[Matthews et al., 2012] Matthews, T., Ramchurn, S. D., and Chalkiadakis, G. (2012).
Competing with humans at Fantasy Football: Team formation in large partially-
observable domains. In Proceedings of the 26th Conference of the Associations for
the Advancement for Artificial Intelligence, pages 1394–1400.

[Mc Carthy et al., 2016] Mc Carthy, S., Tambe, M., Kiekintveld, C., Gore, M. L., and
Killion, A. (2016). Preventing illegal logging: Simultaneous optimization of resource
teams and tactics for security. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, AAAI’16, pages 3880–3886. AAAI Press.

[McAfee, ] McAfee. Data loss prevention. http://www.mcafee.com/us/products/
total-protection-for-data-loss-prevention.aspx.

[McCarthy et al., 2016a] McCarthy, S., Sinha, A., Tambe, M., and Manadhata., P.
(2016a). Data exfiltration detection and prevention: Virtually distributed pomdps for
practically safer networks. In Conference on Decision and Game Theory for Security
(GameSec).

[McCarthy et al., 2016b] McCarthy, S., Tambe, M., Kiekintveld, C., Gore, M. L., and
Killion, A. (2016b). Preventing illegal logging: Simultaneous optimization of resource
teams and tactics for security. In AAAI conference on Artificial Intelligence (AAAI).

[McCarthy et al., 2017] McCarthy, S. M., Vayanos, P., and Tambe, M. (2017). Stay-
ing ahead of the game: Adaptive robust optimization for dynamic allocation of threat
screening resources.

197

http://www.mcafee.com/us/products/total-protection-for-data-loss-prevention.aspx
http://www.mcafee.com/us/products/total-protection-for-data-loss-prevention.aspx


[McMahan et al., 2003] McMahan, H. B., Gordon, G. J., and Blum, A. (2003). Planning
in the presence of cost functions controlled by an adversary. In In Proceedings of the
Twentieth International Conference on Machine Learning.

[Miller, 2016] Miller, T. (2016). Supply chain frameworks: A constant in the midst of
change in supply chain management and logistics: Innovative strategies and practical
solutions.

[Morton et al., 2007] Morton, D. P., Pan, F., and Saeger, K. J. (2007). Models for nuclear
smuggling interdiction. IIE Transactions, 39(1):3–14.

[Nair and Tambe, 2005] Nair, R. and Tambe, M. (2005). Hybrid BDI-POMDP framework
for multiagent teaming. Journal of Artificial Intelligence Research, 23(1):367–420.

[Nguyen et al., 2016a] Nguyen, T. H., Sinha, A., Gholami, S., Plumptre, A., Joppa, L.,
Tambe, M., Driciru, M., Wanyama, F., Rwetsiba, A., Critchlow, R., and Beale, C.
(2016a). Capture: A new predictive anti-poaching tool for wildlife protection. In 15th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS).

[Nguyen et al., 2016b] Nguyen, T. H., Sinha, A., Gholami, S., Plumptre, A., Joppa, L.,
Tambe, M., Driciru, M., Wanyama, F., Rwetsiba, A., Critchlow, R., et al. (2016b).
Capture: A new predictive anti-poaching tool for wildlife protection. pages 767–775.
AAMAS.

[Obata et al., 2011] Obata, T., Sugiyama, T., Hoki, K., and Ito, T. (2011). Consul-
tation algorithm for Computer Shogi: Move decisions by majority. In Computer
and Games’10, volume 6515 of Lecture Notes in Computer Science, pages 156–165.
Springer.

[Okamoto et al., 2012] Okamoto, S., Hazon, N., and Sycara, K. (2012). Solving non-
zero sum multiagent network flow security games with attack costs. In AAMAS, pages
879–888.

[Omic et al., 2009] Omic, J., Orda, A., and Van Mieghem, P. (2009). Protecting against
network infections: A game theoretic perspective. In IEEE INFOCOM, pages 1485–
1493.

[Paas, 1992] Paas, F. (1992). Training strategies for attaining transfer of problem-solving
skill in statistics: A cognitive-load approach. Journal of Educational Psychology, pages
429–434.

198



[Papadimitriou and Tsitsiklis, 1987] Papadimitriou, C. H. and Tsitsiklis, J. N. (1987).
The complexity of markov decision processes. Mathematics of operations research,
12(3):441–450.

[Paruchuri et al., 2007] Paruchuri, P., Pearce, J. P., Tambe, M., Ordonez, F., and Kraus,
S. (2007). An efficient heuristic approach for security against multiple adversaries.
In Proceedings of the 6th conference on Autonomous Agents and Multiagent Systems.
ACM.

[Paxson et al., 2013] Paxson, V., Christodorescu, M., Javed, M., Rao, J., Sailer, R.,
Schales, D., Stoecklin, M. P., Thomas, K., Venema, W., and Weaver, N. (2013). Practi-
cal comprehensive bounds on surreptitious communication over dns. In Proceedings of
the 22Nd USENIX Conference on Security, SEC’13, pages 17–32, Berkeley, CA, USA.
USENIX Association.

[Pita et al., 2008a] Pita, J., Jain, M., Marecki, J., Ordóñez, F., Portway, C., Tambe, M.,
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[Pita et al., 2008b] Pita, J., Jain, M., Ordóñez, F., Portway, C., Tambe, M., Western, C.,
Paruchuri, P., and Kraus, S. (2008b). Armor security for los angeles international air-
port. In Proceedings of the 23rd national conference on Artificial intelligence-Volume
3, pages 1884–1885. AAAI Press.

[P.M. Ghare and Turner, 1971] P.M. Ghare, D. M. and Turner, W. (1971). Optimal inter-
diction policy for a flow network. Naval Research Logistics Quarterly.

[Preciado et al., 2014] Preciado, V. M., Zargham, M., Enyioha, C., Jadbabaie, A., and
Pappas, G. J. (2014). Optimal resource allocation for network protection against spread-
ing processes. IEEE Transactions on Control of Network Systems, 1(1):99–108.

[Rascagneres, 2016] Rascagneres, P. (2016). New frameworkpos variant
exfiltrates data via dns requests. https://blog.gdatasoftware.com/2014/10/
23942-new-frameworkpos-variant-exfiltrates-data-via-dns-requests.

[Roy et al., 2012] Roy, S., Xue, M., and Das, S. (2012). Security and discoverability
of spread dynamics in cyber-physical networks. IEEE Transactions on Parallel and
Distributed Systems, 23(9):1694–1707.

199

https://blog.gdatasoftware.com/2014/10/23942-new-frameworkpos-variant-exfiltrates-data-via-dns-requests
https://blog.gdatasoftware.com/2014/10/23942-new-frameworkpos-variant-exfiltrates-data-via-dns-requests


[Schlenker et al., 2016] Schlenker, A., Brown, M., Sinha, A., and Tambe, M. (2016).
Get me to my gate on time: Efficiently solving general-sum bayesian threat screen-
ing games. In European Conference on AI (ECAI).

[Schlenker et al., ] Schlenker, A., Xu, H., Guirguis, M., Kiekintveld, C., Sinha, A.,
Tambe, M., Sonya, S., Balderas, D., and Dunstatter, N. Don’t bury your head in warn-
ings: A game-theoretic approach for intelligent allocation of cyber-security alerts. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelli-
gence, IJCAI-17.

[Seth Bromberger, 2011] Seth Bromberger, Co-Principal Investigator, N. (2011). Dns as
a covert channel within protected networks. Technical Report WP2011-01-01, National
Electric Sector Cyber Security Organization.

[Shieh et al., 2012a] Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J.,
Maule, B., and Meyer, G. (2012a). Protect: A deployed game theoretic system to protect
the ports of the united states. In Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems - Volume 1, AAMAS ’12, pages 13–
20, Richland, SC. International Foundation for Autonomous Agents and Multiagent
Systems.

[Shieh et al., 2012b] Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J.,
Maule, B., and Meyer, G. (2012b). Protect: A deployed game theoretic system to
protect the ports of the united states. In AAMAS.

[Shieh et al., 2013] Shieh, E., Jain, M., Jiang, A. X., and Tambe, M. (2013). Efficiently
solving joint activity based security games. In IJCAI, pages 346–352. AAAI Press.

[Shieh et al., 2014] Shieh, E. A., Jiang, A. X., Yadav, A., Varakantham, P., and Tambe,
M. (2014). Unleashing dec-mdps in security games: Enabling effective defender team-
work. In ECAI.

[Sidel, 2014] Sidel, R. (2014). Home depot’s 56 million card breach big-
ger than target’s. The Wall Street Journal. http://www.wsj.com/articles/
home-depot-breach-bigger-than-targets-1411073571.

[Smith, 2007] Smith, T. (2007). Probabilistic Planning for Robotic Exploration. PhD
thesis, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

[Sommer and Paxson, 2010] Sommer, R. and Paxson, V. (2010). Outside the closed
world: On using machine learning for network intrusion detection. In Security and
Privacy (SP), 2010 IEEE Symposium on, pages 305–316. IEEE.

200

http://www.wsj.com/articles/home-depot-breach-bigger-than-targets-1411073571
http://www.wsj.com/articles/home-depot-breach-bigger-than-targets-1411073571


[Stengel and Zamir, 2004] Stengel, B. V. and Zamir, S. (2004). Leadership with commit-
ment to mixed strategies. Technical report.

[Symantec, 2017] Symantec (2017). Data Loss Prevention & Protection. https://www.
symantec.com/products/information-protection/data-loss-prevention.

[Tambe, 2011] Tambe, M. (2011). Security and Game Theory: Algorithms, Deployed
Systems, Lessons Learned. Cambridge University Press.

[Thomas F. Allnutt, 2013] Thomas F. Allnutt, Gregory P. Asner, C. D. G. G. V. N. P.
(2013). Mapping recent deforestation and forest disturbance in northeastern mada-
gascar. Tropical Conservation Science, 6(1):1–15.

[Trend Labs, 2013] Trend Labs (2013). Data exfiltration: How do threat actors
steal your data? Trend Micro Incorporated. A TrendLabs Security in Context
Paper. http://about-threats.trendmicro.com/cloud-content/us/ent-primers/pdf/how do
threat actors steal your data.pdf.

[Tsai et al., 2009] Tsai, J., Rathi, S., Kiekintveld, C., Ordonez, F., and Tambe, M. (2009).
Iris - a tool for strategic security allocation in transportation networks. In The Eighth
International Conference on Autonomous Agents and Multiagent Systems - Industry
Track.

[UNFCCC, 2016] UNFCCC (2016). Inclusion of the populations of madagascar in
appendix ii, and limited to logs, sawn wood and veneer sheets by an annotation. In
Convention on International Trade in Endangered Species of Wild Fauna and Flora
COP16 Prop 58.
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