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Abstract

Fueled by algorithmic advances, AI algorithms are increasingly being deployed in
settings subject to unanticipated challenges with complex social effects. Motivated
by real-world deployment of AI driven, social-network based suicide prevention
and landslide risk management interventions, this paper focuses on robust graph
covering problems subject to group fairness constraints. We show that, in the
absence of fairness constraints, state-of-the-art algorithms for the robust graph cov-
ering problem result in biased node coverage: they tend to discriminate individuals
(nodes) based on membership in traditionally marginalized groups. To mitigate
this issue, we propose a novel formulation of the robust graph covering problem
with group fairness constraints and a tractable approximation scheme applicable to
real-world instances. We provide a formal analysis of the price of group fairness
(PoF) for this problem, where we show that uncertainty can lead to greater PoF. We
demonstrate the effectiveness of our approach on several real-world social networks.
Our method yields competitive node coverage while significantly improving group
fairness relative to state-of-the-art methods.

1 Introduction

Motivation. This paper considers the problem of selecting a subset of nodes (which we refer
to as ‘monitors’) in a graph that can ‘cover’ their adjacent nodes. We are mainly motivated by
settings where monitors are subject to failure and we seek to maximize worst-case node coverage.
We refer to this problem as the robust graph covering. This problem finds applications in several
critical real-world domains, especially in the context of optimizing social interventions on vulnerable
populations. Consider for example the problem of designing Gatekeeper training interventions for
suicide prevention, wherein a small number of individuals can be trained to identify warning signs of
suicide among their peers [32]. A similar problem arises in the context of disaster risk management in
remote communities wherein a moderate number of individuals are recruited in advance and trained to
watch out for others in case of natural hazards (e.g., in the event of a landslide [40]). Previous research
has shown that social intervention programs of this sort hold great promise [32, 40]. Unfortunately,
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Network Name Network Size Worst-case coverage of individuals by racial group (%)

White Black Hispanic Mixed Other

SPY1 95 70 36 – 86 94
SPY2 117 78 – 42 76 67
SPY3 118 88 – 33 95 69
MFP1 165 96 77 69 73 28
MFP2 182 44 85 70 77 72

Table 1: Racial discrimination in node coverage resulting from applying the algorithm in [45] on
real-world social networks from two homeless drop-in centers in Los Angeles, CA [4], when 1/3 of
nodes (individuals) can be selected as monitors, out of which at most 10% will fail. The numbers
correspond to the worst-case percentage of covered nodes across all monitor availability scenarios.

in these real-world domains, intervention agencies often have very limited resources, e.g., moderate
number of social workers to conduct the intervention, small amount of funding to cover the cost of
training. This makes it essential to target the right set of monitors to cover a maximum number of
nodes in the network. Further, in these interventions, the performance and availability of individuals
(monitors) is unknown and unpredictable. At the same time, robustness is desired to guarantee high
coverage even in worst-case settings to make the approach suitable for deployment in the open world.

Robust graph covering problems similar to the one we consider here have been studied in the literature,
see e.g., [19, 45]. Yet, a major consideration distinguishes our problem from previous work: namely,
the need for fairness. Indeed, when deploying interventions in the open world (especially in sensitive
domains impacting life and death like the ones that motivate this work), care must be taken to ensure
that algorithms do not discriminate among people with respect to protected characteristics such as
race, ethnicity, disability, etc. In other words, we need to ensure that independently of their group,
individuals have a high chance of being covered, a notion we refer to as group fairness.

To motivate our approach, consider deploying in the open world a state-of-the art algorithm for
robust graph covering (which does not incorporate fairness considerations). Specifically, we apply
the solutions provided by the algorithm from [45] on five real-world social networks. The results
are summarized in Table 1 where, for each network, we report its size and the worst-case coverage
by racial group. In all instances, there is significant disparity in coverage across racial groups. As
an example, in network SPY1 36% of Black individuals are covered in the worst-case compared to
70% (resp. 86%) of White (resp. Mixed race) individuals. Thus, when maximizing coverage without
fairness, (near-)optimal interventions end up mirroring any differences in degree of connectedness of
different groups. In particular, well-connected groups at the center of the network are more likely to
be covered (protected). Motivated by the desire to support those that are the less well off, we employ
ideas from maximin fairness to improve coverage of those groups that are least likely to be protected.

Proposed Approach and Contributions. We investigate the robust graph covering problem with
fairness constraints. Formally, given a social network, where each node belongs to a group, we
consider the problem of selecting a subset of I nodes (monitors), when at most J of them may fail.
When a node is chosen as a monitor and does not fail, all of its neighbors are said to be ‘covered’
and we use the term ‘coverage’ to refer to the total number of covered nodes. Our objective is to
maximize worst-case coverage when any J nodes may fail, while ensuring fairness in coverage across
groups. We adopt maximin fairness from the Rawlsian theory of justice [41] as our fairness criterion:
we aim to maximize the utility of the groups that are worse-off. To the best of our knowledge, ours is
the first paper enforcing fairness constraints in the context of graph covering subject to node failure.

We make the following contributions: (i) We achieve maximin group fairness by incorporating
constraints inside a robust optimization model, wherein we require that at least a fraction W of
each group is covered, in the worst-case; (ii) We propose a novel two-stage robust optimization
formulation of the problem for which near-optimal conservative approximations can be obtained as a
moderately-sized mixed-integer linear program (MILP). By leveraging the decomposable structure
of the resulting MILP, we propose a Benders’ decomposition algorithm augmented with symmetry
breaking to solve practical problem sizes; (iii) We present the first study of price of group fairness
(PoF), i.e., the loss in coverage due to fairness constraints in the graph covering problem subject to
node failure. We provide upper bounds on the PoF for Stochastic Block Model networks, a widely
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studied model of networks with community structure; (iv) Finally, we demonstrate the effectiveness of
our approach on several real-world social networks of homeless youth. Our method yields competitive
node coverage while significantly improving group fairness relative to state-of-the-art methods.

Related Work. Our paper relates to three streams of literature which we review.

Algorithmic Fairness. With increase in deployments of AI, OR, and ML algorithms for decision and
policy-making in the open world has come increased interest in algorithmic fairness. A large portion
of this literature is focused on resource allocation systems, see e.g., [13, 33, 50]. Group fairness in
particular has been studied in the context of resource allocation problems [22, 42, 43]. A nascent
stream of work proposes to impose fairness by means of constraints in an optimization problem, an
approach we also follow. This is for example proposed in [1], and in [8, 24], and in [2] for machine
learning, resource allocation, and matching problems, respectively. Several authors have studied the
price of fairness. In [13], the authors provide bounds for maximin fair optimization problems. Their
approach is restricted to convex and compact utility sets. In [6], the authors study price of fairness for
indivisible goods with additive utility functions. In our graph covering problem, this property does not
hold. Several authors have investigated notions of fairness under uncertainty, see e.g, [5, 28, 36, 50].
These papers all assume full distributional information about the uncertain parameters and cannot
be employed in our setting where limited data is available about node availability. Motivated by
data scarcity, we take a robust optimization approach to model uncertainty which does not require
distributional information. This problem is highly intractable due to the combinatorial nature of
both the decision and uncertainty spaces. When fair solutions are hard to compute, “approximately
fair” solutions have been considered [33]. In our work, we adopt an approximation scheme. As
such, our approach falls under the “approximately fair” category. Recently, several authors have
emphasized the importance of fairness when conducting interventions in socially sensitive settings,
see e.g., [3, 34, 44]. Our work most closely relates to [44], wherein the authors propose an algorithmic
framework for fair influence maximization. We note that, in their work, nodes are not subject to
failure and therefore their approach does not apply in our context.

Submodular Optimization. One can view the group-fair maximum coverage problem as a multi-
objective optimization problem, with the coverage of each community being a separate objective. In
the deterministic case, this problem reduces to the multi-objective submodular optimization prob-
lem [21], as coverage has the submodularity (diminishing returns) property. In addition, moderately
sized problems of this kind can be solved optimally using integer programming technology. How-
ever, when considering uncertainty in node performance/availability, the objective function loses the
submodularity property while exact techniques fail to scale to even moderate problem sizes. Thus,
existing (exact or approximate) approaches do not apply. Our work more closely relates to the robust
submodular optimization literature. In [19, 37], the authors study the problem of choosing a set of
up to I items, out of which J fail (which encompasses as a special case the robust graph covering
problem without fairness constraints). They propose a greedy algorithm with a constant (0.387)
approximation factor, valid for J = o(

√
I), and J = o(I), respectively. Finally, in [45], the authors

propose another greedy algorithm with a general bound based on the curvature of the submodular
function. These heuristics, although computationally efficient, are coverage-centered and do not take
fairness into consideration. Thus, they may lead to discriminatory outcomes, see Table 1.

Robust Optimization. Our solution approach closely relates to the robust optimization paradigm which
is a computationally attractive framework for obtaining equivalent or conservative approximations
based on duality theory, see e.g., [7, 10, 49]. Indeed, we show that the robust graph covering problem
can be written as a two-stage robust problem with binary second-stage decisions which is highly
intractable in general [14]. One stream of work proposes to restrict the functional form of the recourse
decisions to functions of benign complexity [12, 15]. Other works rely on partitioning the uncertainty
set into finite sets and applying constant decision rules on each partition [15, 17, 31, 38, 47]. The last
stream of work investigates the so-called K-adaptability counterpart [11, 20, 31, 39, 46], in which
K candidate policies are chosen in the first stage and the best of these policies is selected after the
uncertain parameters are revealed. Our paper most closely relates to [31, 39]. In [31], the authors
show that for bounded polyhedral uncertainty sets, linear two-stage robust optimization problems can
be approximately reformulated as MILPs. Paper [39] extends this result to a special case of discrete
uncertainty sets. We prove that we can leverage this approximation to reformulate robust graph
covering problem with fairness constraints exactly for a much larger class of discrete uncertainty sets.
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2 Fair and Robust Graph Covering Problem

We model a social network as a directed graph G = (N , E), in which N := {1, . . . , N} is the set of
all nodes (individuals) and E is the set of all edges (social ties). A directed edge from ν to n exists,
i.e., (ν, n) ∈ E , if node n can be covered by ν. We use δ(n) := {ν ∈ N : (ν, n) ∈ E} to denote the
set of neighbors (friends) of n in G, i.e., the set of nodes that can cover node n. Each node n ∈ N
is characterized by a set of attributes (protected characteristics) such as age, race, gender, etc., for
which fair treatment is important. Based on these node characteristics, we partition N into C disjoint
groups Nc, c ∈ C := {1, . . . , C}, such that ∪c∈CNc = N .

We consider the problem of selecting a set of I nodes from N to act as ‘peer-monitors’ for their
neighbors, given that the availability of each node is unknown a-priori and at most J nodes may fail
(be unavailable). We encode the choice of monitors using a binary vector x of dimensionN whose nth
element is one iff the nth node is chosen. We require x ∈ X := {x ∈ {0, 1}N : e>x ≤ I}, where e is
a vector of all ones of appropriate dimension. Accordingly, we encode the (uncertain) node availability
using a binary vector ξ of dimension N whose nth element equals one iff node n does not fail (is
available). Given that data available to inform the distribution of ξ is typically scarce, we avoid making
distributional assumptions on ξ. Instead, we view uncertainty as deterministic and set based, in the
spirit of robust optimization [7]. Thus, we assume that ξ can take-on any value from the set Ξ which is
often referred to as the uncertainty set in robust optimization. The set Ξ may for example conveniently
capture failure rate information. Thus, we require ξ ∈ Ξ := {ξ ∈ {0, 1}N : e>(e− ξ) ≤ J}. A
node n is counted as ‘covered’ if at least one of its neighbors is a monitor and does not fail (is
available). We let yn(x, ξ) denote if n is covered for the monitor choice x and node availability ξ.

yn(x, ξ) := I
(∑

ν∈δ(n) ξνxν ≥ 1
)
.

The coverage is then expressible as FG(x, ξ) := e>y(x, ξ). The robust covering problem which
aims to maximize the worst-case (minimum) coverage under node failures can be written as

max
x∈X

min
ξ∈Ξ

FG(x, ξ). (RC)

Problem (RC) ignores fairness and may result in discriminatory coverage with respect to (protected)
node attributes , see Table 1. We thus propose to augment the robust covering problem with fairness
constraints. Specifically, we propose to achieve max-min fairness by imposing fairness constraints on
each group’s coverage: we require that at least a fraction W of nodes from each group be covered.
In [44], the authors show that by conducting a binary search for the largest W for which fairness
constraints are satisfied for all groups, the max-min fairness optimization problem is equivalent to the
one with fairness constraints. Thus, we write the robust covering problem with fairness constraints as{

max
x∈X

min
ξ∈Ξ

∑
c∈C

FG,c(x, ξ) : FG,c(x, ξ) ≥W |Nc| ∀c ∈ C, ∀ξ ∈ Ξ

}
, (RCfair)

where FG,c(x, ξ) :=
∑
n∈Nc

yn(x, ξ) is the coverage of group c ∈ C. Note that if |C| = 1, Prob-
lem (RCfair) reduces to Problem (RC), and if Ξ = {e}, Problem (RCfair) reduces to the deterministic
covering problem with fairness constraints. We emphasize that our approach can handle fairness with
respect to more than one protected attribute by either: (a) partitioning the network based on joint
values of the protected attributes and imposing a max-min fairness constraint for each group; or (b)
imposing max-min fairness constraints for each protected attribute separately. Problem (RCfair) is
computationally hard due to the combinatorial nature of both the uncertainty and decision spaces.
Lemma 1 characterizes its complexity. Proofs of all results are in the supplementary document.

Lemma 1. Problem (RCfair) is NP-hard.

3 Price of Group Fairness

In Section 2, we proposed a novel formulation of the robust covering problem incorporating fairness
constraints, Problem (RCfair). Unfortunately, adding fairness constraints to Problem (RC) comes at a
price to overall worst-case coverage. In this section, we study this price of group fairness.
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Definition 1. Given a graph G, the Price of Group Fairness PoF(G, I, J) is the ratio of the coverage
loss due to fairness constraints to the maximum coverage in the absence of fairness constraints, i.e.,

PoF(G, I, J) := 1− OPTfair(G, I, J)

OPT(G, I, J)
, (1)

where OPTfair(G, I, J) and OPT(G, I, J) denote the optimal objective values of Problems (RCfair)
and (RC), respectively, when I monitors can be chosen and at most J of them may fail.

In this work, we are motivated by applications related to social networks, where it has been observed
that people with similar (protected) characteristics tend to interact more frequently with one another,
forming friendship groups (communities). This phenomenon, known as homophily [35], has been
observed for characteristics such as race, gender, education, etc.[23]. This motivates us to study the
PoF in Stochastic Block Model (SBM) networks [27], a widely accepted model for networks with
community structure. In SBM networks, nodes are partitioned into C disjoint communitiesNc, c ∈ C.
Within each community c, an edge between two nodes is present independently with probability pin

c .
Between a pair of communities c and c′ ∈ C, edges exist independently with probability pout

cc′ and we
typically have pin

c > pout
cc′ to capture homophily. Thus, SBM networks are very adequate models for

our purpose. We assume w.l.o.g. that the communities are labeled such that: |N1| ≤ . . . ≤ |NC |.
Deterministic Case. We first study the PoF in the deterministic case for which J = 0. Lemma 2
shows that there are worst-case networks for which PoF can be arbitrarily bad.

Lemma 2. Given ε > 0, there exists a budget I and a network G with N ≥ 4
ε + 3 nodes such that

PoF(G, I, 0) ≥ 1− ε.

Fortunately, as we will see, this pessimistic result is not representative of the networks that are seen
in practice. We thus investigate the loss in expected coverage due to fairness constraints, given by

PoF(I, J) := 1− EG∼SBM[OPTfair(G, I, J)]

EG∼SBM[OPT(G, I, J)]
. (2)

We emphasize that we investigate the loss in the expected coverage rather than the expected PoF for
analytical tractability reasons. We make the following assumptions about SBM network.

Assumption 1. For all communities c ∈ C, the probability of an edge between two individuals in the
community is inversely proportional to the size of the community, i.e., pin

c = Θ(|Nc|−1).

Assumption 2. For any two communities c, c′ ∈ C, the probability of an edge between two nodes
n ∈ Nc and ν ∈ Nc′ is pout

cc′ = O((|Nc| log2 |Nc|)−1).

Assumption 1 is based on the observation that social networks are usually sparse. This means that
most individuals do not form too many links, even if the size of the network is very large. Sparsity
is characterized in the literature by the number of edges being proportional to the number of nodes
which is the direct result of Assumption 1. Assumption 2 is necessary for meaningful community
structure in the network. We now present results for the upper bound on PoF in SBM networks.

Proposition 1. Consider an SBM network model with parameters pin
c and pout

cc′ , c, c
′ ∈ C, satisfying

Assumptions 1 and 2. If I = O(logN), then

PoF(I, 0) = 1−
∑
c∈C |Nc|∑

c∈C |Nc|d(C)/d(c)
− o(1), where d(c) := log |Nc|(log log |Nc|)−1.

Proof Sketch. First, we show that under Assumption 1, the coverage within each community is the
sum of the degrees of the monitoring nodes. Then, using the assumption on I in the premise of the
proposition (which can be interpreted as a “small budget assumption”), we evaluate the maximum
coverage within each community. Next, we show that between-community coverage is negligible
compared to within-community coverage. Thus, we determine the distribution of the monitors, in the
presence and absence of fairness constraints. PoF is computed based on the these two quantities. �

Uncertain Case. Here, imposing fairness is more challenging as we do not know a-priori which
nodes may fail. Thus, we must ensure that fairness constraints are satisfied under all failure scenarios.
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Proposition 2. Consider an SBM network model with parameters pin
c and pout

cc′ , c, c
′ ∈ C, satisfying

Assumptions 1 and 2. If I = O(logN), then

PoF(I, J) = 1−
η
∑
c∈C |Nc|

(I − J)× d(C)
−
J
∑
c∈C\{C} d(c)

(I − J)× d(C)
− o(1),

where d(c) is as in Proposition 1 and η := (I − CJ)
(∑

c∈C |Nc|/d(c)
)−1

.

Proof Sketch. The steps of the proof are similar to those in the proof of Proposition 1 with the
difference that, under uncertainty, monitors should be distributed such that the fairness constraints are
satisfied even after J nodes fail. Thus, we quantify a minimum number of monitors that should be
allocated to each community. We then determine the worst-case coverage both in the presence and
absence of fairness constraints. PoF is computed based on these two quantities. �
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Figure 1: PoF in the uncertain (top) and determinis-
tic (bottom) settings for SBM networks consisting
of two communities (C = {1, 2}) where the size
of the first community is fixed at |N1| = 20 and
the size of the other community is increased from
|N2| = 20 to 10, 000. In the uncertain setting, γ
denotes the fraction of nodes that fail.

Propositions 1 and 2 show how PoF changes
with the relative sizes of the communities for
the deterministic and uncertain cases, respec-
tively. Our analysis shows that without fairness,
one should place all the monitors in the biggest
community. Under a fair allocation however
monitors are more evenly distributed (although
larger communities still receive a bigger share).
Figure 1 illustrates the PoF results in the case
of two communities for different failure rates
γ (J = γI), ignoring the o(.) order terms. We
keep the size of the first (smaller) community
fixed and vary the size of the larger community.
In both cases, if |N1| = |N2|, the PoF is zero
since uniform distribution of monitors is opti-
mal. As |N2| increases, the PoF increases in
both cases. Further increases in |N2| result in a
decrease in the PoF for the deterministic case:
under a fair allocation, the bigger community
receives a higher share of monitors which is
aligned with the total coverage objective. Under
uncertainty however, the PoF is non-decreasing:
to guarantee fairness, additional monitors must
be allocated to the smaller groups. This also
explains why PoF increases with γ.

4 Solution Approach

Given the intractability of Problem (RCfair), see Lemma 1, we adopt a conservative approximation
approach. To this end, we proceed in three steps. First, we note that a difficulty of Problem (RCfair) is
the discontinuity of its objective function. Thus, we show that (RCfair) can be formulated equivalently
as a two-stage robust optimization problem by introducing a fictitious counting phase after ξ is
revealed. Second, we propose to approximate this decision made in the counting phase (which
decides, for each node, whether it is or not covered). Finally, we demonstrate that the resulting
approximate problem can be formulated equivalently as a moderately sized MILP, wherein the
trade-off between suboptimality and tractability can be controlled by a single design parameter.

Equivalent Reformulation. For any given choice of x ∈ X and ξ ∈ Ξ, the objective FG(x, ξ) can
be explicitly expressed as the optimal objective value of a covering problem. As a result, we can
express (RCfair) equivalently as the two-stage linear robust problem

max
x∈X

min
ξ∈Ξ

max
y∈Y

∑
n∈N

yn : yn ≤
∑
ν∈δ(n)

ξνxν , ∀n ∈ N

 , (3)

see Proposition 3 below. The second-stage binary decision variables y ∈ Y := {y ∈ {0, 1}N :∑
n∈Nc

yn ≥W |Nc|, ∀c ∈ C} admit a very natural interpretation: at an optimal solution, yn = 1 if
and only if node n is covered. Henceforth, we refer to y as a covering scheme.
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Definition 2 (Upward Closed Set). A set X given as a subset of the partially ordered set [0, 1]N

equipped with the element-wise inequality, is said to be upward closed if for all x ∈ X and
x̄ ∈ [0, 1]N such that x̄ ≥ x, it holds that x̄ ∈ X .

Intuitively, sets involving lower bound constraints on the (sums of) parameters satisfy this definition.
For example, sets that require a minimum fraction of nodes to be available. We can also consider
group-based availability and require a minimum fraction of nodes to be available in every group.

Assumption 3. We assume that: The set Ξ is defined through Ξ := {0, 1}N ∩ T for some upward
closed set T given by T := {ξ ∈ RN : Aξ ≥ b}, withA ∈ RR×N and b ∈ RR.
Proposition 3. Problems (RCfair) and (3) are equivalent.

K-adaptability Counterpart. Problem (3) has the advantage of being linear. Yet, its max-min-max
structure precludes us from solving it directly. We investigate a conservative approximation to
Problem (3) referred to as K-adaptability counterpart, wherein K candidate covering schemes are
chosen in the first stage and the best (feasible and most accurate) of those candidates is selected after
ξ is revealed. Formally, the K-adaptability counterpart of Problem (3) is

maximize
x∈X

yk∈Y, k∈K

min
ξ∈Ξ

max
k∈K

∑
n∈N

ykn : ykn ≤
∑
ν∈δ(n)

ξνxν ∀n ∈ N

 , (4)

where yk denotes the kth candidate covering scheme, k ∈ K. We emphasize that the covering
schemes are not inputs but rather decision variables of the K-adaptability problem. Only the value K
is an input. The optimization problem will identify the best K covering schemes that satisfy all
the constraints including fairness constraints. The trade-off between optimality and computational
complexity of Problem (4) can conveniently be tuned using the single parameter K.

Reformulation as an MILP. We derive an exact reformulation for the K-adaptability counterpart (4)
of the robust covering problem as a moderately sized MILP. Our method extends the results from [39]
to significantly more general uncertainty sets that are useful in practice, and to problems involving
constraints on the set of covered nodes. Henceforth, we let L := {0, . . . , N}K , and we define
L+ := {` ∈ L : ` > 0} and L0 := {` ∈ L : ` ≯ 0}. We present a variant of the generic
K-adaptability Problem (4), where the uncertainty set Ξ is parameterized by vectors ` ∈ L. Each `
is a K-dimensional vector, whose kth component encodes if the kth covering scheme satisfies the
constraints of the second stage maximization problem. In this case, `k = 0. Else, if the kth covering
scheme is infeasible, `k is equal to the index of a constraint that is violated.
Theorem 1. Under Assumption 3, Problem (4) is equivalent to the mixed-integer bilinear program

max τ

s.t. τ ∈ R, x ∈ X , yk ∈ Y ∀k ∈ K
θ(`), βk(`) ∈ RN+ , α(`) ∈ RR+, ν(`) ∈ RK+ , λ(`) ∈ ∆K(`)

τ ≤ −e>θ(`) +α(`)>b−
∑
k∈K:
`k 6=0

(
yk`k − 1

)
νk(`) + . . .

. . .+
∑
k∈K:
`k=0

∑
n∈N

yknβ
k
n(`) +

∑
k∈K

λk(`)
∑
n∈N

ykn

θn(`) ≤ A>α(`) +
∑
k∈K:
`k 6=0

∑
ν∈δ(`k)

xννk(`)−
∑
k∈K:
`k=0

∑
ν∈δ(n)

xνβ
k
n(`) ∀n ∈ N


∀` ∈ L0

θ(`) ∈ RN+ , α(`) ∈ RR+, ν(`) ∈ RK+

1 ≤ −e>θ(`) +α(`)>b−
∑
k∈K:
`k 6=0

(
yk`k − 1

)
νk(`)

θn(`) ≤ A>α(`) +
∑
k∈K:
`k 6=0

∑
ν∈δ(`k)

xννk(`) ∀n ∈ N


∀` ∈ L+,

(5)
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which can be reformulated equivalently as an MILP using standard “Big-M” techniques since all
bilinear terms are products continuous and binary variables. The size of this MILP scales with
|L| = (N + 1)K; it is polynomial in all problem inputs for any fixed K.

Proof Sketch. The reformulation relies on three key steps: First, we partition the uncertainty set by
using the parameter `. Next, we show that by relaxing the integrality constraint on the uncertain
parameters ξ, the problem remains unchanged. This is the key result that enables us to provide an
equivalent formulation for Problem (4). Finally, we employ linear programming duality theory, to
reformulate the robust optimization formulation over each subset. As a result, the formulation has
two sets of decision variable: (a) The decision variables of the original problem; (b) Dual variables
parameterized by ` which emerge from the dualization. �

Bender’s Decomposition. In Problem (5), once binary variables x and {yk}k∈K are fixed, the
problem decomposes across `, i.e., all remaining variables are real valued and can be found by
solving a linear program for each `. Bender’s decomposition is an exact solution technique that
leverages such decomposable structure for more efficient solution [9, 16]. Each iteration of the
algorithm starts with the solution of a relaxed master problem, which is fed into the subproblems to
identify violated constraints to add to the master problem. The process repeats until no more violated
constraints can be identified. The formulations of master and subproblems are provided in Section E.

Symmetry Breaking Constraints. Problem (5) presents a large amount of symmetry. Indeed,
given K candidate covering schemes y1, . . . ,yK , their indices can be permuted to yield another,
distinct, feasible solution with identical cost. The symmetry results in significant slow down of
the Brand-and-Bound procedure [18]. Thus, we introduce symmetry breaking constraints in the
formulation (5) that stipulate the candidate covering schemes be lexicographically decreasing. We
refer to [46] for details.

5 Computational Study on Social Networks of Homeless Youth

We evaluate our approach on the five social networks from Table 1. Details on the data are provided in
Section A. We investigate the robust graph covering problem with maximin racial fairness constraints.
All experiments were ran on a Linux 16GB RAM machine with Gurobi v6.5.0.

First, we compare the performance of our approach against the greedy algorithm of [45] and the
degree centrality heuristic (DC). The results are summarized in Figure 2 (left). From the figure,
we observe that an increase in K results in an increase in performance along both axes, with a
significant jump from K = 1 to K = 2, 3 (recall that K controls complexity/optimality trade-off of
our approximation). We note that the gain starts diminishing from K = 2 to K = 3. Thus, we only
run up to K = 3. In addition the computational complexity of the problem increases exponentially
with K, limiting us to increase K beyond 3 for the considered instances. As demonstrated by our
results, K ∼ 3 was sufficient to considerably improve fairness of the covering at moderate price to
efficiency. Compared to the baselines, with K = 3, we significantly improve the coverage of the
worse-off group over greedy (resp. DC) by 11% (resp. 23%) on average across the five instances.

Second, we investigate the effect of uncertainty on the coverage of the worse-off group and on the PoF,
for both the deterministic (J = 0) and uncertain (J > 0) cases as the number of monitors I is varied
in the set {N/3, N/5, N/7}. These settings are motivated by numbers seen in practice (typically,
the number of people that can be invited is 15-20% of network size). Our results are summarized
in Table 2. Indeed, from the table, we see for example that for I = N/3 and J = 0 our approach is
able to improve the coverage of the worse-off group by 11-20% and for J > 0 the improvevment in
the worse-case coverage of the worse-off group is 7-16%. On the other hand, the PoF is very small:
0.28% on average for the deterministic case and at most 6.4% for the uncertain case. These results
are consistent across the range of parameters studied. We note that the PoF numbers also match our
analytical results on PoF in that uncertainty generally induces higher PoF.

Third, we perform a head-to-head comparison of our approach for K = 3 with the results in Table 1.
Our findings are summarized in Table 5 in Section A. As an illustration, in SPY3, the worst-case
coverage by racial group under our approach is: White 90%, Hispanic 44%, Mixed 85% and Other
87%. These numbers suggest that coverage of Hispanics (the worse-off group) has increased from
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Figure 2: Left figure: Solution quality (overall worst-case coverage versus worst-case coverage of the
group that is worse-off) for each approach (DC, Greedy, and K-adaptability for K = 1, 2, 3); The
points represent the results of each approach applied to each of the five real-world social networks
from Table 1; Each shaded area corresponds to the convex hull of the results associated with each
approach; Approaches that are more fair (resp. efficient) are situated in the right- (resp. top-)most part
of the graph. Right figure: Average of the ratio of the objective value of the master problem to the
network size (across the five instances) in dependence of solver time for the Bender’s decomposition
approach (dotted line) and the Bender’s decomposition approach augmented with symmetry breaking
constraints (solid line). For both sets of experiments, the setting was I = N/3 and J = 3.

Name Size N

Improvement in Min. Percentage Covered (%) PoF (%)

Uncertainty Level J Uncertainty Level J

0 1 2 3 4 5 0 1 2 3 4 5
SPY1 95 15 16 14 10 10 9 1.4 1.0 2.1 1.3 3.3 4.2
SPY2 117 20 14 9 10 8 10 0.0 1.2 3.7 3.3 3.6 3.7
SPY3 118 20 16 16 15 11 10 0.0 3.4 4.8 6.4 3.2 4.0
MFP1 165 17 15 7 11 14 9 0.0 3.1 5.4 2.4 6.3 4.4
MFP2 182 11 12 10 9 12 12 0.0 1.0 1.0 2.2 2.4 3.6

Avg. (I = N/3) 16.6 14.6 11.2 11.0 11.0 10.0 0.3 1.9 3.4 3.1 3.8 4.0
Avg. (I = N/5) 15.0 13.8 14.0 10.0 9.0 6.7 0.6 2.1 3.2 3.2 3.9 3.8
Avg. (I = N/7) 12.2 11.4 11.2 11.4 8.2 6.4 0.1 2.5 3.5 3.2 3.5 4.0

Table 2: Improvement on the worst-case coverage of the worse-off group and associated PoF for
each of the five real-world social networks from Table 1. The first five rows correspond to the setting
I = N/3. In the interest of space, we only show averages for the settings I = N/5 and I = N/7. In
the deterministic case (J = 0), the PoF is measured relative the coverage of the true optimal solution
(obtained by solving the integer programming formulation of the graph covering problem). In the
uncertain case (J > 0), the PoF is measured relative to the coverage of the greedy heuristic of [45].

33% to 44%, a significant improvement in fairness. To quantify the overall loss due to fairness, we
also compute PoF values. The maximum PoF across all instances was at most 4.2%, see Table 5.

Finally, we investigate the benefits of augmenting our formulation with symmetry breaking constraints.
Thus, we solve all five instances of our problem with the Bender’s decomposition approach with and
without symmetry breaking constraints. The results are summarized in Figure 2 (right). Across our
experiments, we set a time limit of 2 hours since little improvement was seen beyond that. In all
cases, and in particular for K = 2 and 3, symmetry breaking results in significant speed-ups. For
K = 3 (and contrary to Bender’s decomposition augmented with symmetry breaking), Bender’s
decomposition alone fails to solve the master problem to optimality within the time limit. We would
like to remark that employing K-adaptability is necessary: indeed, Problem (RCfair) would not fit in
memory. Similarly, using Bender’s decomposition is needed: even for moderate values of K (2 to 3),
the K-adaptability MILP (5) could not be loaded in memory.

Conclusion. We believe that the robust graph covering problem with fairness constraints is worth-
while to investigate. It poses a huge number of challenges and holds great promise in terms of the
realm of possible real-world applications with important potential societal benefits, e.g., to prevent
suicidal ideation and death and to protect individuals during disasters such as landslides.
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A Supplemental Material: Experimental Results in Section 5

Data and Data Preprocessing. The original datasets used throughout our paper are described in
detail in [4]. They present 8 racial groups, with each individual belonging to a single group. To avoid
misinterpretation of the results, we collect racial groups with a population < 10% of the network
size N under the “Other” category. The racial composition of the networks after the preprocessing is
provided in Table 3. For instance, network SPY1 consists of 54% White, 11% Black, 15% Mixed and
20% Others. The empty entry for Hispanic indicates that their population was less than 10%; as a
result, they are categorized under “Other”.

Network Name White Black Hispanic Mixed Other
SPY1 54 11 – 15 20
SPY2 55 – 11 21 13
SPY3 58 – 10 18 14
MFP1 16 38 22 16 8
MFP2 16 32 22 20 10

Table 3: Racial composition (%) of the social networks considered after preprocessing

Setting of Parameter W . We now describe in detail the procedure we use to select W in our
experiments. As noted in Section 2, to achieve maximin fairness, W must take the maximum value
for which the problem is feasible (fairness constraints satisfied). Its value thus depends on other
parameters, including I , J , and K. In our experiments, we conduct a search to identify the best value
of W for each setting. Specifically, we vary W from 0 to 1, in increments of 0.04; we employ the
largest W for which the problem is feasible. By construction, this choice of W guarantees that all
of the fairness constraints are satisfied. In Table 4, we provide the values of W associated with the
results in Table 2 for I = N/3 and K = 3 and for each of the values of J .

Network Name J = 1 J = 2 J = 3 J = 4 J = 5
SPY1 0.44 0.40 0.36 0.32 0.32
SPY2 0.56 0.52 0.48 0.44 0.36
SPY3 0.44 0.36 0.32 0.28 0.24
MFP1 0.52 0.48 0.44 0.40 0.32
MFP2 0.56 0.52 0.44 0.40 0.32

Table 4: Values of W output by our search procedure and used in the experiments associated with
Table 2.

Head-to-Head Comparison with Table 1. We conduct a head-to-head comparison of our approach
with the results from Table 1 which motivated our work. The results are summarized in Table 5.
From the table we observe a consistent increase of 8-14% in worst-case coverage of the worse-off
group. For example, in SPY3, the coverage of Hispanics has increased from 33% to 44%. We can
also see that the PoF is moderate, ranging from 1-4.2%. The result for the MFP1 network suggests a
36% increase in the coverage of the “Other” group. We note that, by construction, this group consists
of racial minorities with a population less than 10% of the network size. While this increase has
impacted the coverage of “majority” groups, the worst-case coverage of the worse-off group has
increased by 14% with a negligible PoF of 2.6%.

B Supplemental Material: Proof of Statements in Section 2

Proof of Lemma 1. For the special case when all monitors are available (Ξ = {e}), there is a single
community (C = 1), and no fairness constraints are imposed (W = 0), Problem (RCfair) reduces to
the maximum coverage problem, which is known to be NP-hard [26]. �

C Supplemental Material: Proofs of Statements in Section 3

In all of our analysis, we assume the graphs are undirected. This can be done without loss of generality
and the results hold for directed graphs.
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Network Name Network Size (N ) Worst-case coverage of individuals by racial group (%) PoF (%)
White Black Hispanic Mixed Other

SPY1 95 65 (70) 45 (36) – 79 (86) 88 (94) 3.3
SPY2 117 81 (78) – 50 (42) 72 (76) 73 (67) 1.0
SPY3 118 90 (88) – 44 (33) 85 (95) 87 (69) 4.2
MFP1 165 85 (96) 69 (77) 42 (69) 73 (73) 64 (28) 2.6
MFP2 182 56 (44) 80 (85) 70 (70) 71 (77) 72 (72) 3.4

Table 5: Reduction in racial discrimination in node coverage resulting from applying our proposed
algorithm relative to that of [45] on the five real-world social networks from Table 3, when 1/3 of
nodes (individuals) can be selected as monitors, out of which at most 10% may fail. The numbers
correspond to the worst-case percentage of covered nodes across all monitor availability scenarios.
The numbers in the parentheses are solutions to the state-of-the-art algorithm [45] (same numbers as
in Table 1.

(a) Original Graph (b) With fairness (c) Without fairness

Figure 3: Companion figure to Lemma 2. The figures illustrate a network sequence {GN}∞N=5
parameterized by N and consisting of two disconnected clusters: a small and a large one, with 4
and N − 4 nodes, respectively. The small cluster remains intact as N grows. The nodes in the large
cluster form a clique. In the figures, each color (white, grey, black) represents a different group and
we investigate the price of imposing fairness across these groups. The subfigures show the original
graph (a) and an optimal solution when I = 2 monitors can be selected in the cases (b) when fairness
constraints are not imposed and (c) when fairness constraints are imposed, respectively. It holds that
OPTfair(GN , 2, 0) = 4 and OPT(GN , 2, 0) = N − 3 so that the PoF in GN converges to one as N
tends to infinity.

C.1 Worst-Case PoF

Proof of Lemma 2. Let {GN}∞N=5 denote the graph sequence shown in Figure 3(a) (wherein all
edges are bidirectional). The network consists of three groups (e.g., racial groups) for which fair
treatment is important. Network GN consists of two disjoint clusters: one involving four nodes and a
bigger clique containing the remaining (N − 4) nodes. Suppose that we can choose I = 2 nodes as
monitors and that all of them are available (J = 0). Observe that Problem (RCfair) is feasible only if
0 ≤W ≤ (N − 3)−1. For W = (N − 3)−1, the optimal solution places both nodes in the smaller
cluster, see Figure 3(b). This way, at least one node from each group is covered. The total coverage for
the fair solution is then equal to OPTfair(GN , 2, 0) = 4. The maximum achievable coverage under no
fairness constraints, however, is obtained by placing one monitor in each cluster, see Figure 3(c). Thus,
the total coverage is equal to OPT(GN , 2, 0) = N − 3. As a result, PoF(GN , 2, 0) = 1−4(N−3)−1

and for N ≥ 4/ε+ 3, it holds that PoF(GN , 2, 0) ≥ 1− ε. The proof is complete. �

C.2 Supporting Results for the PoF Derivation

In this section, we provide the preliminary results needed in the derivation of the PoF for both the
deterministic and robust graph covering problems. First, we provide two results (Lemmas 2 and 3)
from the literature which characterize the maximum degree, as well as the expected number of
maximum-degree nodes in sparse Erdős Rény graphs [25, 30]. We note that in SBM graphs which are
used in our PoF analysis, each community c ∈ C, when viewed in isolation, is an instance of the Erdős
Rényi graph, in which each edge exists independently with probability pin

c . These results are useful
to evaluate the coverage of each community c ∈ C under the sparsity Assumption 1. Specifically,
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they enable us to show in Lemma 4 that, in sparse Erdős Rényi graphs, the coverage can be evaluated
approximately as the sum of the degrees of the monitoring nodes. Thus, the maximum coverage
within each community in an SBM network can obtained by selecting the maximum degree nodes.
Lastly, we prove Lemma 6 which will be useful to show that coverage from monitoring nodes in
other communities in SBM networks is negligible.

In what follows, we use GN,p to denote a random instance of Erdős Rény graphs on vertex set N (=
{1, . . . , N}), where each edge occurs independently with probability p. Following the notational
conventions in [29], we will say that a sequence of events {An}Nn=1 occurs with high probability if
limn→∞ P(An) = 1 and, given a graph G, we let ∆(G), the maximum degree of vertices of G.

Theorem 2 ([29, Theorem 3.4]). Let {GN,p}∞N=1 a sequence of graphs. If p = Θ(N−1), then with
high probability

lim
N→∞

∆(GN,p) =
logN

log logN
.

Lemma 3. Let {GN,p}∞N=1 a sequence of graphs with p = Θ(N−1). Let σ(N) :=
logN(log logN)−1. Then, it holds that

E[Xσ(N)(GN,p)] ≥ N
log log log N−o(1)

log log N ,

where Xσ(N)(GN,p) is the number of vertices of degree σ(N) in GN,p.

Proof. We borrow results from [29, Theorem 3.4], where the authors show that

E[Xσ(N)(GN,p)] = exp

(
logN

log logN
(log log logN − o(1)) +O

(
logN

log logN + 2 log log logN

))
,

We further simplify the expression in Lemma 3 by eliminating the O(.) term and we obtain

E[Xσ(N)(GN,p)] ≥ N
log log log N−o(1)

log log N ,

�

Lemma 3 ensures that our budget for selecting monitors I = O(logN), is (asymptotically) smaller
than number of nodes with degree ∆(GN,p).

Lemma 4. Let {GN,p}∞N=1 be a sequence of graphs with p = Θ(N−1). Suppose that the number of
monitors is I = O(logN). Then, for all ν, there exists a graph GN,p such that the difference between
the expected maximum coverage in GN,p and the expected number of neighbors of the monitoring
nodes is bounded. Precisely, if x(GN,p) is the indicator vector of the highest degree nodes in GN,p,
we have ∑

n∈N
E
[
xn(GN,p)|δGN,p

(n)|
]
− E

[
FGN,p

(x(GN,p), e)
]
≤ ν,

where δGN,p
(n) is the set of neighbors of n in GN,p and ν is the error term and it is ν = o(1).

Proof. Let Yn be the event that node n is covered. Also, let Zin the event that node n is covered by
the ith highest degree node (and by potentially other nodes too). Without loss of generality, assume
that the nodes with lower indexes have higher degrees, i.e., |δ(1)| ≥ · · · ≥ |δ(N)|. The probability
that node n is covered can be written as

P(Yn) = P
(
∪Ii=1Z

i
n

)
. (6)

From the Bonferroni inequalities, we have

P(∪Ii=1Z
i
n) ≥

I∑
i=1

P(Zin)−
I∑
j=i

P(Zin ∩ Zjn)

 (7)
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and

P(∪Ii=1Z
i
n) ≤

I∑
i=1

P(Zin). (8)

Define Y :=
∑N
i=1 Yn as the (random) total coverage. With a slight abuse of notation, we view Yn

and Zin as Bernoulli random binary variables that are equal to 1 if and only if the associated event
occurs. As a result, we can substitute the probability terms with their expected values. Combining
Equations (6), (7) and (8), we obtain

I∑
i=1

E[Zin]−
I∑
j=i

E[ZinZ
j
n]

 ≤ E[Yn] ≤
I∑
i=1

E[Zin], ∀n ∈ N ,

where we used the fact that P(Zin ∩ Zjn) = P(Zin)P(Zjn) = E(Zin)E(Zjn) = E(ZinZ
j
n) by indepen-

dence of the events Zin and Zjn. Summing over all n yields

∑
n∈N

 I∑
i=1

E[Zin]−
I∑
j=i

E[ZinZ
j
n]

 ≤ ∑
n∈N

E[Yn] ≤
∑
n∈N

I∑
i=1

E[Zin].

Changing the order of the summations, it follows that

I∑
i=1

∑
n∈N

E[Zin]−
I∑
j=i

∑
n∈N

E[ZinZ
j
n]

 ≤ E[Y ] ≤
I∑
i=1

∑
n∈N

E[Zin],

where we have used E[Y ] =
∑N
i=1 E[Yn]. By definition of δGN,p

(i), since xi(GN,p) = 1 for
i = 1, . . . , I , it holds that the number of nodes covered by node i,

∑
n∈N E[Zin] = E[|δGN,p

(i)|].
Also, we remark that E[Y ] = E[FGN,p

(x(GN,p), e)]. Thus, the above sequence of inequalities is
equivalent to

I∑
i=1

E[|δGN,p
(i)|]−

I∑
j=i

∑
n∈N

E[ZinZ
j
n]

 ≤ E[FGN,p
(x(GN,p), e)] ≤

I∑
i=1

E[|δGN,p
(i)|],

where, by reordering terms, we obtain

0 ≤
I∑
i=1

E[|δGN,p
(i)|]− E[FGN,p

(x(GN,p), e)] ≤
I∑
i=1

I∑
j=i

∑
n∈N

E[ZinZ
j
n].

Note that E [xn(GN,p)] = 1,∀n ≤ I since by assumption the nodes are ordered by decreasing order
of their degree, so the nodes indexed from 1 to I are selected in each realization of the graph. Thus,

I∑
i=1

E[|δGN,p
(i)|] =

∑
n∈N

E [xn(GN,p)] E
[
|δGN,p

(n)|
]

=
∑
n∈N

E
[
xn(GN,p)|δGN,p

(n)|
]
,

which yields

∑
n∈N

E
[
xn(GN,p)|δGN,p

(n)|
]
− E[FGN,p

(x(GN,p), e)] ≤
I∑
i=1

I∑
j=i

∑
n∈N

E[ZinZ
j
n]. (9)

The right-hand side of Equation (9) is the error term and we denote it by ν =∑I
i=1

∑I
j=i

∑
n∈N E[ZinZ

j
n]. This error term determines the difference between the true value of

the coverage and the expected sum of the degrees of the monitoring nodes. Given that p = Θ(N−1),
we can precisely evaluate the error term. First, we note that since in the Erdős-Rényi model edges are
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drawn independently, we can write E[ZinZ
j
n] = E[Zin] E[Zjn]. Using Theorem 2 and Lemma 3, and

given that the monitors are the highest degree nodes in any realization of the graph, we can write

E[Zin] = E[Zjn] = Θ

(
1

N

logN

log logN

)
.

We thus obtain

ν = Θ

(
I2

N

(
logN

log logN

)2
)
.

By the assumption on the order of I , it follows that limN→∞ ν = 0, which concludes the proof. �

We now prove the following lemma which will be used in proof of the subsequent results.
Lemma 5. Let Xi for i = 1, . . . , Q be Q i.i.d samples from normal distribution with mean µ and
standard deviation σ. Also, let Z = maxi∈{1,··· ,Q}Xi. It holds that

E[Z] ≤ µ+ σ
√

2 logQ.

Proof. By Jensen’s inequality,
exp(tE[Z]) ≤ E[exp(tZ)] = E[exp(t max

i=1,...,Q
Xi)]

≤
Q∑
i=1

E[exp(tXi)]

= Q exp(µt+ t2σ2/2),

where the last equality follows from the definition of the Gaussian moment generating function.
Taking the logarithm of both sides of this inequality, we can obtain

E[Z] ≤ µ+
logQ

t
+
tσ2

2
.

For the tightest upper-bound, we set t =
√

2 logQ/σ. Thus, we obtain

E[Z] ≤ µ+ σ
√

2 logQ.

�

Lemma 6. Consider BN,M,p to be a random instance of a bipartite graph on the vertex setN = L∪R,
where N = |R ∪ L| and M := |R| and p = O

(
(M log2M)−1

)
is the probability that each edge

exists (independently). Suppose that monitoring nodes can only be chosen from the set L and that at
most I monitors can be selected. Then, it holds that

E

 max
x∈{0,1}|L|:∑

n∈L xn=I

FBN,M,p
(x, e)

 = IO

(
1

log2M

)
.

Proof. We note that the degree of node i, δBN,M,p
(i), follows a binomial distribution with mean Mp.

Given we are interested in N,M →∞, we can approximate the binomial distribution with a normal
distribution [48] with mean Mp and standard deviation

√
Mp(1− p). Using the result of Lemma 5,

we obtain
E[∆BN,M,p

] = O
(
Mp+

√
Mp(1− p)

√
2 log (N −M)

)
= O(Mp).

Using the above result combined with the assumption on p, we can bound the expected maximum
degree of B.

E[∆BN,M,p
] = O

(
1

log2M

)
.

As a result, the maximum expected coverage of the I monitoring nodes is upper-bounded as

E

 max
x∈{0,1}N :∑

n∈L xn=I

FBN,M,p
(x, e)

 ≤ I E[∆BN,M,p
] = IO

(
1

log2M

)
.

and the proof is complete. �

17



C.3 PoF in the Deterministic Case

Next, we prove the main result which is the derivation of the PoF for the deterministic graph covering
problem. The idea of the proof is as follows: by Lemmas 3 and 4, we are able to evaluate the
coverage of each community. By Lemma 6, we upper bound the between-community coverage. In
other words, based on Lemma 6, we conclude that in every instance of the coverage problem, the
between-community coverage is zero (asymptotically) with high probability. Thus, the allocation of
monitoring nodes is only dependant on the within-community coverage. Using this observation, we
can determine the allocation of the monitors both in the presence and absence of fairness constraints.
Subsequently, we are able to evaluate the coverage in both cases. PoF can be then computed based on
these two quantities, see Equation (2).

Proof of Proposition 1. Let SN be a random instance of the SBM network with size N . Consider
s(SN ) ∈ ZC to be the number of allocated monitoring nodes to each of the C communities, i.e.,
sc(SN ) =

∑
n∈Nc

xn(SN ). Using the result of Lemmas 4 and 6, we can measure the expected
maximum coverage as

lim
N→∞

E[OPT(SN , I, 0)] = lim
N→∞

E

[
max

x(SN )∈X
FSN

(x, e)

]
= E

[
lim
N→∞

max
x(SN )∈X

FSN
(x, e)

]
,

where the last equality is obtained by exchanging the expectation and limit. Using Lemma 2 and
since the maximum degree is convergent to d(c), we can exchange the limit and maximization term.
Thus, we will have

E

[
lim
N→∞

max
x(SN )∈X

FSN
(x, e)

]
= E

[
max

x(SN )∈X
lim
N→∞

FSN
(x, e)

]
= E

[
max

s(SN )∈ZC

∑
c∈C

sc(SN )d(c) + o(1)

]
,

which given that d(c) is only dependent on the size of the communities in SN is equivalent to

lim
N→∞

E[OPT(SN , I, 0)] = max
s(SN )

∑
c∈C

sc(SN )d(c) + o(1). (10)

Equation (10) suggests that for large enough N , the maximum coverage is only dependent on the
number of the monitoring nodes allocated to each community. Also, the allocation is the same for all
random instances so we can drop the dependence of s on SN . In right-hand side of Equation (10),
the first term is the within-community (Lemma 4), and the second term is the between-community
(Lemma 6) coverage.

In the analysis below, all the evaluations are for large enough N . Therefore, we drop the limN→∞
for ease of notation. According to Equation (10) the between-community coverage is negligible,
compared to the within-community coverage. This suggests that the maximum achievable coverage
will be obtained by placing all the monitoring nodes in the largest community, with the largest value
of d(c), where the assumption on I , as given in the premise of the proposition, combined with
Lemma 3 guarantee that such a selection is possible. Thus, we obtain

E[OPT(SN , I, 0)] = Id(C) + o(1).

Next, we measure E[OPTfair(.)], where in addition to optimization problem in Equation (10), the
allocation is further restricted to satisfy all the fairness constraints.

sc
|Nc|

d(c) + o(1) ≥W ∀c ∈ C, (11)

in which, o(1) is the term that compensates for the coverage of the nodes in other communities, and
is small due to the regimes of pout

cc′ , ∀c, c′ ∈ C and the budget I. At optimality and for the maximum
value of W , we have∣∣∣sc|Nc|−1

d(c)− sc′ |Nc′ |−1
d(c′)

∣∣∣ ≤ δ ∀c, c′ ∈ C, δ ≤ ∣∣∣d(1)|N1|−1 − d(C)|NC |−1
∣∣∣ .

This holds because otherwise one can remove on node from the group with higher value of
sc|Nc|−1

d(c) to a group with less value and thus increase the normalized coverage of the worse-off
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group and this contradicts the fact that W is the maximum possible value. This suggests that in a fair
solution, the normalized coverage is almost equal across different groups, given that limN→∞ δ = 0.
As a result, the monitoring nodes should be such that

W ≤ sc
|Nc|

d(c) + o(1) ≤W + δ, ∀c ∈ C.

From this, it follows that
W − o(1) ≤ sc

|Nc|
d(c) ≤W + o(1). (12)

By assumption, there must be an integral sc that satisfies the above relation. Note that if we could
relax the integrality assumption, sc = W |Nc|d(c)−1. Due to the integrality constraint, and according
to Equation (12), we set sc|Nc|−1

d(c) = W + o(1), where the o(1) term is to account for the
discretizing error, which results in sc = W |Nc|d(c)−1 + O(1), where O(1) ≤ 1 (As we can not
make a higher error in rounding). Also, since

∑
c∈C sc = I , we can obtain the value of W as

W =
I∑

c∈C
|Nc|
d(c)

+ o(1).

As a result

sc =
I∑

c∈C
|Nc|
d(c)

|Nc|
d(c)

+O(1) ∀c ∈ C.

We now define κ := I
(∑

c∈C
|Nc|
d(c)

)−1

for a compact representation.

So far, we obtained the allocation of the monitoring nodes to satisfy the fairness constraints. This
is enough to evaluate the coverage under the fairness constraints. Now, we can evaluate the PoF as
defined by Equation (2).

E[OPT(SN , I, 0)] = Id(C)

⇒ − 1

E[OPT(SN , I, 0)]
= − 1

I d(C)

⇒ −E[OPTfair(SN , I, 0)]

E[OPT(SN , I, 0)]
= −

κ
∑
c∈C

|Nc|
d(c) d(c)

I d(C)
−o(1)

⇒ 1− E[OPTfair(SN , I, 0)]

E[OPT(SN , I, 0)]
= 1−

κ
∑
c∈C

|Nc|
d(c) d(c)

I d(C)
− o(1)

⇒ PoF(I, 0) = 1−
κ
∑
c∈C |Nc|
I d(C)

− o(1)

⇒ PoF(I, 0) = 1−
∑
c∈C |Nc|∑

c∈C |Nc|d(C)/d(c)
− o(1).

�

C.4 PoF in the Robust Case

Proof of Proposition 2. The idea of the proof is similar to Proposition 1, with the exception that the
fair allocation of the monitoring nodes will be affected by the uncertainty. Consider s to be the
number of allocated monitoring nodes to each of the C communities, i.e., sc =

∑
n∈Nc

xn. Using
the result of lemma 4, and 6, we can measure the expected maximum coverage as

E[OPT(SN , I, J)] = (I − J)d(c) + o(1).

That is because, in the worst-case J nodes fail, thus only (I − J) nodes can cover the graph. Next,
we measure E[OPTfair(.)], where in addition to optimization problem in Equation (10), the allocation
is further restricted to satisfy all the fairness constraints. Given that at most J nodes may fail, we
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need to ensure after fairness constraints are satisfied after the removal of J nodes. We momentarily
revisit the fairness constraint in the deterministic case.

sc
|Nc|

d(c) + o(1) ≥W ∀c ∈ C,

in which, o(1) is the term that compensates for the coverage of the nodes in other communities, and
is small due to the regimes of pout, and the budget I. Under the uncertainty, we need to ensure that
these constraints are satisfied even after J nodes are removed. In other words

(sc − J)

|Nc|
d(c) + o(1) ≥W ∀c ∈ C.

At optimality and for the maximum value of W , we have∣∣∣(sc − J)|Nc|−1
d(c)− (sc′ − J)|Nc′ |−1

d(c′)
∣∣∣ ≤ δ ∀c, c′ ∈ C, δ ≤ ∣∣∣d(1)|N1|−1 − d(C)|NC |−1

∣∣∣ .
This holds because otherwise one can remove on node from the group with higher value of
sc|Nc|−1

d(c) to a group with less value and thus increase the normalized coverage of the worse-off
group and this contradicts the fact that W is the maximum possible value.

This suggests that in a fair solution, the normalized coverage is almost equal across different groups,
given that δ → 0, as Nc →∞,∀c ∈ C. Following the proof of Proposition 1, the discretizing error
can be handled by setting (sc − J)|Nc|−1

d(c) = W + o(1), where the o(1) term is to account for
the discretizing error. As a result

sc =
|Nc|W
d(c)

+ J +O(1),

where O(1) ≤ 1 (As we can not make a higher error in rounding). This suggests that a fair allocation
is the one that places J nodes in each community, regardless of the community size. The remaining
monitors are allocated with respect to the relative size of the communities.

Summing over all sc and since
∑
c∈C sc = I we obtain

W =
(I − CJ)∑
c∈C

|Nc|
d(c)

+ o(1).

As a result

sc =
(I − CJ)∑
c∈C

|Nc|
d(c)

|Nc|
d(c)

+ J +O(1) ∀c ∈ C.

As defined in the premise of the proposition, η = (I − CJ)
(∑

c∈C
|Nc|
d(c)

)−1

.

So far, we obtained the allocation of the monitoring nodes, to satisfy the fairness constraints.

Now, we evaluate the coverage, i.e., objective value of Problem (RCfair), under the obtained fair
allocation. Since the fairness constraints are satisfied under all the scenarios, the worst-case scenario
is the one that results in the maximum loss in the total coverage. This corresponds to the case that J
nodes from the largest community (NC) fail. As a result the expected coverage can be obtained by

E[OPTfair(SN , I, J)] =
∑
c∈C

(
η
|Nc|
d(c)

d(c) + Jd(c) +O(1)d(c)

)
− Jd(C).

Now, we can evaluate the PoF as defined by Equation (2).
E[OPT(SN , I, J)] = (I − J)d(C)

⇒ − 1

E[OPT(SN , I, J)]
= − 1

(I − J)d(C)

⇒ −E[OPTfair(SN , I, J)]

E[OPT(SN , I, J)]
= −

∑
c∈C (η|Nc|+ Jd(c))− Jd(C)

(I − J)d(C)
− o(1)

⇒ 1− E[OPTfair(SN , I, J)]

E[OPT(SN , I, J)]
= 1−

∑
c∈C η|Nc|+

∑
c∈C\{C} Jd(c)

(I − J)d(C)
− o(1)

⇒ PoF(I, J) = 1−
∑
c∈C η|Nc|

(I − J)d(C)
−
J
∑
c∈C\{C} d(c)

(I − J)d(C)
− o(1).

�
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D Supplemental Material: Proofs of Statements in Section 4

D.1 Equivalent Reformulation as a Max-Min-Max Robust Optimization Problem

Proof of Proposition 3. Let x̄ be feasible in Problem (RCfair). It follows that it is also feasible in
Problem 3. For a fixed ξ̄, we show that∑

c∈C
FG,c(x̄, ξ̄) = max

y

∑
c∈C

∑
n∈Nc

yn

s.t. yn ≤
∑
ν∈δ(n)

ξ̄νx̄ν∑
n∈C

yn ≥W |Nc|, ∀c ∈ C

Since x̄ is feasible in Problem (RCfair), it holds that

FG,c(x̄, ξ̄) =
∑
n∈Nc

yn(x̄, ξ̄)

=
∑
n∈Nc

I

 ∑
ν∈δ(n)

ξ̄νx̄ν ≥ 1


≥ W |Nc|

We define y?n = I
(∑

ν∈δ(n) ξ̄νx̄ν ≥ 1
)

which is feasible in Problem (3). Since the choice of ξ̄ was
arbitrary, we showed that given a solution to Problem (RCfair), we can always construct a feasible
solution to Problem (3), thus the objective value of the latter is at least as high.

We now prove the contrary, i.e., given a solution to Problem (3), we will construct a solution to
Problem (RCfair). Consider x̄ to be an optimal solution to Problem (RCfair). Suppose there exists
ξ̄ ∈ Ξ such that

FG,c(x̄, ξ̄) < |Nc|W

⇒
∑
n∈Nc

I

 ∑
ν∈δ(n)

ξ̄νx̄ν ≥ 1

 < |Nc|W.

However, since x̄ is feasible in Problem (RCfair), we have that

∀ξ̃ ∈ Ξ, ∃yn : yn ≤
∑
ν∈δ(n)

ξ̃νx̄ν∑
n∈Nc

yn ≥ |Nc|W.

By construction, yn ≤ I
(∑

ν∈δ(n) ξ̃νx̄ν ≥ 1
)
, ∀n ∈ N . Thus

∑
c∈C

∑
n∈Nc

I

 ∑
ν∈δ(n)

ξ̃νx̄ν ≥ 1

 ≥
∑
c∈C

∑
n∈Nc

yn

≥ |Nc|W.

According to the above result, we showed that the optimal objective value of Problem (RCfair) is at
least as high as that of Problem (3). This completes the proof. �
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D.2 Exact MILP Formulation of the K-Adaptability Problem

In order to derive the equivalent MILP in Theorem 1, we start by a variant of the K-adaptability
Problem (4), in which we move the constraints of the inner maximization problem to the definition
of the uncertainty set in the spirit of [31]. Next, we prove, via Proposition 4, that by relaxing the
integrality constraint on the uncertain parameters ξ, the problem remains unchanged, and this is the
key result that enables us to provide an equivalent MILP reformulation for Problem (4).

We replace Ξ with a collection of uncertainty sets parameterized by vectors ` ∈ L as in [31].
Specifically, it follows from Proposition 2 in [31] that Problem (4) is equivalent to

max min
`∈L

min
ξ∈Ξ(x,y,`)

max
k∈K:
`k=0

∑
n∈N

ykn

s.t. x ∈ X , y1, . . . ,yK ∈ Y,
(13)

where Ξ(x,y, `) is defined through

Ξ(x,y, `) :=

ξ ∈ Ξ :

yk`k >
∑

ν∈δ(`k)

ξνxν , ∀k ∈ K : `k > 0

ykn ≤
∑
ν∈δ(n)

ξνxν ∀n ∈ N , ∀k ∈ K : `k = 0

 ,

and, with a slight abuse of notation, we use y := {y1, . . . ,yK}. The vector ` ∈ L encodes which
of the K candidate covering schemes are feasible. By introducing `, the constraints of the inner
maximization problem are absorbed in the parameterized uncertainty sets Ξ(x,y, `), and in the
inner-most maximization problem, any covering scheme can be chosen for which `k = 0.

Note that, for any fixed x ∈ X , y ∈ YK , and ` ∈ L, the strict inequalities in Ξ(x,y, `) can be
converted to (loose) inequalities as in

Ξ(x,y, `) =

ξ ∈ Ξ :

yk`k ≥
∑

ν∈δ(`k)

ξνxν + 1, ∀k ∈ K : `k > 0

ykn ≤
∑
ν∈δ(n)

ξνxν ∀n ∈ N , ∀k ∈ K : `k = 0

 .

This idea was previously leveraged in [39]. It follows naturally since all decision variables and
uncertain parameters are binary. Next, we show that we can obtain an equivalent problem by relaxing
the integrality constraint on the set Ξ in the definition of Ξ(x,y, l). Consider the following problem

max min
`∈L

min
ξ∈Ξ(x,y,`)

max
k∈K:
`k=0

∑
n∈N

ykn

s.t. x ∈ X , y ∈ YK ,
(14)

where the uncertainty set is obtained by relaxing the integrality constraints on ξ, i.e.,

Ξ(x,y, `) =

ξ ∈ T :

yk`k ≥
∑

ν∈δ(`k)

ξνxν + 1, ∀k ∈ K : `k > 0

ykn ≤
∑
ν∈δ(n)

ξνxν ∀n ∈ N , ∀k ∈ K : `k = 0

 .

Proposition 4. Under Assumption 3, Problems (13) and (14) are equivalent.

Proof. Let x ∈ X , y ∈ YK , and ` ∈ L. It suffices to show that

min
ξ∈Ξ(x,y,`)

max
k∈K:
`k=0

∑
n∈N

ykn and min
ξ∈Ξ(x,y,`)

max
k∈K:
`k=0

∑
n∈N

ykn
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are equivalent. Observe that the these problems have the same objective function. Thus, the two
problems have the same optimal objective value if and only if they are either both feasible or both
infeasible. As a result, it suffices to show that Ξ(x,y, `) is empty if and only if Ξ(x,y, `) is empty.
Naturally, if Ξ(x,y, `) = ∅ then Ξ(x,y, `) = ∅ since T is the linear programming relaxation
of Ξ. Thus, it suffices to show that the converse also holds, i.e., that if Ξ(x,y, `) 6= ∅, then also
Ξ(x,y, `) 6= ∅.

To this end, suppose that Ξ(x,y, `) 6= ∅ and let ξ̃ ∈ Ξ(x,y, `). Then, ξ̃ is such that

ξ̃ ∈ T ,

yk`k ≥
∑

ν∈δ(`k)

ξ̃νxν + 1 ∀k ∈ K : `k > 0,

ykn ≤
∑
ν∈δ(n)

ξ̃νxν ∀n ∈ N , ∀k ∈ K : `k = 0.

(15)

Next, define ξ̂n := dξ̃ne ∀n ∈ N . We show that ξ̂ ∈ Ξ(x,y, `). First, note that ξ̂ ≥ ξ̃ and by
Assumption 3, it follows that ξ̂ ∈ T . Moreover, by construction, ξ̂ ∈ {0, 1}N . Thus, it follows
that ξ̂ ∈ Ξ. Next, we show that the constructed solution ξ̂ also satisfies the remaining constraints in
Ξ(x,y, `). Fix k ∈ K such that `k > 0. Then, from (15) it holds that

yk`k ≥
∑

ν∈δ(`k)

ξ̃νxν + 1

⇒ yk`k = 1 and ξ̃νxν = 0 ∀ν ∈ δ(`k)

⇒ yk`k = 1 and ξ̃ν = 0 ∀ν ∈ δ(`k) : xν = 1

⇒ yk`k = 1 and ξ̂ν = 0 ∀ν ∈ δ(`k) : xν = 1

⇒ yk`k ≥
∑

ν∈δ(`k)

ξ̂νxν + 1,

where the first and second implication follow since y and x are binary, respectively, and the third
implication holds by definition of ξ̂,

Next, fix k ∈ K such that `k = 0. Then, (15) yields

ykn ≤
∑
ν∈δ(n)

ξ̃νxν ∀n ∈ N

⇒ ykn ≤
∑
ν∈δ(n)

ξ̂νxν ∀n ∈ N ,

which follows by definition of ξ̂. We have thus constructed ξ̂ ∈ Ξ(x,y, `) and therefore conclude
that Ξ(x,y, `) 6= ∅. Since the choice of x ∈ X , y ∈ YK , and ` ∈ L was arbitrary, the claim
follows. �

Proposition 4 is key to leverage existing literature to reformulate Problem (4) as an MILP. The
reformulation is based on [31, 39].

Proof of Theorem 1. Note that the objective function of the Problem (13) is identical to

min
`∈L

min
ξ∈Ξ(x,y,`)

[
max

λ∈∆K(`)

∑
k∈K

λk
∑
n∈N

ykn

]
,

where ∆K(`) := {λ ∈ RK+ : e>λ = 1, λk = 0 ∀k ∈ K : `k 6= 0}. We define ∂L := {` ∈ L : ` ≯
0}, and L+ := {` ∈ L : ` > 0}. We remark that ∆K(`) = ∅ if and only if ` > 0. If Ξ(x,y, `) = ∅
for all ` ∈ L+, then the problem is equivalent to

min
`∈∂L

min
ξ∈Ξ(x,y,`)

[
max

λ∈∆K(`)

∑
k∈K

λk
∑
n∈N

ykn

]
.
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By applying the classical min-max theorem, we obtain

min
`∈∂L

max
λ∈∆K(`)

min
ξ∈Ξ(x,y,`)

∑
k∈K

λk
∑
n∈N

ykn.

This problem is also equivalent to

max
λ(`)∈∆K(`)

min
`∈∂L

min
ξ∈Ξ(x,y,`)

∑
k∈K

λk(`)
∑
n∈N

ykn.

If on the other hand Ξ(x,y, `) 6= ∅ for some ` ∈ L+, the objective of Problem (13) evaluates to
−∞.

Using the above results, we can write Problem (13) in epigraph form as

max τ

s.t. x ∈ X , y ∈ YK , τ ∈ R, λ(`) ∈ ∆K(`), ` ∈ ∂L

τ ≤
∑
k∈K

λk(`)
∑
n∈N

ykn ∀` ∈ ∂L : Ξ(x,y, `) 6= ∅

Ξ(x,y, `) = ∅ ∀` ∈ L+.

(16)

We begin by reformulating the semi-infinite constraint associated with ` ∈ ∂L in Problem (16). To
this end, fix ` ∈ ∂L and consider the linear program

min 0

s.t. 0 ≤ ξn ≤ 1 ∀n ∈ N

A>ξ ≥ b

yk`k ≥
∑

ν∈δ(`k)

ξνxν + 1 ∀k ∈ K : `k > 0

ykn ≤
∑
ν∈δ(n)

ξνxν ∀n ∈ N , ∀k ∈ K : `k = 0,

whose dual reads

max −e>θ(`) + b>α(`)−
∑
k∈K
`k 6=0

(
yk`k − 1

)
νk(`) +

∑
k∈K
`k=0

∑
n∈N

yknβ
k
n(`)

s.t. θ(`) ∈ RN+ , α(`) ∈ RR+, β
k(`) ∈ RN+ , ∀k ∈ K, ν(`) ∈ RK+

θn(`) ≤ A>α(`) +
∑
k∈K
`k 6=0

∑
ν∈δ(`k)

xννk(`)−
∑
k∈K
`k=0

∑
ν∈δ(n)

xνβ
k
n(`) ∀n ∈ N .

In Problem (16) the constraint associated with each ` ∈ ∂L is satisfied if and only if the objective
value of the above dual problem is greater than τ −

∑
k∈K λk(`)

∑
n∈N y

k
n. This follows since the

dual is always feasible. Therefore, either the dual is unbounded in which case the primal is infeasible,
i.e., Ξ(x,y, `) = ∅, and the constraint is trivial. Else, by strong duality, the primal and dual must
have the same objective value (zero). As a result, the constraints in Problem (16) associated with
each ` ∈ ∂L can be written as

τ ≤ −e>θ(`) + b>α(`)−
∑
k∈K
`k 6=0

(
yk`k − 1

)
νk(`) +

∑
k∈K
`k=0

∑
n∈N

yknβ
k
n(`) +

∑
k∈K

λk(`)
∑
n∈N

ykn

θn(`) ≤ A>α(`) +
∑
k∈K
`k 6=0

∑
ν∈δ(`k)

xννk(`)−
∑
k∈K
`k=0

∑
ν∈δ(n)

xνβ
k
n(`) ∀n ∈ N .
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Finally, the last constraint in Problem (16) is satisfied if the linear program

min 0

s.t. 0 ≤ ξn ≤ 1 ∀n ∈ N

Aξ ≥ b

yk`k ≥
∑

ν∈δ(`k)

ξνxν + 1 ∀k ∈ K : `k 6= 0

is infeasible. Using strong duality, this occurs if the dual problem

max −e>θ(l) +α(`)>b−
∑
k∈K
`k 6=0

(
yk`k − 1

)
νk(`)

s.t. θ(`) ∈ RN+ , α(`) ∈ RR+, ν(`) ∈ RK+

θn(`) ≤ A>α(`) +
∑
k∈K
`k 6=0

∑
ν∈δ(`k)

xννk(`) ∀n ∈ N

is unbounded. Since the feasible region of the dual problem constitutes a cone, the dual problem is
unbounded if and only if there is a feasible solution with an objective value of 1 or more. �

E Supplemental Material: Bender’s Decomposition

We do not detail all the steps of the Bender’s decomposition algorithm. We merely provide the
initial relaxed master problem and the subproblems used to generate the cuts. We refer the reader to
e.g., [16] for more details.

Relaxed Master Problem. Initially, the relaxed master problem only involves the binary variables
of the Problem (5) and is expressible as

max
{
τ : τ ∈ R, x ∈ X , y1, . . . ,yK ∈ Y

}
.

Subproblems. As discussed in Section 4, Problem (5) decomposes by `. Depending on the index `
of the subproblem, there are two types of subproblems to consider. If ` ∈ L0, the subproblem is
given by

min 0

s.t. θ(`), βk(`) ∈ RN+ , α(`) ∈ RR+, ν(`) ∈ RK+ , λ(`) ∈ ∆K(`)

τ ≤ −e>θ(`) + b>α(`)−
∑
k∈K:
`k 6=0

(
yk`k − 1

)
νk(`) + . . .

. . .+
∑
k∈K:
`k=0

∑
n∈N

yknβ
k
n(`) +

∑
k∈K

λk(`)
∑
n∈N

ykn

θn(`) ≤ A>α(`) +
∑
k∈K
`k 6=0

∑
ν∈δ(lk)

xννk(`)−
∑
k∈K
`k=0

∑
ν∈δ(n)

xνβ
k
n(`) ∀n ∈ N .

(Z0(`))
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In a similar fashion, we define the subproblem associated with ` ∈ L+, given by

min 0

s.t. θ(`) ∈ RN+ , α(l) ∈ RR+, ν(l) ∈ RK+

1 ≤ −e>θ(l) + b>α(`)−
∑
k∈K
`k 6=0

(
yk`k − 1

)
νk(`)

θn(`) ≤ A>α(`) +
∑
k∈K
`k 6=0

∑
ν∈δ(`k)

xννk(`) ∀n ∈ N .

(Z+(`))
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