Social Network Analysis and Artificial Intelligence: Methodological Partners in the Study of HIV Prevention and Risk Online

* Research supported by an NIH K99/R00 Career Development Award (K99 HD094648)

Lindsay E. Young, Ph.D.
NIH K99 Postdoctoral Scholar
University of Chicago, Department of Medicine
Chicago Center for HIV Elimination
Presentation Overview

- The HIV problem space
- The social network perspective on HIV risk
- Social media: A network data repository
- The methodological toolkit
- Outstanding questions and future directions
The disproportionate burden of HIV in the United States

The Problem Space
On the road to a cure, …

H.I.V. Is Reported Cured in a Second Patient, a Milestone in the Global AIDS Epidemic

Scientists have long tried to duplicate the procedure that led to the first permanent remission 12 years ago. With the so-called London patient, they seem to have succeeded.

…we still have much to address.

America's Hidden H.I.V. Epidemic

Why do America's black gay and bisexual men have a higher H.I.V. rate than any country in the world?
HIV incidence in the United States

- Number of new HIV infections diagnosed in 1984: 130,400
- Number of new HIV infections diagnosed in 2017: 38,739

70% reduction
HIV burdens are not proportionate

New HIV Diagnoses in the US and Dependent Areas for the Most-Affected Subpopulations, 2017

- Black, Male-to-Male Sexual Contact: 9,807
- Hispanic/Latino, Male-to-Male Sexual Contact: 7,436
- White, Male-to-Male Sexual Contact: 6,982
- Black Women, Heterosexual Contact: 4,008
- Black Men, Heterosexual Contact: 1,717
- Hispanic/Latina Women, Heterosexual Contact: 1,058
- White Women, Heterosexual Contact: 999

New HIV Diagnoses by Transmission Category, 2015 (n=39,513)
- Male-to-Male Sexual Contact: 67%
- Heterosexual Contact: 24%
- Injection Drug Use: 6%
- Male-to-Male Sexual Contact + Injection Drug Use: 3%
Among HIV diagnosed BMSM, 39% were aged 13-24; 36% were aged 25-34.

From 2010-2016, HIV diagnoses among YBMSM aged 25-34 increased 40%.

HIV burdens are not proportionate
Mechanisms behind disparities are not well understood

- Black MSM report less substance use and fewer partners than White MSM.

- No significant differences by race in reported condomless sex, commercial sex work, or sex with a known HIV+ partner.

Individual risk behaviors don’t adequately explain differences in HIV incidence between White and Black MSM.
THE SOCIAL NETWORK PERSPECTIVE
Nodes = Actors = Vertices

Ties = Edges = Links
 - Directed (e.g., email)
 - Undirected (e.g., collaboration)

Network (or graph) structure
A network perspective on HIV prevention and risk assumes...

1. Actors and their actions are viewed as interdependent rather than independent units.
A network perspective on HIV prevention and risk assumes...

2. Ties between actors are channels through which resources flow.
A network perspective on HIV prevention and risk assumes…

2. Ties between actors are channels through which resources flow.
A network perspective on HIV prevention and risk assumes…

3. Network structure provides opportunities for or constraints on individual actions.
A network perspective on HIV risk allows us to ask…

How are the…

› people you know and interact with…
 › things that you talk about…
 › attributes of your networks…

…related to your HIV-related knowledge, attitudes, and behaviors?
A network data repository
Challenges of capturing networks “in the field”

- Resource intensive
- Participant fatigue
- Reporting biases
- Missing data
Young LGBTQ adults have been found to use social media more than their heterosexual counterparts (Taylor, 2013; Harris, 2007).

Social media allows them to explore their sexual and gender identities and to find and build community, which can be harder to do “offline”.

Social media present opportunities for behavioral research and intervention among young MSM.
But which platform is best?
But which platform is best?

Considerations:

- **Capture**: Does a majority of the targeted population use the platform with enough frequency?
- **Purpose**: What types of content are generated and shared among users?
- **Feasibility**: How easy/hard is it to obtain the data you need?
Facebook: A multidimensional social space

- As a social network, Facebook can be examined as observed relationships across multiple dimensions (or layers):
 - Person-to-person friendships
 - Person-to-group affiliations
 - Person-to-person (or person-to-public) communication
The structural dimension of Facebook

Direct Peer Relationships

Mediated Peer Contexts
The communicative dimension of Facebook

- What one talks about in these contexts reveals clues about personal and shared interests, norms, and propensity to engage in HIV prevention and risk behaviors.
The Computational Toolkit
Research Illustrations
1. **Examine** the relationship between observed Facebook friendship and group affiliation ties and HIV prevention/care engagement.

2. **Characterize** the semantic features of Facebook communication and explore their associations with HIV prevention/care engagement.

3. **Predict** HIV prevention/care engagement as a function of Facebook engagement patterns.
Study Population:

- 423 YBMSM (aged 18-35) living in Chicago

Available Data:

- *Facebook networks and communication content*
 - Facebook friendships
 - Facebook group affiliations
 - Facebook timeline posts
- *Prevention and care engagement behaviors*
 - retention in care (HIV, PrEP, or Primary)
 - recent STI/HIV testing
- *HIV-related risk factors*
 - sexual risk behaviors (e.g., condomless sex, sex drug use, exchange sex)
 - structural vulnerabilities (e.g., housing instability, criminal justice involvement)
Aim 1

Facebook network structure & HIV-related behaviors

RQ: How do the HIV-related behaviors of YBMSM affect the structure of their Facebook friendships and group affiliations?

Facebook friendship network

Facebook group affiliation network
Exponential random graph models (ERGMs)

- ERGMs are statistical models for network structure that help us understand how and why network ties emerge.
- They model the likelihood of local configurations (or network motifs) — i.e., they determine whether these configurations occur more (or less) often than would be expected by chance alone.
- Local configurations represent distinct social processes, for example social balance or preferential attachment.
Exponential random graph models (ERGMs)

- These configurations can be *endogenous* — i.e., emerging from the connections actors make in response to other ties in their social environment.
- E.g., when YBMSM are more likely to become Facebook friends with the friends of their friends.
Configurations can also be *exogenous* — i.e., emerging in response to properties that exist outside the network, like the attributes of network actors.

- E.g., when marijuana smokers tend to be popular; or when marijuana smokers tend to be Facebook friends with one another
A simple heuristic:

- **Calculate** number of each configuration in the observed data.
- **Simulate** a sample of random graphs with similar structure to the observed network (like network rewiring).
- **Calculate** number of each configuration for each sampled graph.
- **Compare** the distribution mean for each configuration (what we expect by chance) to the observed counts.

ERGMs “under the hood”

The General Form:

\[P(Y = y) = \frac{\exp(\theta' g(y))}{k(\theta)} \]

- Y is a network realization
- y is the observed network
- g(y) is a vector of model statistics for network y,
- \(\Theta\) is the vector of coefficients for those statistics,
- k(\(\Theta\)) is a normalizing factor.
Model 1: ERGM of Facebook friendships among YBMSM

- **RQ:** How do the HIV-related attributes of YBMSM bring structure to their Facebook friendships?

- **YBMSM attributes:** HIV prevention and risk behaviors, HIV status, structural vulnerabilities

Configurations of Interest

- **Homophily**
- **Popularity**
- **Clustering**

Figure 3. Interaction Edge

Figure 4. Alternating K-star, actor centered

Figure 5. Alternating K-two path
Model 2: ERGM of Facebook group affiliations among YBMSM

- RQ: How do the HIV-related attributes of YBMSM bring structure to their Facebook group affiliations?
- YBMSM attributes: sex behaviors, prevention behaviors, HIV-related communication traits
- Group attributes: group focus (e.g., LGBTQ identity, sex/sexuality, general chat, recreational interests)
Aim 2

Facebook communication & HIV-related behaviors

- **RQ1**: To what extent do YBMSM talk about HIV-related issues on Facebook?
- **RQ2**: What is the underlying structure of that discourse?
- **RQ3**: To what extent are the features of an individual’s communication related to their HIV-related behaviors?
Facebook communication & HIV-related behaviors

Method 1: Automated textual analysis
Facebook communication & HIV-related behaviors

Method 1: Automated textual analysis

- Build a search term dictionary of words and phrases related to sexual activity, substance use, sexual health, and other factors associated with HIV.
- Extract key terms used in each participant’s corpus of timeline posts.
- Classify individuals into more meaningful categories based on their use (and non-use) of key terms using Latent Semantic Analysis.
Facebook communication & HIV-related behaviors

Latent Semantic Analysis (LSA) Output

<table>
<thead>
<tr>
<th>Terms</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M7</th>
<th>M8</th>
<th>M9</th>
<th>M10</th>
<th>M11</th>
<th>M12</th>
<th>M13</th>
<th>M14</th>
</tr>
</thead>
<tbody>
<tr>
<td>abnormalities</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>behavior</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>blood</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>close</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>culture</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>depressed</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>discharge</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>disease</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>fast</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>generation</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>estrogen</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>patients</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pressure</td>
<td>0</td>
</tr>
<tr>
<td>rats</td>
<td>0</td>
</tr>
<tr>
<td>respect</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>rise</td>
<td>0</td>
</tr>
<tr>
<td>study</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

![LSA Matrix](image_url)
Aim 2

Method 2: Semantic Network Characterization

Facebook communication & HIV-related behaviors

Two-mode network: ties between individuals and the keywords they use
Facebook communication & HIV-related behaviors

Method 2: Semantic Network Characterization

One-mode network: weighted ties between individuals represent joint use of keywords.
Aim 2

Method 2: Semantic Network Characterization

Facebook communication & HIV-related behaviors

One-mode network: weighted ties between keywords represent keyword co-occurrence
Aim 2

Facebook communication & HIV-related behaviors

Method 2: Semantic Network Characterization

Community detection among individuals or among words
RQ: Is there an association between the way YBMSM communicate and their HIV prevention and care engagement?

Method 3: Regression Models
Building a predictive model of HIV prevention/care engagement

Digitally-archived social media data + Predictive Analytics = Tailored interventions for high risk YBMSM

RQ: Can we identify at-risk YBMSM and predict future prevention engagement through social media use patterns
Aim 3

Predictive Analytics in Healthcare

Big Data Source:
Electronic Medical Records (EMRs)
Aim 3

Predictive Analytics in Healthcare

Big Data Source: Social Media?
Model Details

- Approach: Machine learning techniques (e.g., decision trees, random forests)
- Features: Features of Facebook communication, group affiliations and friendships + EMR data, sex behaviors, substance use, structural vulnerabilities, sexual identity, demographics
- Output: Retention scores/classifications (e.g., probabilities of being retained in PrEP care); and indications of which features are the most accurate predictors

Oversimplified Decision Tree Model
(predicting retention in PrEP care as a function of FB features)

Talks about sexual health on FB timeline?
Yes → Mentions PrEP on FB timeline?
 Yes → Has FB friends who post about PREP?
 Y → R
 N → NR
 No → Member of LGBTQ FB group?
 Yes → Has FB friends who post about PREP?
 Y → R
 N → NR
 No → R

R = retained; NR = not retained
Practical Implications

- **Aim 1**: ERGMs model effects of configurations that can help us identify pockets (or structural signatures) of social and behavioral norms that may need to be intervened with (or leveraged) to facilitate behavior change in a targeted population.

- **Aim 2**: Identifies communication patterns that could be flagged and used as catalysts for a near-real time intervention.

- **Aim 3**: Identifies more people at risk for future risks (e.g., retention failure), which will enable more tailored and proactive intervention.
Outstanding questions and future work
The problem: Influencing the sexual health attitudes and behaviors of YBMSM is difficult when their online social environments are saturated with all kinds of competing information.

The project: Can we model what will happen to the diffusion process when information competes with or complements one another and use those insights to design more effective diffusion interventions in organic online networks?
Future Research

The relationship between online and offline network dynamics

» The problem: Eliciting offline social networks over time is incredibly resource-intensive. But turnover in those networks have been linked to critical HIV risk and prevention outcomes.

» The project: Can we predict turnover in offline networks (e.g., the introduction of a new sex partner) from dynamic features of online social networks.
Acknowledgements:
National Institute of Child Health and Human Development (K99 funder)
John Schneider, University of Chicago (K99 mentor, postdoc advisor)
Kayo Fujimoto, University of Texas Health Science (K99 co-mentor)
Rayid Ghani, University of Chicago (K99 co-mentor)
Ian Holloway, UCLA (K99 consultant)
Tom Valente, Kayla de Haye, and the Center for Applied Network Analysis (CANA), USC

* Special thanks to: USC Center for Artificial Intelligence in Society (CAIS)

lyoung1@medicine.bsd.uchicago.edu